Advertisement

Direct Writing Techniques: Electron Beam and Focused Ion Beam

  • T. Djenizian
  • C. Lehrer
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

Due to significant theoretical and technological new advances, nanostructuring of surfaces has attracted a great deal of scientific interest. The continuous demand for shrinking the dimensions of structures to reach the nanometer scale is mainly motivated by the discovery of new behaviors dominated by unique properties that are encountered when nanosize dimensions are approached (e.g., quantum confinement). Additionally, a major thrust for shrinking dimensions originates from the microelectronic field requiring the development of smaller devices, system integration, and system diversification. Thus, electronic materials as well as integrated materials adding new features must be structured at the micro- and nanometer scale.

Keywords

Porous Silicon Energetic Particle Incident Particle Target Atom Nuclear Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Takumi, U. Sheats, J.R. 1998, X-ray Lithography, J. R. Sheats and B. W. Smith (Ed.), Marcel Dekker, Inc., New York, 403–427.Google Scholar
  2. 2.
    Madou, M. 1997, Fundamentals of microfabrication, CRC Press, Boca Raton.Google Scholar
  3. 3.
    Stockman, L., Heyvaert, I., van Haesendonck, C., and Bruynseraede, Y. 1993, Appl. Phys. Lett., 62, 2935.Google Scholar
  4. 4.
    Matsumoto, K., Ishii, M., Segawa, K., Oka, Y., Vartanian, B.J., and Harris, J.S. 1996, Appl. Phys. Lett., 68, 34.Google Scholar
  5. 5.
    Campbell, P.M., Snow, E.S., and McMarr, P.J. 1995, Appl. Phys. Lett., 66, 1388.Google Scholar
  6. 6.
    Xia, Y. Whitesides, M.W. 1998, Angew. Chem. Int. Ed., 37, 550.Google Scholar
  7. 7.
    Schmuki, P., Maupai, S., Djenizian, T., Santinacci, L., Spiegel, A., and Schlierf, U. 2004, Techniques in Electrochemical Nanotechnology, H. S. Nalwa (Ed.), American Scientific Publishers, Stevenson Ranch, 393–410.Google Scholar
  8. 8.
    Schuster, R., Kirchner, V., Allongue, P., and Ertl, G. 2000, Science, 289, 98.Google Scholar
  9. 9.
    Allongue, P., Jiang, P., Kirchner, V., Trimmer, A.L., and Schuster, R. 2004, J. Phys. Chem. B, 108, 14434.Google Scholar
  10. 10.
    Santinacci, L., Djenizian, T., and Schmuki, P. 2001, Appl. Phys. Lett., 79, 1882.Google Scholar
  11. 11.
    Owen, G. Sheats, J.R. 1998, Electron beam lithography systems, J. R. Sheats and B. W. Smith (Ed.), Marcel Dekker, Inc., New York, 367–401.Google Scholar
  12. 12.
    Stewart, D.K. Casey, J.D.J. 1997, P. Rai-Choudry (Ed.), SPIE Optical Engineering Press, 153.Google Scholar
  13. 13.
    Townsend, P.D., Chandler, P.J., and Zhang, L. 1994, Optical effects of ion implantation, Cambridge University Press, Cambridge.Google Scholar
  14. 14.
    Ryssel, H. Ruge, I. 1986, Ion implantation, John Wiley & SonsGoogle Scholar
  15. 15.
    Hartley, N.E.W. 1980, Treatise of Materials Science and Tehnology, Academic PressGoogle Scholar
  16. 16.
    Dearnaley, G. 1982, J. Metals, 34, 18.Google Scholar
  17. 17.
    Straede, C.A. 1989, Wear, 130, 113.Google Scholar
  18. 18.
    Standley, R.D., Gibson, W.M., and Rodgers, J.W. 1972, Appl. Optics, 11, 1313.Google Scholar
  19. 19.
    Heidenreich, R.D. 1964, Fundamentals of Transmission Electron Microscopy, Interscience, New York.Google Scholar
  20. 20.
    Sigmund, P. 1972, Roumaine Phys., 17, 823.Google Scholar
  21. 21.
    Weller, R. 1995, Handbook of Modern ion-Beam Materilas Analysis, J. R. Tessmer & M. Nastasi (Ed.), Materials Research Society, Pittsburg, PA.Google Scholar
  22. 22.
    Nastasi, M.A., Mayer, J.W., and Hirvonen, J.K. 1996, Ion-Solid Interactions, Cambridge University Press.Google Scholar
  23. 23.
    Rutherford, E. 1911, Phil. Mag., 21, 669.Google Scholar
  24. 24.
    Reimer, L. Pfefferkorn, G. 1977, Rasterelektronenmikroskopie, Springer-Verlag Berlin Heidelberg, New York.Google Scholar
  25. 25.
    Werner, U. Johansen, H. 1982, Elektronenmikroskopie in der Festkörperphysik, Springer-Verlag Berlin Heidelberg New YorkGoogle Scholar
  26. 26.
    Williams, D.B. Carter, C.B. 1996, Transmission Electron Microscopy I, Plenum Press, New York.Google Scholar
  27. 27.
    Lindhard, J. Scharff, H. 1961, Phys. Rev., 124, 128.Google Scholar
  28. 28.
    Fermi, E. 1928, Z. Phys., 48, 73.Google Scholar
  29. 29.
    Thomas, L.H. 1927, Proc. Cambr. Phil. Soc., 23, 524.Google Scholar
  30. 30.
    Ziegler, J.F., Biersack, J.P., and Littmark, U. 1985, The Stopping and Range of Ions in Solids, Pergamon Press, New York.Google Scholar
  31. 31.
    Lindhard, J. Winter, A. 1964, Mat. -Fys. Medd., 34, N° 4.Google Scholar
  32. 32.
    Bethe, H. 1930, Ann. Phys., 5, 325.Google Scholar
  33. 33.
    Bethe, H. 1932, Z. Phys., 76, 293.Google Scholar
  34. 34.
    Chu, W.K. Powers, D. 1972, Phys. Lett., 40A, 23.Google Scholar
  35. 35.
    Kramers, M.A. 1923, Phil. Mag., 46, 836.Google Scholar
  36. 36.
    Hobbs, L.W. 1979, Introduction to Analytical Electron Microscopy, J. I. Goldstein & D. C. Joy J. J. Hren (Ed.), Plenum Press New York, 437.Google Scholar
  37. 37.
    Kinchin, G.H. Pease, R.S. 1955, Rep. Prog. Phys., 18, 1.Google Scholar
  38. 38.
    Sigmund, P. 1969, Phys. Rev., 184, 383.Google Scholar
  39. 39.
    Matsunami, N., Yamamura, Y., Itikawa, Y., Itoh, N., Kazumata, Y., Miyagawa, S., Morita, K., Shimizu, R., and Tawara, H. 1984, At. Data Nucl. Data Tables, 31, 1.Google Scholar
  40. 40.
    Smith, K.C.A. Oatley, C.W. 1955, Br. J. Appl. Phys., 6, 391.Google Scholar
  41. 41.
    Buck, D.A. Shoulders, K. 1957, in Proceedings Eastern Joint Computer Conference, ATEE, New York, 55.Google Scholar
  42. 42.
    Broers, A.N. 1965, Microelectron. Reliab., 4, 103.Google Scholar
  43. 43.
    Craighead, H.G., Howard, R.E., Jackel, L.D., and Mankiewich, P.M. 1983, Appl. Phys. Lett., 42, 38.Google Scholar
  44. 44.
    Sedgwick, T.O., Broers, A.N., and Agule, B.J. 1972, J. Electrochem. Soc., 119, 1769.Google Scholar
  45. 45.
    Broers, A.N., Molzen, W.W., Cuomo, J.J., and Wittels, N.D. 1976, Appl. Phys. Lett., 29, 596.Google Scholar
  46. 46.
    Rakhshandehroo, M.R. Pang, S.W. 1996, J. Vac. Sci. Technol. B, 14, 612.Google Scholar
  47. 47.
    Sung, K.T. Pang, S.W. 1992, J. Vac. Sci. Technol. B, 10, 2211.Google Scholar
  48. 48.
    Simon, G., Haghiri Gosnet, A.M., Carcenac, F., and Launois, H. 1997, Microelectron. Eng., 35, 51.Google Scholar
  49. 49.
    Allee, D.R., Umbach, C.P., and Broers, A.N. 1991, J. Vac. Sci. Technol. B, 9, 2838.Google Scholar
  50. 50.
    Matsui, S., Ichihashi, T., and Mito, M. 1989, J. Vac. Sci. Technol. B, 7, 1182.Google Scholar
  51. 51.
    Allee, D.R. Broers, A. 1990, Appl. Phys. Lett., 57, 2271.Google Scholar
  52. 52.
    Pan, X., Allee, D.R., Broers, A., Tang, Y.S., and Wilkinson, C.W. 1991, Appl. Phys. Lett., 59, 3157.Google Scholar
  53. 53.
    Jackel, L.D., Howard, R.E., Mankiewich, P.M., Craighead, H.G., and Epworth, W. 1984, Appl. Phys. Lett., 45, 698.Google Scholar
  54. 54.
    Schmoranzer, H. 1988, J. Vac. Sci. Technol. B, 6, 2053.Google Scholar
  55. 55.
    Parikh, M. Kyser, D.F. 1979, J. Appl. Phys., 50, 1004.Google Scholar
  56. 56.
    Chang, T.H.P. 1975, J. Vac. Sci. Technol., 12, 1271.Google Scholar
  57. 57.
    Haller, I., Hatzakis, M., and Srinivassan, R. 1968, IBM J. Res. Dev., 251.Google Scholar
  58. 58.
    Thomson, L.F., Stillwagon, L.E., and Doerries, E.M. 1978, J. Vac. Sci. Technol., 15, 938.Google Scholar
  59. 59.
    Dobisz, E.A., Marrian, C.R.K., and Colton, R.J. 1991, J. Appl. Phys., 70, 1793.Google Scholar
  60. 60.
    Gölzhäuser, A., Geyer, W., Stadler, V., Eck, W., Grunze, M., Edinger, K., Weimann, T., and Hinze, P. 2000, J. Vac. Sci. Technol. B, 18, 3414.Google Scholar
  61. 61.
    Lercel, M.J., Craighead, H.G., Parikh, A.N., Seshadri, K., and Allara, D.L. 1996, Appl. Phys. Lett., 68, 1504.Google Scholar
  62. 62.
    Fujita, J., Watanabe, H., Ochiai, Y., Manako, S., Tsai, J.S., and Matsui, S. 1995, J. Vac. Sci. Technol. B, 13, 2757.Google Scholar
  63. 63.
    Muray, A., Scheinfein, M., Isaacson, M., and Adesida, I. 1985, J. Vac. Sci. Technol. B, 3, 367.Google Scholar
  64. 64.
    Thackeray, J.W., Orsula, G.W., Canistro, D., and Berry, A.K. 1989, J. Photopolymer Sci. Technol., 2, 429.Google Scholar
  65. 65.
    Scherer, A. Craighead, H.G. 1987, J. Vac. Sci. Technol. B, 5, 374.Google Scholar
  66. 66.
    Broers, A.N. 1988, IBM J. Res. Dev., 32, 502.Google Scholar
  67. 67.
    Eigler, D.M. Schweizer, E.I. 1991, Nature, 344, 524.Google Scholar
  68. 68.
    Umbach, C.P., Washburn, S., Laibowitz, R.B., and Webb, R.A. 1984, Phys. Rev. B, 30, 4048.Google Scholar
  69. 69.
    Xu, W., Wong, J., Cheng, C.C., Johnson, R., and Scherer, A. 1995, J. Vac. Sci. Technol. B, 13, 2372.Google Scholar
  70. 70.
    Chen, Y.L., Chen, C.C., Jeng, J.C., and Chen, Y.F. 2004, Appl. Phys. Lett., 85, 1259.Google Scholar
  71. 71.
    Dubois, S., Duvail, J.L., and Piraux, L. 2000, Actual. Chimique, 4, 42.Google Scholar
  72. 72.
    Li, A.P., Müller, F., and Gösele, U. 2000, Electrochem. and Solid-State Lett., 3, 131.Google Scholar
  73. 73.
    Borini, S., Amato, G., Rocchia, M., Boarino, L., and Rossi, A.M. 2003, J. Appl. Phys., 93, 4439.Google Scholar
  74. 74.
    Borini, S. 2005, J. Electrochem. Soc., 152, G482.Google Scholar
  75. 75.
    Ulman, R. 1996, Chem. Rev., 96, 1533.Google Scholar
  76. 76.
    Ulman, A. 1991, An Introduction to Ultrathin Organic Films From Langmuir-Blodgett to Self-Assembly, Academic press, Inc., San Diego.Google Scholar
  77. 77.
    Effenberger, F., Goetz, G., Bidlingmaier, B., and Wezstein, M. 1998, Angew. Chem., 110/18, 2651.Google Scholar
  78. 78.
    Effenberger, F., Goetz, G., Bidlingmaier, B., and Wezstein, M. 1998, Angew. Chem. Int. Ed., 37, 2462.Google Scholar
  79. 79.
    Linford, M.R. Chidsey, C.E.D. 1993, J. Am. Chem. Soc., 115, 12631.Google Scholar
  80. 80.
    Boukherroub, R., Morin, S., Sharpe, P., Wayner, D.D.M., and Allongue, P. 2000, Langmuir, 16, 7429.Google Scholar
  81. 81.
    White, H.S., Kittlesen, G.P., and Wrighton, M.S. 1984, J. Am. Chem. Soc., 106, 5375.Google Scholar
  82. 82.
    Chidsey, C.E.D. 1991, Science, 251, 219.Google Scholar
  83. 83.
    Frisbie, C.D., Fritsch-Faules, I., Wollman, E.W., and Wrighton, M.S. 2002, Thin-Solid-Films, 210, 341.Google Scholar
  84. 84.
    Chaki, N.K. Vijayamohanan, K. 2002, Biosens. Bioelectron., 17, 1.Google Scholar
  85. 85.
    Dulcey, C.S., Georger, J.H., Krauthamer, V., Stenger, D.A., Fare, T.L., and Calver, M.J. 1991, Science, 252, 551.Google Scholar
  86. 86.
    Perkins, M.K., Dobisz, E.A., Brandow, S.L., Calvert, J.M., Kosakowski, J.E., and Marrian, C.R.K. 1996, Appl. Phys. Lett., 68, 550.Google Scholar
  87. 87.
    Ada, E.T., Hanley, L., Etchin, S., Melngailis, J., Dressick, W.J., Chen, M.S., and Calvert, J.M. 1995, J. Vac. Sci. Technol. B, 13, 2189.Google Scholar
  88. 88.
    Lercel, M.J., Whelan, C.S., Craighead, H.G., Seshadri, K., and Allara, D.L. J. Vac. Sci. Technol. B, 14, 4085.Google Scholar
  89. 89.
    Sondag Huethorst, J.A.M., van Helleputte, H.R.J., and Fokkink, L.G.J. 1994, Appl. Phys. Lett., 64, 285.Google Scholar
  90. 90.
    Koops, H.W.P., Schössler, C., Kaya, A., and Weber, M. 1996, J. Vac. Sci. Technol. B, 14, 4105.Google Scholar
  91. 91.
    Fritzsche, W., Kohler, J.M., Bohm, K.J., Unger, E., Wagner, T., Kirsch, R., Mertig, M., and Pompe, W. 1999, Nanotechnology, 10, 331.Google Scholar
  92. 92.
    Kohlmann von Platen, K.T., Thiemann, M., and Brünger, W.H. 1991, Microelectron. Eng., 13, 279.Google Scholar
  93. 93.
    Koops, H.W.P. 1996, T. C. Hale and K. L. Telschow (Ed.), Proceedings of SPIE Volume, 248.Google Scholar
  94. 94.
    Koops, H.W.P., Munro, E., Rouse, J., Kretz, J., Rudolph, M., Weber, M., and Dahm, G. 1995, Nucl. Instrum. Methods Phys. Res. B, 363, 1.Google Scholar
  95. 95.
    Weber, M., Rudolph, M., Kretz, J., and Koops, H.W.P. 1995, J. Vac. Sci. Technol. B, 13, 461.Google Scholar
  96. 96.
    Schoessler, C. Koops, H.W.P. 1998, J. Vac. Sci. Technol. B, 16, 862.Google Scholar
  97. 97.
    Koops, H.W.P., Kretz, J., Rudolph, M., and Weber, M. 1993, J. Vac. Sci. Technol. B, 11, 2386.Google Scholar
  98. 98.
    Voss, R.F., Laibowitz, R.B., and Broers, A.N. 1980, Appl. Phys. Lett., 37, 656.Google Scholar
  99. 99.
    Komuro, M. Hiroshima, H. 1997, Microelectron. Eng., 35, 273.Google Scholar
  100. 100.
    Matsui, S. Mori, K. 1986, J. Vac. Sci. Technol. B, 4, 299.Google Scholar
  101. 101.
    Utke, I., Luisier, A., Hoffmann, P., Laub, D., and Buffat, P.A. 2002, Appl. Phys. Lett., 81, 3245.Google Scholar
  102. 102.
    Hübner, U., Plontke, R., Blume, M., Reinhardt, A., and Koops, H.W.P. 2001, Microelectron. Eng., 57, 953.Google Scholar
  103. 103.
    Christy, R.W. 1960, J. Appl. Phys., 31, 1680.Google Scholar
  104. 104.
    Koops, H., Weiel, R., Kern, D.P., and Baum, T.H. 1988, J. Vac. Sci. Technol. B, 6, 477.Google Scholar
  105. 105.
    Scheuer, V., Koops, H., and Tschudi, T. 1986, Microelectron. Eng., 5, 423.Google Scholar
  106. 106.
    Hoyle, P.C., Ogasawara, M., and Cleaver, J.R.A. 1993, Appl. Phys. Lett., 62, 3043.Google Scholar
  107. 107.
    Reimer, L. 1997, Transmission Electron Microscopy, Springer-Verlag, Berlin.Google Scholar
  108. 108.
    Lee, K.L. Hatzakis, M. 1989, J. Vac. Sci. Technol. B, 7, 941.Google Scholar
  109. 109.
    Hoyle, P.C., Cleaver, J.R.A., and Ahmed, H. 1994, Appl. Phys. Lett., 64, 1448.Google Scholar
  110. 110.
    Kuntz, R.R. Mayer, T.M. 1986, J. Vac. Sci. Technol. B, 5, 427.Google Scholar
  111. 111.
    Miura, N., Ishii, H., Shirakashi, J., Yamada, A., and Konagai, M. 1997, Appl. Surf. Sci., 113/114, 269.Google Scholar
  112. 112.
    Miura, N., Numaguchi, T., Yamada, A., Konagai, M., and Shirakashi, J.I. 1997, Jpn. J. Appl. Phys., 36, 1619.Google Scholar
  113. 113.
    Miura, N., Ishii, H., Yamada, A., and Konagi, M. 1996, Jpn. J. Appl. Phys., 35, L1089.Google Scholar
  114. 114.
    Amman, M., Sleight, J.W., Lombardi, D.R., Welser, R.E., Deshpande, M.R., Reed, M.A., and Guido, L.J. 1996, J. Vac. Sci. Technol. B, 14, 54.Google Scholar
  115. 115.
    Guise, O., Ahner, J., Yates Jr, J.T., and Levy, J. 2004, Appl. Phys. Lett., 85, 2352.Google Scholar
  116. 116.
    Zeng, Z.M., Tian, X.B., Kwok, T.K., Tang, B.Y., Fung, M.K., and Chu, O.K. 2000, J. Vac. Sci. Technol. A, 18, 2164.Google Scholar
  117. 117.
    Zhang, S., Zeng, X.T., Xie, H., and Hing, P. 2000, Surf. Coat. Technol., 123, 256.Google Scholar
  118. 118.
    Broers, A.N. 1964, in Proceedings of the First International Conference on Electron and Ion Beam Technology, Wiley, New York, 181.Google Scholar
  119. 119.
    Molzen, W.W., Broers, A.N., Cuomo, J.J., Harper, J.M.E., and Laibowitz, R.B. 1979, J. Vac. Sci. Technol., 16, 269.Google Scholar
  120. 120.
    Ueta, A., Avramescu, A., Uesugi, K., Suemune, I., Machida, H., and Shimoyama, N. 1998, Jpn. J. Appl. Phys., 37, 272.Google Scholar
  121. 121.
    Djenizian, T., Santinacci, L., and Schmuki, P. 2001, Appl. Phys. Lett., 78, 2840.Google Scholar
  122. 122.
    Miura, N., Yamada, A., and Konagai, M. 1997, Jpn. J. Appl. Phys., 36, L1275.Google Scholar
  123. 123.
    Sieber, I., Hildebrand, H., Djenizian, T., and Schmuki, P. 2003, Electrochem. and Solid-State Lett., 6, C1.Google Scholar
  124. 124.
    Djenizian, T., Macak, J., and Schmuki, P. 2002, in Nano- and Micro-Electromechanical Systems (NEMS and MEMS) and Molecular Machines, Mat. Res. Soc. Symp. Proc., Boston, 79–83.Google Scholar
  125. 125.
    Djenizian, T., Santinacci, L., and Schmuki, P. 2001, J. Electrochem. Soc., 148, 197.Google Scholar
  126. 126.
    Scharifker, B. Hills, G. 1983, Electrochim. Acta, 28, 879.Google Scholar
  127. 127.
    Scharifker, B. Mostany, J. 1984, J. Electroanal. Chem., 177, 13.Google Scholar
  128. 128.
    Gunawardena, G., Hills, G., Montenegro, I., and Scharifker, B. 1982, J. Electroanal. Chem., 138, 225.Google Scholar
  129. 129.
    Scherb, G. Kolb, D.M. 1995, J. Electroanal. Chem., 396, 151.Google Scholar
  130. 130.
    Vereecken, P.M., Strubbe, K., and Gomes, W.P. 1997, J. Electroanal. Chem., 433, 19.Google Scholar
  131. 131.
    Stiger, R.M., Gorer, S., Craft, B., and Penner, R.M. 1999, Langmuir, 15, 790.Google Scholar
  132. 132.
    Oskam, G., van Heerden, D., and Searson, P.C. 1998, Appl. Phys. Lett., 73, 3241.Google Scholar
  133. 133.
    Pasa, A.A. Schwarzacher, W. 1999, Phys. Status Solidi A, 173, 73.Google Scholar
  134. 134.
    Rashkova, B., Guel, B., Pötzschke, R.T., Staikov, G., and Lorenz, W.J. 1998, Electrochim. Acta, 43, 3021.Google Scholar
  135. 135.
    Djenizian, T., Santinacci, L., and Schmuki, P. 2004, J. Electrochem. Soc., 151, G175-G180.Google Scholar
  136. 136.
    Djenizian, T., Santinacci, L., Hildebrand, H., and Schmuki, P. 2003, Surf. Sci., 524, 40.Google Scholar
  137. 137.
    Stewart, D.K., Doyle, A.F., and Casey, J.D.J. 1995, SPIE, 2437, 276.Google Scholar
  138. 138.
    Xu, X. Melngailis, J. 1993, J. Vac. Sci. Technol. B, 11, 2436.Google Scholar
  139. 139.
    Frey, L. Lehrer, C. 2003, Praktische Metallographie, 40, 184.Google Scholar
  140. 140.
    Hooghan, K.N., Wills, K.S., Rodriguez, P.A., and O'Connell, S. 1999, in ASM International, Materials Park, Ohio, 247.Google Scholar
  141. 141.
    Van Doorselaer, K., Van den Reeck, M., Van Den Bempt, L., Young, R., and Whitney, J. 1993, in Proc. 19th International Symposium for Testing and Failure Analysis, ASM International, Materials Park, Ohio, 405.Google Scholar
  142. 142.
    Verkleij, D. 1998, Microelectron. Reliab., 38, 869.Google Scholar
  143. 143.
    Nikawa, K. 1994, IEICE Trans. Fund. Electr., E77, 174.Google Scholar
  144. 144.
    Hahn, L.L., Abramo, M.T., and Coutu, P.T. 1991, in Proc. 17th International Symposium for Testing and Failure Analysis, ASM International, Materials Park, Ohio, 1.Google Scholar
  145. 145.
    Walker, J.F., Reiner, J.C., and Solenthaler, C. 1995, Inst. Phys. Conf. Ser., 146, 629.Google Scholar
  146. 146.
    Ishitani, T. Yaguchi, T. 1996, Microsc. Res. Techn., 35, 320.Google Scholar
  147. 147.
    Rai, R., Subramanian, S., Rose, S., Conner, J., Schani, P., and Moss, J. 2000, in Proc. 26th International Symposium for Testing and Failure Analysis, 415.Google Scholar
  148. 148.
    Stevie, F.A., Irwin, R.B., Shofner, T.L., Brown, S.R., Drown, J.L., and Giannuzzi, L.A. 1998, in, American Institute of Physics, Woodburry, NY, 868.Google Scholar
  149. 149.
    Vasile, M.J., Xie, J., and Nassar, R. 1999, J. Vac. Sci. Technol. B, 17, 3085.Google Scholar
  150. 150.
    Ishitani, T., Ohnishi, T., Madokoro, Y., and Kawanami, Y. 1991, J. Vac. Sci. Technol. B, 9, 2633.Google Scholar
  151. 151.
    Vasile, M.J., Grigg, D., Griffith, J.E., Fitzgerald, E., and Russel, P.E. 1991, J. Vac. Sci. Technol. B, 9, 3569.Google Scholar
  152. 152.
    Olbrich, A., Ebersberger, B., Boit, C., Niedermann, P., Hänni, W., Vancea, J., and Hoffmann, H. 1999, J. Vac. Sci. Technol. B, 17, 1570.Google Scholar
  153. 153.
    Hill, A.R. 1968, Nature, 218, 292.Google Scholar
  154. 154.
    Guharay, S.K., E., S., and Orloff, J. 1999, J. Vac. Sci. Technol. B, 17, 2779.Google Scholar
  155. 155.
    Orloff, J. Swanson, L.W. 1975, J. Vac. Sci. Technol. B, 12, 1209.Google Scholar
  156. 156.
    Kohn, V.E. Ring, G.R. 1975, Appl. Phys. Lett., 27, 479.Google Scholar
  157. 157.
    Orloff, J. 1993, Rev. Sci. Instrum., 64, 1105.Google Scholar
  158. 158.
    Frey, L. Lehrer, C. 2003, Applied Physics A, 76, 1017.Google Scholar
  159. 159.
    Wang, K., Chelnokov, A., Rowson, S., Garoche, P., and Lourtioz, J.M. 2000, J. Phys. D: Appl. Phys., 33, L119.Google Scholar
  160. 160.
    Gruning, U., Lehmann, V., Ottow, S., and Bush, K. 1996, Appl. Phys. Lett., 68, 747.Google Scholar
  161. 161.
    Schmidt, B., Bischoff, L., and Teichert, J. 1997, Sens. Actuators A, 61, 369.Google Scholar
  162. 162.
    Brugger, J., Beljakovic, G., Despont, M., de Rooiji, N.F., and Vettiger, P. 1997, Microelectron. Eng., 35, 401.Google Scholar
  163. 163.
    Chen, W., Chen, P., Madhukar, R., Viswanathan, R., and So, J. 1993, Mater. Res. Soc. Proc., 279, 599.Google Scholar
  164. 164.
    Cummings, K.D., Harriott, L.R., Chi, G.C., and Ostermayer, F.W. 1986, Proc. SPIE Int. Soc. Opt. Eng., 93.Google Scholar
  165. 165.
    Arimoto, H., Kosugi, M., Kitada, H., and Miyauchi, E. 1989, Microelectron. Eng., 9, 321.Google Scholar
  166. 166.
    Rennon, S., Bach, L., König, H., Reithmaier, J.P., Forchel, A., Gentner, J.L., and Goldstein, L. 2001, 57–58, 891.Google Scholar
  167. 167.
    D'Arrigo, G. Spinella, C. 2001, Mater. Sci. Semicond. Proc., 4, 93.Google Scholar
  168. 168.
    Spinella, C. 1998, Mater. Sci. Semicond. Proc., 1, 55.Google Scholar
  169. 169.
    Garozzo, G., La Magna, A., Coffa, S., D'Arrigo, G., Parasole, N., Renna, M., and Spinella, C. 2002, Comp. Mater. Sci., 24, 246.Google Scholar
  170. 170.
    Schmuki, P., Erickson, L.E., and Lockwood, D.J. 1998, Phys. Rev. Lett., 80, 4060.Google Scholar
  171. 171.
    Schmuki, P. Erickson, L.E. 2000, Phys. Rev. Lett., 85, 2985.Google Scholar
  172. 172.
    Spiegel, A., Erickson, L.E., and Schmuki, P. 2000, J. Electrochem. Soc., 147, 2993.Google Scholar
  173. 173.
    Spiegel, A., Staemmler, L., Dobeli, M., and Schmuki, P. 2002, J. Electrochem. Soc., 149, C432.Google Scholar
  174. 174.
    Berger, M.J. and Seltzer, S.M. 1964, NASA-SP-3012.Google Scholar
  175. 175.
    Fitting, H.J. 1974, Phys. Stat. Sol. A, 26, 525.Google Scholar
  176. 176.
    Gibbons, J.F., Johnson, W.S., and Mylroie, S.W. 1975, Projected Range Statistics, Stroudsburg.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Laboratoire MADIREL (UMR 6121), Université de Provence-CNRS, Centre Saint JérômeMarseille Cedex 20France
  2. 2.Lehrstuhl für Elektronische Bauelemente, Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations