X-ray Lithography Techniques, LIGA-Based Microsystem Manufacturing: The Electrochemistry of Through-Mold Deposition and Material Properties

Part of the Nanostructure Science and Technology book series (NST)


Certain microsystem fabrication techniques are critically dependent on the electrochemistry of metal deposition into lithographically defined features that are developed in insulating molding materials. One such technique, developed originally at the Forschungzentrum Karlsruhe, Germany, is known as LIGA, the German acronym for lithography, electroplating, and replication (Lithographie, Galvanoformung, and Abformung) [1–3]. An example of typical miniature structures formed by plating through thick photoresist (the insulating molding materials) is shown in Fig. 1. Since its inception in Germany in the 1980s, LIGA research activities have expanded throughout Europe, as well as in Asia and North America.


Electrodeposition Process Nickel Sulfamate Ultimate Tensile Strength Sulfamate Bath Electrodeposited Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the Sandia/California LIGA prototyping team and metallography group for their assistance in the fabrication of the masks, molds, sample preparation, and analyses essential to the work described here. Colleagues at Sandia/New Mexico are acknowledged as well for their contribution to some of the mechanical testing and microscopy. Georg Aigeldinger and Sam McFadden are acknowledged for their comprehensive review of this work.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.


  1. 1.
    E. W. Becker, W. Ehrfeld, D. Muenchmeyer, H. Betz, A. Heuberger, S. Pongratz, W. Glashauser, H. J. Michel, and R. v. Siemens, “Production of Separation-Nozzle Systems for Uranium Enrichment by a Combination of X-ray Lithography and Galvanoplastics”, Naturwissenschaften, 69, 520 (1982).CrossRefGoogle Scholar
  2. 2.
    M. Madou, Fundamentals of Microfabrication, CRC Press, New York, p. 275 (1997).Google Scholar
  3. 3.
    E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Muenchmeyer, “Fabrication of Microstructures With High Aspect Ratios and Great Structural Heights by Synchrotron Radiation, Lithography, Galvanoforming, and Plastic Moulding (LIGA Process), Microelectronic Engineering, 4, 35 (1986).CrossRefGoogle Scholar
  4. 4.
    J. Mohr, W. Ehrfeld, and D. Munchmeier, “Requirements on Resists Layers in Deep-etch Synchrotron Radiation Lithography”, Journal of Vacuum Science and Technology B, 6(6), 2264 (1988).CrossRefGoogle Scholar
  5. 5.
    W. Ehrfeld, V. Hessel, H. Loewe, Ch. Schulz, and L. Weber, “Materials of LIGA Technology”, Microsystems Technologies, 5, 105 (1999).CrossRefGoogle Scholar
  6. 6.
    J. Hormes, J. Goettert, K. Lian, Y. Desta, and L. Jian, “Materials for LIGA and LIGA-based Microsystems”, Nuclear Instruments and Methods in Physics Research B, 199, 332 (2003).CrossRefGoogle Scholar
  7. 7.
    M. W. Boerner, M. Kohl, F. J. Pantenburg, W. Bacher, H. Hein, and W. K. Schomburg, “Sub-micron LIGA Process for Movable Microstructures”, Microelectronic Engineering, 30, 505 (1996).CrossRefGoogle Scholar
  8. 8.
    W. H. Safranek, The Properties of Electrodeposited Metals and Alloys (2nd Ed.), American Electroplaters and Surface Finishers Society, U.S.A. (1986).Google Scholar
  9. 9.
    A. Rogner, J. Eicher, D. Muenchmeyer, R.-P. Peters, and J. Mohr, “The LIGA Technique- What Are the New Opportunities”, Journal of Micromechanics and Microengineering, 2, 133 (1992).CrossRefGoogle Scholar
  10. 10.
    D. W. L. Tolfree, “Microfabrication Using Synchrotron Radiation”, Report on Progress Physics, 61, 313 (1998).CrossRefGoogle Scholar
  11. 11.
    R. K. Kupka, F. Bouamrane, C. Cremers, and S. Megtert, “Microfabrication: LIGA-X and Applications”, Applied Surface Science, 164, 97 (2000).CrossRefGoogle Scholar
  12. 12.
    R. A. Lawes, G. Arthur, and A. Schneider, “LIGA- A Fabrication Technology for Industry?”, Proceedings of SPIE, 4593, 145 (2001).Google Scholar
  13. 13.
    Y. Cheng, B.-Y. Shew, M. K. Chyu, and P. H. Chen, “Ultra-deep LIGA Process and its Applications”, Nuclear Instruments and Methods in Physics Research A, 467–468, 1192 (2001).CrossRefGoogle Scholar
  14. 14.
    J. Hruby, “LIGA Technologies and Applications”, MRS Bulletin, 26(4), 337 (2001).CrossRefGoogle Scholar
  15. 15.
    C. K. Malek and V. Saile, “Applications of LIGA Technology to Precision Manufacturing of High-Aspect-Ratio Micro-components and –systems: a Review”, Microelectronics Journal, 35, 131 (2004).CrossRefGoogle Scholar
  16. 16.
    John O. Dukovic, “Current Distribution and Shape Change in Electrodeposition of Thin Films for Microelectronic Fabrication”, in Advances in Electrochemical Science and Engineering, H. Gerischer and C. W. Tobias (Eds.), Vol. 3, VCH, Weinheim, p. 117 (1994).Google Scholar
  17. 17.
    S. K. Griffiths, A. Ting, and J. M. Hruby, “The Influence of Mask Substrate Thickness on Exposure and Development Times for the LIGA Process”, Microsystem Technologies, 6, 99 (2000).CrossRefGoogle Scholar
  18. 18.
    S. K. Griffiths, J. Hruby, and A. Ting, “Optimum Doses and Mask Thickness for Synchrotron Exposure of PMMA Resists”, Proceedings of the SPIE, 3680, 498 (1999).Google Scholar
  19. 19.
    H. M. Manohara, C. Khan Malek, A. S. Dewa, and K. Deng, “Low Z Substrates for Cost Effective High-Energy, Stacked Exposures”, Microsystem Technologies, 4, 17 (1997).CrossRefGoogle Scholar
  20. 20.
    A. El-Kholi, K. Bade, J. Mohr, F. J. Pantenburg, X.-M. Tang, “Alternative Resist Adhesion and Electroplating Layers for LIGA Process”, Microsystem Technologies, 6, 161 (2000).CrossRefGoogle Scholar
  21. 21.
    L. T. Romankiw, “A Path: From Electroplating Through Lithographic Masks in Electronics to LIGA in MEMS”, Electrochimica Acta, 42, 2985 (1997).CrossRefGoogle Scholar
  22. 22.
    W. Bacher, W. Menz, J. Mohr, C. Muller, and W. K. Schomburg, “The LIGA Process and its Potential for Microsystems”, Naturwissenschaften, 81(12), 536 (1994).Google Scholar
  23. 23.
    W. Qu, C. Wenzel, and K. Drescher, “A Vertically Sensitive Accelerometer and its Realization by Depth UV Lithography Supported Electroplating”, Microelectronics Journal, 31, 569 (2000).CrossRefGoogle Scholar
  24. 24.
    T. R. Christenson and H. Guckel, “Deep X-ray Lithography for Micromechanics”, Proceedings of the SPIE, 2639, 134 (1995).Google Scholar
  25. 25.
    E. J. O’Sullivan, E. I. Cooper, L. T. Romankiw, K. T. Kwietniak, P. L. Trouilloud, J. Horkans, C. V. Jahnes, I. V. Babich, S. Krongelb, S. G. Hegde, J. A. Tornello, N. C. LaBianca, J. M. Cotte, and T. J. Chainer, “Integrated, Variable-reluctance Magnetic Minimotor”, IBM Journal of Research and Development, 42,681 (1998).CrossRefGoogle Scholar
  26. 26.
    R. A. Brennen, M. H. Hecht, D. V. Wiberg, S. J. Manion, W. D. Bonivert, J. M. Hruby, M. L. Scholz, T. D. Stowe, T. W. Kenny, K. H. Jackson, and C. K. Malek, “Fabricating Sub-collimating Grids for an X-ray Solar Imaging Spectrometer Using LIGA Techniques”, Proceedings of the SPIE, 2640, 214 (1995).Google Scholar
  27. 27.
    M. Ghigo, E. Diolaiti, F. Perennes, and R. Ragazzoni, “Use of the LIGA Process for the Production of Pyramid Wavefront Sensors for Adaptive Optics in Astronomy”, Proceedings of the SPIE, 5169, 55 (2003).Google Scholar
  28. 28.
    T. L. Willke and S. S. Gearhart, “LIGA Micromachined Planar Transmission Lines and Filters”, IEEE Transactions on Microwave Theory and Techniques, 45, 1681 (1997).CrossRefGoogle Scholar
  29. 29.
    F. Aristone, P. Datta, Y. Desta, A. M. Espindola, and J. Goettert, “Molded Multilevel Modular Micro-fluidic Devices”, Proceedings of the SPIE, 4982, 65 (2003).Google Scholar
  30. 30.
    L. James Lee, M. J. Madou, K. W. Koelling, S. Daunert, S. Lai, C. G. Koh, Y.-J. Juang, Y. Lu, and L. Yu, “Design and Fabrication of CD-Like Microfluidic Platforms for Diagnostics: Polymer-Based Microfabrication”, Biomedical Microdevices, 3: 4, 339 (2001).CrossRefGoogle Scholar
  31. 31.
    A. Schneider, S. Rea, E. Huq, and W. Bonfield, “Surface Microstructuring of Biocompatible Bone Analogue Material HAPEX™ Using LIGA Technique and Embossing”, Proceedings of the SPIE, 5116, 57 (2003).Google Scholar
  32. 32.
    A. Ruzzu, J. Fahrenberg, M. Heckele, Th. Schaller, “Multi-functional Valve Components Fabricated by Combination of LIGA Processes and High Precision Mechanical Engineering”, Microsystems Technologies, 4, 128 (1998).CrossRefGoogle Scholar
  33. 33.
    L. Huang, W. Wang, M. C. Murphy, K. Lian, and Z.-G. Ling, “LIGA Fabrication and Test of a DC Type Magnetohydrodynamic (MHD) Micropump”, Microsystems Technologies, 6, 235 (2000).CrossRefGoogle Scholar
  34. 34.
    S. Baik, J. P. Blanchard, and M. L. Corradini, “Development of Micro-Diesel Injector Nozzles via Microelectromechanical Systems Technology and Effects on Spray Characteristics”, Journal of Engineering for Gas Turbines and Power, 125, 427 (2003).CrossRefGoogle Scholar
  35. 35.
    A. Morales, J. Brazzle, R. Crocker, L. Domeier, E. Goods, J. Hachman, Jr., C. Harnett, M. Hunter, S. Mani, B. Mosier, and B. Simmons, “Fabrication and Characterization of Polymer Microfluidic Devices for Bio-agent Detection”, Proceedings of the SPIE, 5716, 89 (2005).Google Scholar
  36. 36.
    C. Harris, K. Kelly, T. Wang, A. McCandless, and S. Motakef, Journal of Microelectromechanical Systems, 11, 726 (2002).CrossRefGoogle Scholar
  37. 37.
    A. Cox, E. Garcia, “Three-Dimensional LIGA Structures for Use in Tagging”, Proceedings of the SPIE, 3673, 122 (1999).Google Scholar
  38. 38.
    Axsun Technologies Homepage, www.axsun.com, accessed 12/20/04.
  39. 39.
    SEAG microParts GmbH, www.microparts.de, accessed 12/20/04.
  40. 40.
    Micromotion GmbH, www.mikrogetriebe.de, accessed 12/20/04.
  41. 41.
    Klaus Stefan Drese, “Design Rules for Electroforming in the LIGA Process”, J. Electrochem. Soc., 151, D39 (2004).CrossRefGoogle Scholar
  42. 42.
    M. Datta and D. Landolt, “Fundamental Aspects and Applications of Electrochemical Microfabrication”, Electrochimica Acta, 45, 2535 (2000).CrossRefGoogle Scholar
  43. 43.
    B. DeBecker and A. C. West, “Workpiece, Pattern, and Feature Scale Current Distributions”, J. Electrochem. Soc., 143, 486 (1996).CrossRefGoogle Scholar
  44. 44.
    J. L. Marti and G. P. Lanza, “Hardness of Sulfamate Nickel Deposits”, Plating, 56, 377 (1969).Google Scholar
  45. 45.
    J. M. Lee, J. T. Hachman, J. J. Kelly, and A. C. West, “Improvement of Current Distribution Uniformity on Substrates for MEMS,” Journal of Microlithography, Microfabrication, and Microsystems, 3(1), 146 (2004).CrossRefGoogle Scholar
  46. 46.
    S. Mehdizadeh, J. Dukovic, P. C. Andricacos, L. T. Romankiw, and H. Y. Cheh, “Optimization of Electrodeposit Uniformity by the Use of Auxiliary Electrodes”, Journal of the Electrochemical Society, 137, 110 (1990).CrossRefGoogle Scholar
  47. 47.
    S. Mehdizadeh, J. O. Dukovic, P. C. Andricacos, L. T. Romankiw, and H. Y. Cheh, “The Influence of Lithographic Patterning on Current Distribution: A Model for Microfabrication by Electrodeposition”, Journal of the Electrochemical Society, 139, 78 (1992).CrossRefGoogle Scholar
  48. 48.
    A. C. West, M. Matlosz, and D. Landolt, “Normalized and Average Current Distributions on Unevenly Spaced Patterns”, Journal of the Electrochemical Society, 138, 728 (1991).CrossRefGoogle Scholar
  49. 49.
    A. C. West, “Ohmic Interactions Within Electrode Ensembles”, Journal of the Electrochemical Society, 140, 134 (1993).CrossRefGoogle Scholar
  50. 50.
    S. K. Griffiths, J. A. W. Crowell, B. L. Kistler, and A. S. Dryden, “Dimensional Errors in LIGA-Produced Metal Structures due to Thermal Expansion and Swelling of PMMA”. Journal of Micromechanics and Microengineering, 14, 1548 (2004).CrossRefGoogle Scholar
  51. 51.
    S. Mehdizadeh, J. Dukovic, P. C. Andricacos, L. T. Romankiw, and H. T. Cheh, “The Influence of Lithographic Patterning on Current Distribution in Electrodeposition: Experimental Study and Mass-Transfer Effects”, Journal of the Electrochemical Society, 140, 3497 (1993).CrossRefGoogle Scholar
  52. 52.
    K. Kondo, K. Fukui, K. Uno, and K. Shinohara, “Shape Evolution of Electrodeposited Copper Bumps”, Journal of the Electrochemical Society, 143, 1880 (1996).CrossRefGoogle Scholar
  53. 53.
    K. Kondo, K. Fukui, M. Yokoyama, and K. Shinohara, “Shape Evolution of Electrodeposited Copper Bumps with High Peclet Numbers”, Journal of the Electrochemical Society, 144, 466 (1997).CrossRefGoogle Scholar
  54. 54.
    K. Kondo and K. Fukui, “Current Evolution of Electrodeposited Copper Bumps with Photoresist Angle”, Journal of the Electrochemical Society, 145, 840 (1998).CrossRefGoogle Scholar
  55. 55.
    H. Watanabe, S. Hayashi, and H. Honma, “Microbump Formation by Noncyanide Gold Electroplating”, Journal of the Electrochemical Society, 146, 574 (1999).CrossRefGoogle Scholar
  56. 56.
    K. Hayashi, K. Fukui, Z. Tanaka, and K. Kondo, “Shape Evolution of Electrodeposited Bumps into Deep Cavities”, Journal of the Electrochemical Society, 148, C145 (2001).CrossRefGoogle Scholar
  57. 57.
    B. Kim and T. Ritzdorf, “Electrodeposition of Near Eutectic SnAg Solders for Wafer Level Packaging”, Journal of the Electrochemical Society, 150, C577 (2003).CrossRefGoogle Scholar
  58. 58.
    P. C. Andricacos, C. Uzoh, J. Dukovic, J. Horkans, L. Deligianni, IBM Journal of Research and Development, 42, 567 (1998).CrossRefGoogle Scholar
  59. 59.
    P. Taephaisitphongse, Y. Cao, and A. C. West, “Electrochemical and Fill Studies of a Multicomponent Additive Package for Copper Deposition”, Journal of the Electrochemical Society, 148, C492 (2001).CrossRefGoogle Scholar
  60. 60.
    D. Josell, B. Baker, C. Witt, D. Wheeler, and T. P. Moffat, “Via Filling by Electrodeposition. Superconformal Silver and Copper and Conformal Nickel”, Journal of the Electrochemical Society, 149, C637 (2002).CrossRefGoogle Scholar
  61. 61.
    K. Leyendecker, W. Bacher, W. Stark, and A. Thommes, “New Microelectrodes for the Investigation of the Electroforming of LIGA Microstructures”, Electrochimica Acta, 39, 1139 (1994).CrossRefGoogle Scholar
  62. 62.
    J. Ji, W. C. Cooper, D. B. Dreisinger, and E. Peters, “Surface pH Measurements During Nickel Electrodeposition”, Journal of Applied Electrochemistry, 25, 642 (1995).CrossRefGoogle Scholar
  63. 63.
    D. R. Gabe, “The role of Hydrogen in Metal Electrodeposition Processes”, Journal of Applied Electrochemistry, 27, 908 (1997).CrossRefGoogle Scholar
  64. 64.
    S. K. Griffiths, R. H. Nilson, R. W. Bradshaw, A. Ting, W. D. Bonivert, J. T. Hachman, and J. M. Hruby, “Transport Limitations in Electrodeposition for LIGA Microdevice Fabrication”, Proceedings of the SPIE, 3511, 364 (1998).Google Scholar
  65. 65.
    R. H. Nilson and S. K. Griffiths, “Natural Convection in Trenches of High Aspect Ratio”, J. Electrochem. Soc., 150, C401 (2003).CrossRefGoogle Scholar
  66. 66.
    S. D. Leith and D. T. Schwartz, “Through-mold Electrodeposition Using the Uniform Injection Cell (UIC): Workpiece and Pattern Scale Uniformity”, Electrochimica Acta, 44, 4017 (1999).CrossRefGoogle Scholar
  67. 67.
    S. D. Leith, S. Ramli, and D. T. Schwartz, “Characterization of NixFe1-x (0.10 < x < 0.95) Electrodeposition from a Family of Sulfamate-Chloride Electrolytes”, Journal of the Electrochemical Society, 146, 1431 (1999).CrossRefGoogle Scholar
  68. 68.
    W. Wang, S. D. Leith, and D. T. Schwartz, “Convective-Diffusive Mass Transfer Inside Complex Micro-molds During Electrodeposition”, Journal of Microelectromechanical Systems, 11, 118 (2002).CrossRefGoogle Scholar
  69. 69.
    A. Thommes, W. Stark, K. Leyendecker, W. Bacher, H. Liebscher, and Ch. Ilmenau, “LIGA Microstructures From a NiFe Alloy: Preparation by Electroforming and Their Magnetic Properties”, in Proceedings of the 3rd International Symposium on Magnetic Materials, Processes, and Devices PV 94-6, L. T. Romankiw and D. A. Herman, Jr. (Eds.), The Electrochemical Society, U.S.A., p. 89 (1994).Google Scholar
  70. 70.
    A. Brenner, Electrodeposition of Alloys, Academic Press, New York (1963).Google Scholar
  71. 71.
    P. C. Andricacos and L. T. Romankiw, in Advances in Electrochemical Science and Engineering, H. Gerischer and C. W. Tobias (Eds.), vol. 3, VCH Verlagsgesellschaft, Weinheim, Germany, p. 227 (1993).Google Scholar
  72. 72.
    M. Kuepper and J. W. Schultze, “Spatially Resolved Concentration Measurements During Cathodic Alloy Deposition in Microstructures”, Electrochimica Acta, 42, 3023 (1997).CrossRefGoogle Scholar
  73. 73.
    H. Guckel, T. Christenson, and K. Skrobis, “Metal Micromechanisms via Deep X-ray Lithography, Electroplating, and Assembly”, Journal of Micromechanics and Microengineering, 2, 225 (1992).CrossRefGoogle Scholar
  74. 74.
    H. Guckel, “Progress in Magnetic Microactuators”, Microsystem Technologies, 5, 59 (1998).CrossRefGoogle Scholar
  75. 75.
    T. M. Liakopoulos and C. H. Ahn, “A Micro-fluxgate Magnetic Sensor Using Micromachined Planar Solenoid Coils”, Sensors and Actuators, 77, 66 (1999).CrossRefGoogle Scholar
  76. 76.
    D. J. Sadler, T. M. Liakopoulos, and C. H. Ahn, “A Universal Electromagnetic Microactuator Using Magnetic Interconnection Concepts”, Journal of Microelectromechanical Systems, 9, 460 (2000).CrossRefGoogle Scholar
  77. 77.
    F. Yi, L. Peng, J. Zhang, and Y. Han, “A New Process to Fabricate the Electromagnetic Stepping Micromotor Using LIGA Process and Surface Sacrificial Layer Technology”, Microsystem Technologies, 7, 103 (2001).CrossRefGoogle Scholar
  78. 78.
    J.-W. Park, J. Y. Park, Y.-H. Joung, and M. G. Allen, “Fabrication of High Current and Low Profile Micromachined Inductor With Laminated Ni/Fe Core”, IEEE Transactions on Components and Packaging Technologies, 25, 106 (2002).CrossRefGoogle Scholar
  79. 79.
    T. W., Andrew, B. McCandless, Sean Ford, Kevin W. Kelly, Richard Lienau, Dale Hensley, Yohannes Desta, and Zhong G. Ling, “High-Aspect-Ratio Microstructures for Magnetoelectronic Applications”, Proceedings of the SPIE, 4979, 464 (2003).Google Scholar
  80. 80.
    Tsung-Shune Chin, “Permanent Magnet Films for Applications in Microelectromechanical Systems”, Journal of Magnetism and Magnetic Materials, 209, 75 (2000).CrossRefGoogle Scholar
  81. 81.
    L. Huang, W. Wang, and M. C. Murphy, “Microfabrication of High Aspect Ratio Bi-Te Alloy Microposts and Applications in Micro-sized Cooling Probes”, Microsystem Technologies, 6, 1, (1999).CrossRefGoogle Scholar
  82. 82.
    S. K. Griffiths and A. Ting, “The Influence of X-ray Fluorescence on LIGA Sidewall Tolerances”, Microsystem Technologies, 8, 120 (2002).CrossRefGoogle Scholar
  83. 83.
    M. Strobel, U. Schmidt, K. Bade, and J. Halbritter, “Nucleation and Growth of Ni-LIGA Layers”, Microsystem Technologies, 3, 10 (1996).CrossRefGoogle Scholar
  84. 84.
    C. S. Lin, P. C. Hsu, L. Chang, and C. H. Chen, “Properties and Microstructure of Nickel Electrodeposited From a Sulfamate Bath Containing Ammonium Ions”, Journal of Applied Electrochemistry, 31, 925 (2001).CrossRefGoogle Scholar
  85. 85.
    N. V. Mandich and D. W. Baudrand, “Troubleshooting Ni Sulfamate Plating Installations”,Plating and Surface Finishing, 89 (9), 68 (2002).Google Scholar
  86. 86.
    J. J. Kelly, S. H. Goods, and A. A. Talin, “Ageing of Nickel Sulfamate Electrolytes During the Electrodeposition of MEMS Structures”, in Electrochemical Processing in ULSI and MEMS: Proceedings of the 205th Meeting of the Electrochemical Society, San Antonio, H. Deligianni, S. T. Mayer, T. P. Moffat, and G. R. Stafford (Eds.), The Electrochemical Society, U.S.A. PV 2004–17, pp. 432–447 (2004).Google Scholar
  87. 87.
    A. Ruzzu and B. Matthis, “Swelling of PMMA in Aqueous Solutions and Room Temperature Ni-Electroforming”, Microsystem Technologies, 8, 116 (2002).CrossRefGoogle Scholar
  88. 88.
    A. C. Fischer-Cripps, Nanoindentation, Springer, New York (2002).Google Scholar
  89. 89.
    W. N. Sharpe, “Murray Lecture Tensile Testing at the Micrometer Scale: Opportunities in Experimental Mechanics”, Experimental Mechanics, 43 (3), 228 (2003).Google Scholar
  90. 90.
    T. E. Buchheit, D. A. LaVan, J. R. Michael, T. R. Christenson, and S. D. Leith, “Microstructural and Mechanical Properties Investigation of Electrodeposited and Annealed LIGA Nickel Structures”, Metallurgical and Materials Transactions A, 33A, 539 (2002).CrossRefGoogle Scholar
  91. 91.
    S. H. Goods, J. J. Kelly, and N. Y. C. Yang, “Electrodeposited Nickel-Manganese: an Alloy for Microsystem Applications”, Microsystem Technologies, 10(6–7), 498 (2004).CrossRefGoogle Scholar
  92. 92.
    F. Ebrahimi, G. R. Bourne, M. S. Kelly, and T. E. Matthews, “Mechanical Properties of Nanocrystalline Nickel Produced by Electrodeposition”, Nanostructured Materials, 11, 343 (1999).CrossRefGoogle Scholar
  93. 93.
    A. W. Thompson, “Effect Of Grain Size On Work Hardening In Nickel”, Acta Metallurgica, 25, 83 (1977).CrossRefGoogle Scholar
  94. 94.
    E. O. Hall, “The Luders Deformation Of Mild Steel”, Proceedings of Royal Society London, 64, 747 (1951).Google Scholar
  95. 95.
    H. Baker and H. Okamoto (Eds.), ASM Handbook: Volume 3, Alloy Phase Diagrams, ASM International, U.S.A., p. 145, (1992).Google Scholar
  96. 96.
    N. Y. C Yang, C. H. Cadden, C. W. San Marchi, LIGA Microsystems Aging: Evaluation and Mitigation, SAND2003-8800, Sandia National Laboratories, Livermore, CA, (2003).Google Scholar
  97. 97.
    W. B. Stephenson, Jr., “Development and Utilization of a High Strength Alloy for Electroforming”, Plating, 53, 183 (1966).Google Scholar
  98. 98.
    G. A. Malone, “New Developments in Electroformed Nickel-Based Structural Alloys”, Plating and Surface Finishing, 74(1), 50 (1987).Google Scholar
  99. 99.
    J. J. Kelly, S. H. Goods, and N. Y. C. Yang, “High Performance Nanostructured NiMn Alloys for Microsystem Applications”, Electrochemical and Solid State Letters, 6, C88 (2003).CrossRefGoogle Scholar
  100. 100.
    T. E. Buchheit and S. H. Goods, unpublished results.Google Scholar
  101. 101.
    S. A. Watson, Nickel Sulphamate Solutions, NiDI Technical Series No. 10 052, Nickel Development Institute, Toronto, Canada (1989).Google Scholar
  102. 102.
    Don Baudrand, “Nickel Sulfamate Plating, Its Mystique and Practicality”, Metal Finishing, 94(7), 15 (1996).Google Scholar
  103. 103.
    H. Fischer, “Aspects of Inhibition in Electrodeposition of Compact Metals”, Electrodeposition and Surface Treatment, 1, 319 (1972/73).Google Scholar
  104. 104.
    D. Landolt, “Electrochemical and Materials Science Aspects of Alloy Deposition”, Electrochimica Acta, 39, 1075 (1994).CrossRefGoogle Scholar
  105. 105.
    R. Winand, “Electrodeposition of Metals and Alloys- New Results and Perspectives”, Electrochimica Acta, 39, 1091 (1994).CrossRefGoogle Scholar
  106. 106.
    V. Zentner, A. Brenner, and C. W. Jennings, Plating, 39, 865 (1952).Google Scholar
  107. 107.
    W. Kim and R. Weil, “Pulse Plating Effects in Nickel Electrodeposition”, Surface and Coatings Technology, 38(3), 289Google Scholar
  108. 108.
    N. Ibl, “Some Theoretical Aspects of Pulse Electrolysis”, Suface Technology, 10(2), 81 (1980).CrossRefGoogle Scholar
  109. 109.
    M. Viswanathan and Ch. J. Raub, “Effect of Pulsed Direct Current (Pulsed Plating) on the Properties of Electrodeposited Coatings”, Galvanotechnik, 66(4), 277 (1975).Google Scholar
  110. 110.
    D. L. Rehrig, H. Leidheiser, and M. R. Notis, “Influence of the Current Waveform on the Morphology of Pulse Electrodeposited Gold”, Plating and Surface Finishing, 64(12), 40 (1977).Google Scholar
  111. 111.
    T. L. Lam, I. Ohno, and T. Saji, Journal of the Metal Finishing Society of Japan, 33, 29 (1982).CrossRefGoogle Scholar
  112. 112.
    L. G. Holmbom and B. E. Jacobson, “Effects of Bath Temperature and Pulse-Plating Frequency on Growth Morphology of High-Purity Gold”, Plating and Surface Finishing, 74(9), 74 (1987).Google Scholar
  113. 113.
    T. Fritz, H. S. Cho, K. J. Hemker, W. Mokwa, and U. Schnakenberg, “Characterization of Electroplated Nickel”, Microsystem Technologies, 9(1–2), 87 (2002).CrossRefGoogle Scholar
  114. 114.
    E. J. Roehl, Plating, 35, 452 (1948).Google Scholar
  115. 115.
    J. Amblard, I. Epelboin, M. Froment, and G. Maurin, “Inhibition and Nickel Electrocrystallization”, Journal of Applied Electrochemistry, 9, 233 (1979).CrossRefGoogle Scholar
  116. 116.
    W. M. Phillips and F. L. Clifton, Proceedings of the American Electroplaters’ Society, 35, 87 (1948).Google Scholar
  117. 117.
    J. Edwards, “Radiotracer Study of Addition Agent Behavior: 4― Mechanism of Incorporation”, Transactions of the Institute of Metal Finishing, 41, 140 (1964).Google Scholar
  118. 118.
    E. Orowan, Dislocations in Metals, AIME, Warrendale, PA, p. 69 (1954).Google Scholar
  119. 119.
    E. Dieter, Mechanical Metallurgy, McGraw-Hill, NY, p. 144 (1961).Google Scholar
  120. 120.
    V. P. Greco, “Review of Fabrication and Properties of Electrocomposites”, Plating and Surface Finishing, 76(10), 68 (1989).Google Scholar
  121. 121.
    C. A. Addison and E. C. Kedward, Transactions of the Institute of Metal Finishing, 55, 1 (1977).Google Scholar
  122. 122.
    M. Thoma, Plating and Surface Finishing, “Cobalt/Chromic Oxide Composite Coating for High-Temperature Wear Resistance”, Plating and Surface Finishing, 71(9), 51 (1984).Google Scholar
  123. 123.
    F. K. Sautter, J. Electrochem. Soc., 110, 557 (1963).CrossRefGoogle Scholar
  124. 124.
    X. M. Ding, N. Merk, and B. Ilschner, “Mechanical Behaviour of Metal-Matrix Composite Deposits”, Journal of Materials Science, 33, 803 (1998).CrossRefGoogle Scholar
  125. 125.
    X. M. Ding, N. Merk, and B. Ilschner, “Functional Behaviour of Particle-Volume-Graded Electrodeposited Composite Coatings”, Journal of the Chinese Society of Mechanical Engineers, 183, 145 (1997).Google Scholar
  126. 126.
    S. H. Goods, T. E. Buchheit, R. P. Janek, J. R. Michael, and P. G. Kotula, “Oxide Dispersion Strengthening of Nickel Electrodeposits for Microsystem Applications”, Metallurgical and Materials Transactions A- Physical Metallurgy and Materials Science, 35A, 2351 (2004).CrossRefGoogle Scholar
  127. 127.
    A. Talin, Sandia National Laboratories, unpublished results.Google Scholar
  128. 128.
    Q. Shi, S. C. Chang, M. W. Putty, and D. B. Hicks, “Characterization of Electroformed Nickel Microstructures”, Proceedings of the SPIE, 2639, 191 (1995).Google Scholar
  129. 129.
    H. Majjad, S. Basrour, P. Delobelle, and M. Schmidt, “Dynamic Determination of Young’s Modulus of Electroplated Nickel Used in LIGA Technique”, Sensors and Actuators A (Physical), 74(1), 148 (1999).CrossRefGoogle Scholar
  130. 130.
    E. Mazza, S. Abel, and J. Dual, “Experimental Determination of Mechanical Properties of Ni and Ni-Fe Microbars”, Microsystem Technologies, 2(4), 197 (1996).CrossRefGoogle Scholar
  131. 131.
    K. J. Hemker and H. Last, “Microsample Tensile Testing of LIGA Nickel for MEMS Applications”, Materials Science and Engineering A- Structural Materials, Properties, Microstructure, and Processing, 319, 882 (2001).CrossRefGoogle Scholar
  132. 132.
    J. P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York, (1968).Google Scholar
  133. 133.
    W. Voigt, Lehrbuch der Krystallphysik, B. G. Teubner, Leipzig, (1910).Google Scholar
  134. 134.
    A. Reuss, Zeitschrift fuer Angewandte Mathematik und Mechanik, 9, 49 (1929).CrossRefGoogle Scholar
  135. 135.
    W. Bacher, K. Bade, B. Matthis, M. Saumer, and R. Schwarz, “Fabrication of LIGA Mold Inserts”, Microsystem Technologies, 4, 117 (1998).CrossRefGoogle Scholar
  136. 136.
    M. Heckele, W. Bacher, and K. D. Mueller, “Hot Embossing- The Molding Technique for Plastic Microstructures”, Microsystem Technologies, 4, 122 (1998).CrossRefGoogle Scholar
  137. 137.
    M. S. Despa, K. W. Kelly, and J. R. Collier, “Injection Molding of Polymeric LIGA HARMS”, Microsystem Technologies, 6, 60 (1999).CrossRefGoogle Scholar
  138. 138.
    R. Ruprecht, T. Benzler, T. Hanemann, K. Mueller, J. Konys, V. Piotter, G. Schanz, L. Schmidt, A. Thies, H. Woellmer, and J. Hausselt, “Various Replication Techniques for Manufacturing Three-Dimensional Metal Microstructures”, Microsystem Technologies, 4, 28 (1997).CrossRefGoogle Scholar
  139. 139.
    K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid Replication of Polymeric and Metallic High Aspect Ratio Microstructures Using PDMS and LIGA Technology”, Microsystem Technologies, 9, 5 (2002).CrossRefGoogle Scholar
  140. 140.
    A. M. Morales, L. A. Domeier, M. Gonzales, J. Hachman, J. M. Hruby, S. H. Goods, D. E. McLean, N. Yang, and A. D. Gardea, “Microstructure and Mechanical Properties of Nickel Microparts Electroformed in Replicated LIGA Molds,” Proceedings of the SPIE, 4979, 440 (2003).Google Scholar
  141. 141.
    R. Bischofberger, H. Zimmermann, and G. Staufert, “Low-cost HARMS Process”, Sensors and Actuators A, 61, 392 (1997).CrossRefGoogle Scholar
  142. 142.
    P. M. Dentinger, W. M. Clift, and S. H. Goods, “Removal of SU-8 Photoresist for Thick Film Applications”, Microelectronic Engineering, 61–62, 993 (2002).CrossRefGoogle Scholar
  143. 143.
    W. W. Flack, W. P. Fan, and S. White, “The Optimization and Characterization of Ultra-Thick Photoresist Films”, Proceedings of the SPIE, 3333, 1288 (1998).Google Scholar
  144. 144.
    Bradley Todd, Warren W. Flack, and Sylvia White, “Thick Photoresist Imaging Using A Three Wavelength Exposure Stepper”, Proceedings of the SPIE, 3874, 330 (1999).Google Scholar
  145. 145.
    W. W. Flack, H.-A. Nguyen, and E. Capsuto, “Process Improvements for Ultra-Thick Photoresist Using a Broadband Stepper”, Proceedings of the SPIE, 4336, 956 (2001).Google Scholar
  146. 146.
    W. W. Flack, H.-A. Nguyen, and E. Capsuto, “Characterization of an Ultra-Thick Positive Photoresist for Electroplating Applications”, Proceedings of the SPIE, 5039, 1257 (2003).Google Scholar
  147. 147.
    F. T. Hartley and C. K. Malek, “Nanometer X-ray Lithography”, Proceedings of the SPIE, 3894, 44 (1999).Google Scholar
  148. 148.
    M. Tormen, F. Romanato, M. Altissimo, L. Businaro, P. Candeloro, and E. M. Di Fabrizio, “Three Dimensional Micro- and Nanostructuring by Combination of Nanoimprint and X-ray Lithography”, Journal of Vacuum Science and Technology B, 22(2), 766 (2004).CrossRefGoogle Scholar
  149. 149.
    M. W. Boerner, M. Kohl, F. J. Pantenburg, W. Bacher, H. Hein, and W. K. Schomburg, “Sub-Micron LIGA Process for Movable Microstructures”, Microelectronic Engineering, 30, 505 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.IBM, Electrochemical ProcessesAlbanyUSA
  2. 2.Dept. 8758/MS 9402Sandia National LaboratoriesLivermoreUSA

Personalised recommendations