Skip to main content

X-ray Lithography Techniques, LIGA-Based Microsystem Manufacturing: The Electrochemistry of Through-Mold Deposition and Material Properties

  • Chapter
  • First Online:
Electrochemistry at the Nanoscale

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1789 Accesses

Abstract

Certain microsystem fabrication techniques are critically dependent on the electrochemistry of metal deposition into lithographically defined features that are developed in insulating molding materials. One such technique, developed originally at the Forschungzentrum Karlsruhe, Germany, is known as LIGA, the German acronym for lithography, electroplating, and replication (Lithographie, Galvanoformung, and Abformung) [1–3]. An example of typical miniature structures formed by plating through thick photoresist (the insulating molding materials) is shown in Fig. 1. Since its inception in Germany in the 1980s, LIGA research activities have expanded throughout Europe, as well as in Asia and North America.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is an important characteristic that distinguishes LIGA-fabricated microdevices from silicon MEMS technology.

  2. 2.

    We define “thin” resist loosely as less than several microns, while “thick” resist is considered to be hundreds of microns to several millimeters.

References

  1. E. W. Becker, W. Ehrfeld, D. Muenchmeyer, H. Betz, A. Heuberger, S. Pongratz, W. Glashauser, H. J. Michel, and R. v. Siemens, “Production of Separation-Nozzle Systems for Uranium Enrichment by a Combination of X-ray Lithography and Galvanoplastics”, Naturwissenschaften, 69, 520 (1982).

    Article  Google Scholar 

  2. M. Madou, Fundamentals of Microfabrication, CRC Press, New York, p. 275 (1997).

    Google Scholar 

  3. E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Muenchmeyer, “Fabrication of Microstructures With High Aspect Ratios and Great Structural Heights by Synchrotron Radiation, Lithography, Galvanoforming, and Plastic Moulding (LIGA Process), Microelectronic Engineering, 4, 35 (1986).

    Article  CAS  Google Scholar 

  4. J. Mohr, W. Ehrfeld, and D. Munchmeier, “Requirements on Resists Layers in Deep-etch Synchrotron Radiation Lithography”, Journal of Vacuum Science and Technology B, 6(6), 2264 (1988).

    Article  CAS  Google Scholar 

  5. W. Ehrfeld, V. Hessel, H. Loewe, Ch. Schulz, and L. Weber, “Materials of LIGA Technology”, Microsystems Technologies, 5, 105 (1999).

    Article  Google Scholar 

  6. J. Hormes, J. Goettert, K. Lian, Y. Desta, and L. Jian, “Materials for LIGA and LIGA-based Microsystems”, Nuclear Instruments and Methods in Physics Research B, 199, 332 (2003).

    Article  CAS  Google Scholar 

  7. M. W. Boerner, M. Kohl, F. J. Pantenburg, W. Bacher, H. Hein, and W. K. Schomburg, “Sub-micron LIGA Process for Movable Microstructures”, Microelectronic Engineering, 30, 505 (1996).

    Article  CAS  Google Scholar 

  8. W. H. Safranek, The Properties of Electrodeposited Metals and Alloys (2nd Ed.), American Electroplaters and Surface Finishers Society, U.S.A. (1986).

    Google Scholar 

  9. A. Rogner, J. Eicher, D. Muenchmeyer, R.-P. Peters, and J. Mohr, “The LIGA Technique- What Are the New Opportunities”, Journal of Micromechanics and Microengineering, 2, 133 (1992).

    Article  Google Scholar 

  10. D. W. L. Tolfree, “Microfabrication Using Synchrotron Radiation”, Report on Progress Physics, 61, 313 (1998).

    Article  CAS  Google Scholar 

  11. R. K. Kupka, F. Bouamrane, C. Cremers, and S. Megtert, “Microfabrication: LIGA-X and Applications”, Applied Surface Science, 164, 97 (2000).

    Article  CAS  Google Scholar 

  12. R. A. Lawes, G. Arthur, and A. Schneider, “LIGA- A Fabrication Technology for Industry?”, Proceedings of SPIE, 4593, 145 (2001).

    Google Scholar 

  13. Y. Cheng, B.-Y. Shew, M. K. Chyu, and P. H. Chen, “Ultra-deep LIGA Process and its Applications”, Nuclear Instruments and Methods in Physics Research A, 467–468, 1192 (2001).

    Article  Google Scholar 

  14. J. Hruby, “LIGA Technologies and Applications”, MRS Bulletin, 26(4), 337 (2001).

    Article  CAS  Google Scholar 

  15. C. K. Malek and V. Saile, “Applications of LIGA Technology to Precision Manufacturing of High-Aspect-Ratio Micro-components and –systems: a Review”, Microelectronics Journal, 35, 131 (2004).

    Article  Google Scholar 

  16. John O. Dukovic, “Current Distribution and Shape Change in Electrodeposition of Thin Films for Microelectronic Fabrication”, in Advances in Electrochemical Science and Engineering, H. Gerischer and C. W. Tobias (Eds.), Vol. 3, VCH, Weinheim, p. 117 (1994).

    Google Scholar 

  17. S. K. Griffiths, A. Ting, and J. M. Hruby, “The Influence of Mask Substrate Thickness on Exposure and Development Times for the LIGA Process”, Microsystem Technologies, 6, 99 (2000).

    Article  Google Scholar 

  18. S. K. Griffiths, J. Hruby, and A. Ting, “Optimum Doses and Mask Thickness for Synchrotron Exposure of PMMA Resists”, Proceedings of the SPIE, 3680, 498 (1999).

    Google Scholar 

  19. H. M. Manohara, C. Khan Malek, A. S. Dewa, and K. Deng, “Low Z Substrates for Cost Effective High-Energy, Stacked Exposures”, Microsystem Technologies, 4, 17 (1997).

    Article  Google Scholar 

  20. A. El-Kholi, K. Bade, J. Mohr, F. J. Pantenburg, X.-M. Tang, “Alternative Resist Adhesion and Electroplating Layers for LIGA Process”, Microsystem Technologies, 6, 161 (2000).

    Article  Google Scholar 

  21. L. T. Romankiw, “A Path: From Electroplating Through Lithographic Masks in Electronics to LIGA in MEMS”, Electrochimica Acta, 42, 2985 (1997).

    Article  Google Scholar 

  22. W. Bacher, W. Menz, J. Mohr, C. Muller, and W. K. Schomburg, “The LIGA Process and its Potential for Microsystems”, Naturwissenschaften, 81(12), 536 (1994).

    CAS  Google Scholar 

  23. W. Qu, C. Wenzel, and K. Drescher, “A Vertically Sensitive Accelerometer and its Realization by Depth UV Lithography Supported Electroplating”, Microelectronics Journal, 31, 569 (2000).

    Article  Google Scholar 

  24. T. R. Christenson and H. Guckel, “Deep X-ray Lithography for Micromechanics”, Proceedings of the SPIE, 2639, 134 (1995).

    Google Scholar 

  25. E. J. O’Sullivan, E. I. Cooper, L. T. Romankiw, K. T. Kwietniak, P. L. Trouilloud, J. Horkans, C. V. Jahnes, I. V. Babich, S. Krongelb, S. G. Hegde, J. A. Tornello, N. C. LaBianca, J. M. Cotte, and T. J. Chainer, “Integrated, Variable-reluctance Magnetic Minimotor”, IBM Journal of Research and Development, 42,681 (1998).

    Article  Google Scholar 

  26. R. A. Brennen, M. H. Hecht, D. V. Wiberg, S. J. Manion, W. D. Bonivert, J. M. Hruby, M. L. Scholz, T. D. Stowe, T. W. Kenny, K. H. Jackson, and C. K. Malek, “Fabricating Sub-collimating Grids for an X-ray Solar Imaging Spectrometer Using LIGA Techniques”, Proceedings of the SPIE, 2640, 214 (1995).

    Google Scholar 

  27. M. Ghigo, E. Diolaiti, F. Perennes, and R. Ragazzoni, “Use of the LIGA Process for the Production of Pyramid Wavefront Sensors for Adaptive Optics in Astronomy”, Proceedings of the SPIE, 5169, 55 (2003).

    Google Scholar 

  28. T. L. Willke and S. S. Gearhart, “LIGA Micromachined Planar Transmission Lines and Filters”, IEEE Transactions on Microwave Theory and Techniques, 45, 1681 (1997).

    Article  Google Scholar 

  29. F. Aristone, P. Datta, Y. Desta, A. M. Espindola, and J. Goettert, “Molded Multilevel Modular Micro-fluidic Devices”, Proceedings of the SPIE, 4982, 65 (2003).

    Google Scholar 

  30. L. James Lee, M. J. Madou, K. W. Koelling, S. Daunert, S. Lai, C. G. Koh, Y.-J. Juang, Y. Lu, and L. Yu, “Design and Fabrication of CD-Like Microfluidic Platforms for Diagnostics: Polymer-Based Microfabrication”, Biomedical Microdevices, 3: 4, 339 (2001).

    Article  Google Scholar 

  31. A. Schneider, S. Rea, E. Huq, and W. Bonfield, “Surface Microstructuring of Biocompatible Bone Analogue Material HAPEX™ Using LIGA Technique and Embossing”, Proceedings of the SPIE, 5116, 57 (2003).

    Google Scholar 

  32. A. Ruzzu, J. Fahrenberg, M. Heckele, Th. Schaller, “Multi-functional Valve Components Fabricated by Combination of LIGA Processes and High Precision Mechanical Engineering”, Microsystems Technologies, 4, 128 (1998).

    Article  Google Scholar 

  33. L. Huang, W. Wang, M. C. Murphy, K. Lian, and Z.-G. Ling, “LIGA Fabrication and Test of a DC Type Magnetohydrodynamic (MHD) Micropump”, Microsystems Technologies, 6, 235 (2000).

    Article  Google Scholar 

  34. S. Baik, J. P. Blanchard, and M. L. Corradini, “Development of Micro-Diesel Injector Nozzles via Microelectromechanical Systems Technology and Effects on Spray Characteristics”, Journal of Engineering for Gas Turbines and Power, 125, 427 (2003).

    Article  Google Scholar 

  35. A. Morales, J. Brazzle, R. Crocker, L. Domeier, E. Goods, J. Hachman, Jr., C. Harnett, M. Hunter, S. Mani, B. Mosier, and B. Simmons, “Fabrication and Characterization of Polymer Microfluidic Devices for Bio-agent Detection”, Proceedings of the SPIE, 5716, 89 (2005).

    Google Scholar 

  36. C. Harris, K. Kelly, T. Wang, A. McCandless, and S. Motakef, Journal of Microelectromechanical Systems, 11, 726 (2002).

    Article  CAS  Google Scholar 

  37. A. Cox, E. Garcia, “Three-Dimensional LIGA Structures for Use in Tagging”, Proceedings of the SPIE, 3673, 122 (1999).

    Google Scholar 

  38. Axsun Technologies Homepage, www.axsun.com, accessed 12/20/04.

  39. SEAG microParts GmbH, www.microparts.de, accessed 12/20/04.

  40. Micromotion GmbH, www.mikrogetriebe.de, accessed 12/20/04.

  41. Klaus Stefan Drese, “Design Rules for Electroforming in the LIGA Process”, J. Electrochem. Soc., 151, D39 (2004).

    Article  CAS  Google Scholar 

  42. M. Datta and D. Landolt, “Fundamental Aspects and Applications of Electrochemical Microfabrication”, Electrochimica Acta, 45, 2535 (2000).

    Article  CAS  Google Scholar 

  43. B. DeBecker and A. C. West, “Workpiece, Pattern, and Feature Scale Current Distributions”, J. Electrochem. Soc., 143, 486 (1996).

    Article  Google Scholar 

  44. J. L. Marti and G. P. Lanza, “Hardness of Sulfamate Nickel Deposits”, Plating, 56, 377 (1969).

    CAS  Google Scholar 

  45. J. M. Lee, J. T. Hachman, J. J. Kelly, and A. C. West, “Improvement of Current Distribution Uniformity on Substrates for MEMS,” Journal of Microlithography, Microfabrication, and Microsystems, 3(1), 146 (2004).

    Article  CAS  Google Scholar 

  46. S. Mehdizadeh, J. Dukovic, P. C. Andricacos, L. T. Romankiw, and H. Y. Cheh, “Optimization of Electrodeposit Uniformity by the Use of Auxiliary Electrodes”, Journal of the Electrochemical Society, 137, 110 (1990).

    Article  CAS  Google Scholar 

  47. S. Mehdizadeh, J. O. Dukovic, P. C. Andricacos, L. T. Romankiw, and H. Y. Cheh, “The Influence of Lithographic Patterning on Current Distribution: A Model for Microfabrication by Electrodeposition”, Journal of the Electrochemical Society, 139, 78 (1992).

    Article  CAS  Google Scholar 

  48. A. C. West, M. Matlosz, and D. Landolt, “Normalized and Average Current Distributions on Unevenly Spaced Patterns”, Journal of the Electrochemical Society, 138, 728 (1991).

    Article  CAS  Google Scholar 

  49. A. C. West, “Ohmic Interactions Within Electrode Ensembles”, Journal of the Electrochemical Society, 140, 134 (1993).

    Article  CAS  Google Scholar 

  50. S. K. Griffiths, J. A. W. Crowell, B. L. Kistler, and A. S. Dryden, “Dimensional Errors in LIGA-Produced Metal Structures due to Thermal Expansion and Swelling of PMMA”. Journal of Micromechanics and Microengineering, 14, 1548 (2004).

    Article  Google Scholar 

  51. S. Mehdizadeh, J. Dukovic, P. C. Andricacos, L. T. Romankiw, and H. T. Cheh, “The Influence of Lithographic Patterning on Current Distribution in Electrodeposition: Experimental Study and Mass-Transfer Effects”, Journal of the Electrochemical Society, 140, 3497 (1993).

    Article  CAS  Google Scholar 

  52. K. Kondo, K. Fukui, K. Uno, and K. Shinohara, “Shape Evolution of Electrodeposited Copper Bumps”, Journal of the Electrochemical Society, 143, 1880 (1996).

    Article  CAS  Google Scholar 

  53. K. Kondo, K. Fukui, M. Yokoyama, and K. Shinohara, “Shape Evolution of Electrodeposited Copper Bumps with High Peclet Numbers”, Journal of the Electrochemical Society, 144, 466 (1997).

    Article  CAS  Google Scholar 

  54. K. Kondo and K. Fukui, “Current Evolution of Electrodeposited Copper Bumps with Photoresist Angle”, Journal of the Electrochemical Society, 145, 840 (1998).

    Article  CAS  Google Scholar 

  55. H. Watanabe, S. Hayashi, and H. Honma, “Microbump Formation by Noncyanide Gold Electroplating”, Journal of the Electrochemical Society, 146, 574 (1999).

    Article  CAS  Google Scholar 

  56. K. Hayashi, K. Fukui, Z. Tanaka, and K. Kondo, “Shape Evolution of Electrodeposited Bumps into Deep Cavities”, Journal of the Electrochemical Society, 148, C145 (2001).

    Article  CAS  Google Scholar 

  57. B. Kim and T. Ritzdorf, “Electrodeposition of Near Eutectic SnAg Solders for Wafer Level Packaging”, Journal of the Electrochemical Society, 150, C577 (2003).

    Article  CAS  Google Scholar 

  58. P. C. Andricacos, C. Uzoh, J. Dukovic, J. Horkans, L. Deligianni, IBM Journal of Research and Development, 42, 567 (1998).

    Article  CAS  Google Scholar 

  59. P. Taephaisitphongse, Y. Cao, and A. C. West, “Electrochemical and Fill Studies of a Multicomponent Additive Package for Copper Deposition”, Journal of the Electrochemical Society, 148, C492 (2001).

    Article  CAS  Google Scholar 

  60. D. Josell, B. Baker, C. Witt, D. Wheeler, and T. P. Moffat, “Via Filling by Electrodeposition. Superconformal Silver and Copper and Conformal Nickel”, Journal of the Electrochemical Society, 149, C637 (2002).

    Article  CAS  Google Scholar 

  61. K. Leyendecker, W. Bacher, W. Stark, and A. Thommes, “New Microelectrodes for the Investigation of the Electroforming of LIGA Microstructures”, Electrochimica Acta, 39, 1139 (1994).

    Article  CAS  Google Scholar 

  62. J. Ji, W. C. Cooper, D. B. Dreisinger, and E. Peters, “Surface pH Measurements During Nickel Electrodeposition”, Journal of Applied Electrochemistry, 25, 642 (1995).

    Article  CAS  Google Scholar 

  63. D. R. Gabe, “The role of Hydrogen in Metal Electrodeposition Processes”, Journal of Applied Electrochemistry, 27, 908 (1997).

    Article  CAS  Google Scholar 

  64. S. K. Griffiths, R. H. Nilson, R. W. Bradshaw, A. Ting, W. D. Bonivert, J. T. Hachman, and J. M. Hruby, “Transport Limitations in Electrodeposition for LIGA Microdevice Fabrication”, Proceedings of the SPIE, 3511, 364 (1998).

    Google Scholar 

  65. R. H. Nilson and S. K. Griffiths, “Natural Convection in Trenches of High Aspect Ratio”, J. Electrochem. Soc., 150, C401 (2003).

    Article  CAS  Google Scholar 

  66. S. D. Leith and D. T. Schwartz, “Through-mold Electrodeposition Using the Uniform Injection Cell (UIC): Workpiece and Pattern Scale Uniformity”, Electrochimica Acta, 44, 4017 (1999).

    Article  CAS  Google Scholar 

  67. S. D. Leith, S. Ramli, and D. T. Schwartz, “Characterization of NixFe1-x (0.10 < x < 0.95) Electrodeposition from a Family of Sulfamate-Chloride Electrolytes”, Journal of the Electrochemical Society, 146, 1431 (1999).

    Article  CAS  Google Scholar 

  68. W. Wang, S. D. Leith, and D. T. Schwartz, “Convective-Diffusive Mass Transfer Inside Complex Micro-molds During Electrodeposition”, Journal of Microelectromechanical Systems, 11, 118 (2002).

    Article  CAS  Google Scholar 

  69. A. Thommes, W. Stark, K. Leyendecker, W. Bacher, H. Liebscher, and Ch. Ilmenau, “LIGA Microstructures From a NiFe Alloy: Preparation by Electroforming and Their Magnetic Properties”, in Proceedings of the 3rd International Symposium on Magnetic Materials, Processes, and Devices PV 94-6, L. T. Romankiw and D. A. Herman, Jr. (Eds.), The Electrochemical Society, U.S.A., p. 89 (1994).

    Google Scholar 

  70. A. Brenner, Electrodeposition of Alloys, Academic Press, New York (1963).

    Google Scholar 

  71. P. C. Andricacos and L. T. Romankiw, in Advances in Electrochemical Science and Engineering, H. Gerischer and C. W. Tobias (Eds.), vol. 3, VCH Verlagsgesellschaft, Weinheim, Germany, p. 227 (1993).

    Google Scholar 

  72. M. Kuepper and J. W. Schultze, “Spatially Resolved Concentration Measurements During Cathodic Alloy Deposition in Microstructures”, Electrochimica Acta, 42, 3023 (1997).

    Article  Google Scholar 

  73. H. Guckel, T. Christenson, and K. Skrobis, “Metal Micromechanisms via Deep X-ray Lithography, Electroplating, and Assembly”, Journal of Micromechanics and Microengineering, 2, 225 (1992).

    Article  Google Scholar 

  74. H. Guckel, “Progress in Magnetic Microactuators”, Microsystem Technologies, 5, 59 (1998).

    Article  Google Scholar 

  75. T. M. Liakopoulos and C. H. Ahn, “A Micro-fluxgate Magnetic Sensor Using Micromachined Planar Solenoid Coils”, Sensors and Actuators, 77, 66 (1999).

    Article  Google Scholar 

  76. D. J. Sadler, T. M. Liakopoulos, and C. H. Ahn, “A Universal Electromagnetic Microactuator Using Magnetic Interconnection Concepts”, Journal of Microelectromechanical Systems, 9, 460 (2000).

    Article  CAS  Google Scholar 

  77. F. Yi, L. Peng, J. Zhang, and Y. Han, “A New Process to Fabricate the Electromagnetic Stepping Micromotor Using LIGA Process and Surface Sacrificial Layer Technology”, Microsystem Technologies, 7, 103 (2001).

    Article  Google Scholar 

  78. J.-W. Park, J. Y. Park, Y.-H. Joung, and M. G. Allen, “Fabrication of High Current and Low Profile Micromachined Inductor With Laminated Ni/Fe Core”, IEEE Transactions on Components and Packaging Technologies, 25, 106 (2002).

    Article  CAS  Google Scholar 

  79. T. W., Andrew, B. McCandless, Sean Ford, Kevin W. Kelly, Richard Lienau, Dale Hensley, Yohannes Desta, and Zhong G. Ling, “High-Aspect-Ratio Microstructures for Magnetoelectronic Applications”, Proceedings of the SPIE, 4979, 464 (2003).

    Google Scholar 

  80. Tsung-Shune Chin, “Permanent Magnet Films for Applications in Microelectromechanical Systems”, Journal of Magnetism and Magnetic Materials, 209, 75 (2000).

    Article  Google Scholar 

  81. L. Huang, W. Wang, and M. C. Murphy, “Microfabrication of High Aspect Ratio Bi-Te Alloy Microposts and Applications in Micro-sized Cooling Probes”, Microsystem Technologies, 6, 1, (1999).

    Article  CAS  Google Scholar 

  82. S. K. Griffiths and A. Ting, “The Influence of X-ray Fluorescence on LIGA Sidewall Tolerances”, Microsystem Technologies, 8, 120 (2002).

    Article  CAS  Google Scholar 

  83. M. Strobel, U. Schmidt, K. Bade, and J. Halbritter, “Nucleation and Growth of Ni-LIGA Layers”, Microsystem Technologies, 3, 10 (1996).

    Article  Google Scholar 

  84. C. S. Lin, P. C. Hsu, L. Chang, and C. H. Chen, “Properties and Microstructure of Nickel Electrodeposited From a Sulfamate Bath Containing Ammonium Ions”, Journal of Applied Electrochemistry, 31, 925 (2001).

    Article  CAS  Google Scholar 

  85. N. V. Mandich and D. W. Baudrand, “Troubleshooting Ni Sulfamate Plating Installations”,Plating and Surface Finishing, 89 (9), 68 (2002).

    Google Scholar 

  86. J. J. Kelly, S. H. Goods, and A. A. Talin, “Ageing of Nickel Sulfamate Electrolytes During the Electrodeposition of MEMS Structures”, in Electrochemical Processing in ULSI and MEMS: Proceedings of the 205th Meeting of the Electrochemical Society, San Antonio, H. Deligianni, S. T. Mayer, T. P. Moffat, and G. R. Stafford (Eds.), The Electrochemical Society, U.S.A. PV 2004–17, pp. 432–447 (2004).

    Google Scholar 

  87. A. Ruzzu and B. Matthis, “Swelling of PMMA in Aqueous Solutions and Room Temperature Ni-Electroforming”, Microsystem Technologies, 8, 116 (2002).

    Article  CAS  Google Scholar 

  88. A. C. Fischer-Cripps, Nanoindentation, Springer, New York (2002).

    Google Scholar 

  89. W. N. Sharpe, “Murray Lecture Tensile Testing at the Micrometer Scale: Opportunities in Experimental Mechanics”, Experimental Mechanics, 43 (3), 228 (2003).

    Google Scholar 

  90. T. E. Buchheit, D. A. LaVan, J. R. Michael, T. R. Christenson, and S. D. Leith, “Microstructural and Mechanical Properties Investigation of Electrodeposited and Annealed LIGA Nickel Structures”, Metallurgical and Materials Transactions A, 33A, 539 (2002).

    Article  Google Scholar 

  91. S. H. Goods, J. J. Kelly, and N. Y. C. Yang, “Electrodeposited Nickel-Manganese: an Alloy for Microsystem Applications”, Microsystem Technologies, 10(6–7), 498 (2004).

    Article  CAS  Google Scholar 

  92. F. Ebrahimi, G. R. Bourne, M. S. Kelly, and T. E. Matthews, “Mechanical Properties of Nanocrystalline Nickel Produced by Electrodeposition”, Nanostructured Materials, 11, 343 (1999).

    Article  CAS  Google Scholar 

  93. A. W. Thompson, “Effect Of Grain Size On Work Hardening In Nickel”, Acta Metallurgica, 25, 83 (1977).

    Article  CAS  Google Scholar 

  94. E. O. Hall, “The Luders Deformation Of Mild Steel”, Proceedings of Royal Society London, 64, 747 (1951).

    Google Scholar 

  95. H. Baker and H. Okamoto (Eds.), ASM Handbook: Volume 3, Alloy Phase Diagrams, ASM International, U.S.A., p. 145, (1992).

    Google Scholar 

  96. N. Y. C Yang, C. H. Cadden, C. W. San Marchi, LIGA Microsystems Aging: Evaluation and Mitigation, SAND2003-8800, Sandia National Laboratories, Livermore, CA, (2003).

    Google Scholar 

  97. W. B. Stephenson, Jr., “Development and Utilization of a High Strength Alloy for Electroforming”, Plating, 53, 183 (1966).

    Google Scholar 

  98. G. A. Malone, “New Developments in Electroformed Nickel-Based Structural Alloys”, Plating and Surface Finishing, 74(1), 50 (1987).

    CAS  Google Scholar 

  99. J. J. Kelly, S. H. Goods, and N. Y. C. Yang, “High Performance Nanostructured NiMn Alloys for Microsystem Applications”, Electrochemical and Solid State Letters, 6, C88 (2003).

    Article  CAS  Google Scholar 

  100. T. E. Buchheit and S. H. Goods, unpublished results.

    Google Scholar 

  101. S. A. Watson, Nickel Sulphamate Solutions, NiDI Technical Series No. 10 052, Nickel Development Institute, Toronto, Canada (1989).

    Google Scholar 

  102. Don Baudrand, “Nickel Sulfamate Plating, Its Mystique and Practicality”, Metal Finishing, 94(7), 15 (1996).

    Google Scholar 

  103. H. Fischer, “Aspects of Inhibition in Electrodeposition of Compact Metals”, Electrodeposition and Surface Treatment, 1, 319 (1972/73).

    Google Scholar 

  104. D. Landolt, “Electrochemical and Materials Science Aspects of Alloy Deposition”, Electrochimica Acta, 39, 1075 (1994).

    Article  CAS  Google Scholar 

  105. R. Winand, “Electrodeposition of Metals and Alloys- New Results and Perspectives”, Electrochimica Acta, 39, 1091 (1994).

    Article  CAS  Google Scholar 

  106. V. Zentner, A. Brenner, and C. W. Jennings, Plating, 39, 865 (1952).

    Google Scholar 

  107. W. Kim and R. Weil, “Pulse Plating Effects in Nickel Electrodeposition”, Surface and Coatings Technology, 38(3), 289

    Google Scholar 

  108. N. Ibl, “Some Theoretical Aspects of Pulse Electrolysis”, Suface Technology, 10(2), 81 (1980).

    Article  CAS  Google Scholar 

  109. M. Viswanathan and Ch. J. Raub, “Effect of Pulsed Direct Current (Pulsed Plating) on the Properties of Electrodeposited Coatings”, Galvanotechnik, 66(4), 277 (1975).

    Google Scholar 

  110. D. L. Rehrig, H. Leidheiser, and M. R. Notis, “Influence of the Current Waveform on the Morphology of Pulse Electrodeposited Gold”, Plating and Surface Finishing, 64(12), 40 (1977).

    CAS  Google Scholar 

  111. T. L. Lam, I. Ohno, and T. Saji, Journal of the Metal Finishing Society of Japan, 33, 29 (1982).

    Article  CAS  Google Scholar 

  112. L. G. Holmbom and B. E. Jacobson, “Effects of Bath Temperature and Pulse-Plating Frequency on Growth Morphology of High-Purity Gold”, Plating and Surface Finishing, 74(9), 74 (1987).

    CAS  Google Scholar 

  113. T. Fritz, H. S. Cho, K. J. Hemker, W. Mokwa, and U. Schnakenberg, “Characterization of Electroplated Nickel”, Microsystem Technologies, 9(1–2), 87 (2002).

    Article  CAS  Google Scholar 

  114. E. J. Roehl, Plating, 35, 452 (1948).

    CAS  Google Scholar 

  115. J. Amblard, I. Epelboin, M. Froment, and G. Maurin, “Inhibition and Nickel Electrocrystallization”, Journal of Applied Electrochemistry, 9, 233 (1979).

    Article  CAS  Google Scholar 

  116. W. M. Phillips and F. L. Clifton, Proceedings of the American Electroplaters’ Society, 35, 87 (1948).

    Google Scholar 

  117. J. Edwards, “Radiotracer Study of Addition Agent Behavior: 4― Mechanism of Incorporation”, Transactions of the Institute of Metal Finishing, 41, 140 (1964).

    CAS  Google Scholar 

  118. E. Orowan, Dislocations in Metals, AIME, Warrendale, PA, p. 69 (1954).

    Google Scholar 

  119. E. Dieter, Mechanical Metallurgy, McGraw-Hill, NY, p. 144 (1961).

    Google Scholar 

  120. V. P. Greco, “Review of Fabrication and Properties of Electrocomposites”, Plating and Surface Finishing, 76(10), 68 (1989).

    CAS  Google Scholar 

  121. C. A. Addison and E. C. Kedward, Transactions of the Institute of Metal Finishing, 55, 1 (1977).

    Google Scholar 

  122. M. Thoma, Plating and Surface Finishing, “Cobalt/Chromic Oxide Composite Coating for High-Temperature Wear Resistance”, Plating and Surface Finishing, 71(9), 51 (1984).

    CAS  Google Scholar 

  123. F. K. Sautter, J. Electrochem. Soc., 110, 557 (1963).

    Article  CAS  Google Scholar 

  124. X. M. Ding, N. Merk, and B. Ilschner, “Mechanical Behaviour of Metal-Matrix Composite Deposits”, Journal of Materials Science, 33, 803 (1998).

    Article  CAS  Google Scholar 

  125. X. M. Ding, N. Merk, and B. Ilschner, “Functional Behaviour of Particle-Volume-Graded Electrodeposited Composite Coatings”, Journal of the Chinese Society of Mechanical Engineers, 183, 145 (1997).

    Google Scholar 

  126. S. H. Goods, T. E. Buchheit, R. P. Janek, J. R. Michael, and P. G. Kotula, “Oxide Dispersion Strengthening of Nickel Electrodeposits for Microsystem Applications”, Metallurgical and Materials Transactions A- Physical Metallurgy and Materials Science, 35A, 2351 (2004).

    Article  CAS  Google Scholar 

  127. A. Talin, Sandia National Laboratories, unpublished results.

    Google Scholar 

  128. Q. Shi, S. C. Chang, M. W. Putty, and D. B. Hicks, “Characterization of Electroformed Nickel Microstructures”, Proceedings of the SPIE, 2639, 191 (1995).

    Google Scholar 

  129. H. Majjad, S. Basrour, P. Delobelle, and M. Schmidt, “Dynamic Determination of Young’s Modulus of Electroplated Nickel Used in LIGA Technique”, Sensors and Actuators A (Physical), 74(1), 148 (1999).

    Article  Google Scholar 

  130. E. Mazza, S. Abel, and J. Dual, “Experimental Determination of Mechanical Properties of Ni and Ni-Fe Microbars”, Microsystem Technologies, 2(4), 197 (1996).

    Article  Google Scholar 

  131. K. J. Hemker and H. Last, “Microsample Tensile Testing of LIGA Nickel for MEMS Applications”, Materials Science and Engineering A- Structural Materials, Properties, Microstructure, and Processing, 319, 882 (2001).

    Article  Google Scholar 

  132. J. P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York, (1968).

    Google Scholar 

  133. W. Voigt, Lehrbuch der Krystallphysik, B. G. Teubner, Leipzig, (1910).

    Google Scholar 

  134. A. Reuss, Zeitschrift fuer Angewandte Mathematik und Mechanik, 9, 49 (1929).

    Article  CAS  Google Scholar 

  135. W. Bacher, K. Bade, B. Matthis, M. Saumer, and R. Schwarz, “Fabrication of LIGA Mold Inserts”, Microsystem Technologies, 4, 117 (1998).

    Article  Google Scholar 

  136. M. Heckele, W. Bacher, and K. D. Mueller, “Hot Embossing- The Molding Technique for Plastic Microstructures”, Microsystem Technologies, 4, 122 (1998).

    Article  Google Scholar 

  137. M. S. Despa, K. W. Kelly, and J. R. Collier, “Injection Molding of Polymeric LIGA HARMS”, Microsystem Technologies, 6, 60 (1999).

    Article  Google Scholar 

  138. R. Ruprecht, T. Benzler, T. Hanemann, K. Mueller, J. Konys, V. Piotter, G. Schanz, L. Schmidt, A. Thies, H. Woellmer, and J. Hausselt, “Various Replication Techniques for Manufacturing Three-Dimensional Metal Microstructures”, Microsystem Technologies, 4, 28 (1997).

    Article  Google Scholar 

  139. K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid Replication of Polymeric and Metallic High Aspect Ratio Microstructures Using PDMS and LIGA Technology”, Microsystem Technologies, 9, 5 (2002).

    Article  Google Scholar 

  140. A. M. Morales, L. A. Domeier, M. Gonzales, J. Hachman, J. M. Hruby, S. H. Goods, D. E. McLean, N. Yang, and A. D. Gardea, “Microstructure and Mechanical Properties of Nickel Microparts Electroformed in Replicated LIGA Molds,” Proceedings of the SPIE, 4979, 440 (2003).

    Google Scholar 

  141. R. Bischofberger, H. Zimmermann, and G. Staufert, “Low-cost HARMS Process”, Sensors and Actuators A, 61, 392 (1997).

    Article  Google Scholar 

  142. P. M. Dentinger, W. M. Clift, and S. H. Goods, “Removal of SU-8 Photoresist for Thick Film Applications”, Microelectronic Engineering, 61–62, 993 (2002).

    Article  Google Scholar 

  143. W. W. Flack, W. P. Fan, and S. White, “The Optimization and Characterization of Ultra-Thick Photoresist Films”, Proceedings of the SPIE, 3333, 1288 (1998).

    Google Scholar 

  144. Bradley Todd, Warren W. Flack, and Sylvia White, “Thick Photoresist Imaging Using A Three Wavelength Exposure Stepper”, Proceedings of the SPIE, 3874, 330 (1999).

    Google Scholar 

  145. W. W. Flack, H.-A. Nguyen, and E. Capsuto, “Process Improvements for Ultra-Thick Photoresist Using a Broadband Stepper”, Proceedings of the SPIE, 4336, 956 (2001).

    Google Scholar 

  146. W. W. Flack, H.-A. Nguyen, and E. Capsuto, “Characterization of an Ultra-Thick Positive Photoresist for Electroplating Applications”, Proceedings of the SPIE, 5039, 1257 (2003).

    Google Scholar 

  147. F. T. Hartley and C. K. Malek, “Nanometer X-ray Lithography”, Proceedings of the SPIE, 3894, 44 (1999).

    Google Scholar 

  148. M. Tormen, F. Romanato, M. Altissimo, L. Businaro, P. Candeloro, and E. M. Di Fabrizio, “Three Dimensional Micro- and Nanostructuring by Combination of Nanoimprint and X-ray Lithography”, Journal of Vacuum Science and Technology B, 22(2), 766 (2004).

    Article  CAS  Google Scholar 

  149. M. W. Boerner, M. Kohl, F. J. Pantenburg, W. Bacher, H. Hein, and W. K. Schomburg, “Sub-Micron LIGA Process for Movable Microstructures”, Microelectronic Engineering, 30, 505 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Sandia/California LIGA prototyping team and metallography group for their assistance in the fabrication of the masks, molds, sample preparation, and analyses essential to the work described here. Colleagues at Sandia/New Mexico are acknowledged as well for their contribution to some of the mechanical testing and microscopy. Georg Aigeldinger and Sam McFadden are acknowledged for their comprehensive review of this work.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kelly, J.J., Goods, S. (2009). X-ray Lithography Techniques, LIGA-Based Microsystem Manufacturing: The Electrochemistry of Through-Mold Deposition and Material Properties. In: Schmuki, P., Virtanen, S. (eds) Electrochemistry at the Nanoscale. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73582-5_3

Download citation

Publish with us

Policies and ethics