Theories and Simulations for Electrochemical Nanostructures

Part of the Nanostructure Science and Technology book series (NST)


Electrochemical nanostructures are special because they can be charged or, equivalently, be controlled by the electrode potential. In cases where an auxiliary electrode, such as the tip of a scanning tunneling microscope, is employed, there are even two potential drops that can be controlled individually: the bias potential between the two electrodes and the potential of one electrode with respect to the reference electrode. Thus, electrochemistry offers more possibilities for the generation or modification of nanostructures than systems in air or in vacuum do. However, this advantage carries a price: electrochemical interfaces are more complex, because they include the solvent and ions. This poses a great problem for the modeling of these interfaces, since it is generally impossible to treat all particles at an equal level. For example, simulations for the generation of metal clusters typically neglect the solvent, while theories for electron transfer through nanostructures treat the solvent in a highly abstract way as a phonon bath. Therefore, a theorist investigating a particular system must decide, in advance, which parts of the system to treat explicitly and which parts to neglect. Of course, to some extent this is true for all theoretical research, but the more complex the investigated system, the more difficult, and debatable, this choice becomes.


Electron Transfer Monte Carlo Electron Exchange Embed Atom Method Embed Atom Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



W.S. acknowledges financial support by the Deutsche Forschungsgemeinschaft. E.P.M.L. acknowledges financial support from CONICET, Agencia Córdoba Ciencia, Secyt U.N.C., Program BID 1201/OC-AR PICT No. 06-12485.


  1. 1.
    R. A. Marcus, J. Chem. Phys. 24 (1956) 966.CrossRefGoogle Scholar
  2. 2.
    N. S. Hush, J. Chem. Phys. 28 (1958) 962.CrossRefGoogle Scholar
  3. 3.
    S. M. Foiles, M. I. Baskes, M. S. Daw, Phys. Rev. B 33 (1986) 7983.CrossRefGoogle Scholar
  4. 4.
    G.E. Engelmann, J. Ziegler, D.M. Kolb, Surf. Sci. Lett 401 (1998) L420.CrossRefGoogle Scholar
  5. 5.
    D.M. Kolb, F.C. Simeone, Electrochim. Acta 50 (2005) 2989.Google Scholar
  6. 6.
    D.M. Kolb, R. Ullmann and J.C. Ziegler, Electrochim. Acta 43 (1998) 2751.Google Scholar
  7. 7.
    U. Landman, W.D. Luedtke, N.A. Burnham, R.J. Colton, Science 248 (1990) 454.CrossRefGoogle Scholar
  8. 8.
    M.G. Del Pópolo, E.P.M. Leiva, M.M. Mariscal, W. Schmickler, Surf. Sci. 597 (2005) 133.CrossRefGoogle Scholar
  9. 9.
    M.M. Mariscal, C.F. Narambuena , M.G. Del Popolo, E. P. M. Leiva, Nanotechnology 16 (2005) 974.CrossRefGoogle Scholar
  10. 10.
    N.B. Luque, E.P.M. Leiva, Electrochimica Acta 50 (2005) 3161.Google Scholar
  11. 11.
    M.G. Del Pópolo, E.P.M. Leiva, H. Kleine, J. Meier, U. Stimming, M. Mariscal, W. Schmickler, Appl. Phys. Lett. 81 (2002) 2635.CrossRefGoogle Scholar
  12. 12.
    M. Mariscal, W. Schmickler, J. Electroanal. Chem. 582 (2005) 64.Google Scholar
  13. 13.
    D.M. Kolb, M. Przasnyski, H. Gerischer, J. Electroanal. Chem. 54, (1974) 25 .Google Scholar
  14. 14.
    G.E. Engelmann, J.C. Ziegler, D.M. Kolb, J. Electrochem. Soc. 45 (1998) L33.Google Scholar
  15. 15.
    R. Ullman, PhD. Thesis, Fakultät für Naturwissenchaften der Universität Ulm (1997).Google Scholar
  16. 16.
    J.C. Ziegler, PhD Thesis, Fakultät für Naturwissenschaften der Universität Ulm (2000).Google Scholar
  17. 17.
    D.M. Kolb, G.E. Engelmann, J.C. Ziegler, Solid State Ionics, 131 (2000) 69.CrossRefGoogle Scholar
  18. 18.
    U. Landman, W.D. Luedtke, Scanning tunnelling microscopy, Chapter 3, Springer Verlag, (1993).Google Scholar
  19. 19.
    S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33 (1986) 7983.Google Scholar
  20. 20.
    R. Schuster, V. Kirchner, X.H. Xia, A.M. Bittner, G. Ertl, Phys. Rev. Lett. 80 (1998) 5599.CrossRefGoogle Scholar
  21. 21.
    T. Solomun, and W. Kautek, Electrochimica Acta 47 (2001) 679.Google Scholar
  22. 22.
    X.H. Xia, R. Schuster, V. Kirchner and G. Ertl, J. Electroanal. Chem. 461 (1999) 102.Google Scholar
  23. 23.
    C. Sánchez, E.P.M. Leiva, J. Electroanal. Chem 458 (1998) 183.Google Scholar
  24. 24.
    C.E.D. Chidsey, Science 251 (1991) 919.Google Scholar
  25. 25.
    Molecular Electronics – Science and Technology, edited by A. Aviram and M. Ratner, Ann. N.Y. Acad. Sci. 852 (1998).Google Scholar
  26. 26.
    S. Roth, C. Joachim, Atomic and Molecular Wires, Kluwer, Dordrecht (1997).Google Scholar
  27. 27.
    Molecular Devices, edited by F. L. Carter, Marcel Decker, N.Y. (1982).Google Scholar
  28. 28.
    J.F. Smalley, S.W. Feldberg, C.E.D. Chidsey, M.R. Lindford, M.D. Newton, Yi-Ping Liu, J. Phys. Chem 99 (1995) 13149.CrossRefGoogle Scholar
  29. 29.
    W. Schmickler, Interfacial Electrochemistry, Oxford University Press, New York, 1996.Google Scholar
  30. 30.
    W. Schmickler, Surf. Sci. 295 (1993) 43.CrossRefGoogle Scholar
  31. 31.
    N.S. Wingreen, K.J. Jacobsen, J.W. Wilkins, Phys. Rev. Lett. 61 (1988) 1396; Phys. Rev. B 40 (1989) 11834.CrossRefGoogle Scholar
  32. 32.
    L.E. Hall, J.R. Reimers, N.S. Hush, K. Silverbrook, J. Chem. Phys. 112 (2000) 1510.CrossRefGoogle Scholar
  33. 33.
    H. Gerischer, Z. Phys. Chem. NF 6 (1960) 223.CrossRefGoogle Scholar
  34. 34.
    A.N. Kuznetsov, W. Schmickler, Chem. Phys. 282 (2002) 371.CrossRefGoogle Scholar
  35. 35.
    M.T.M. Koper, W. Schmickler, A Unified Model for Electron and Ion Transfer Reactions on Metal Electrodes, in: Frontiers of Electrochemistry, ed. by J. Lipkowski and P.N. Ross, VCH Publishers (1998).Google Scholar
  36. 36.
    N. Tao, Phys. Rev. Lett. 76 (1996) 4066.CrossRefGoogle Scholar
  37. 37.
    W. Schmickler, N. Tao, Electrochim. Acta 42 (1997) 2809.Google Scholar
  38. 38.
    E, Tran, M.A. Rampi, G.M. Whitesides, Angew. Chem. Int. Ed. 43 (2004) 3835.CrossRefGoogle Scholar
  39. 39.
    M.L. Chabinyc, X. Chen, R.E. Holmlin, H.O. Jacobs, H. Skulason, C. D. Frisbie, V. Mujica, M.A. Ratner, M. A., Rampi, G.M. Whitesides, J. Am. Chem. Soc. 124 (2002) 11730.CrossRefGoogle Scholar
  40. 40.
    C. Grave, E. Tran, P. Samor, G. M. Whitesides, and M. A. Rampi, Synthetic Metals 147 (2004) 11.CrossRefGoogle Scholar
  41. 41.
    W. Schmickler, Chem. Phys. 289 (2003) 349.CrossRefGoogle Scholar
  42. 42.
    Surface Science 573 (2004).Google Scholar
  43. 43.
    Surface Science 597 (2005).Google Scholar
  44. 44.
    Z. Li, B. Han, L.J. Wan, T. Wandlowski, Langmuir 21 (2005) 6915.CrossRefGoogle Scholar
  45. 45.
    D. M. Kolb, G. E. Engelmann, J. C. Ziegler, Angewandte Chemie, Int. Ed. 39 (2000) 1123.CrossRefGoogle Scholar
  46. 46.
    H. Ibach, W. Schmickler, Phys. Rev. Lett., 91 (2003) 016106.CrossRefGoogle Scholar
  47. 47.
    M. Giesen, H. Ibach, W. Schmickler, Surf. Sci. 573 (2004) 24.CrossRefGoogle Scholar
  48. 48.
    M. Giesen Progr. Surf. Sci. 68 1 (2001).CrossRefGoogle Scholar
  49. 49.
    E. Leiva, P. Vélez, C. Sanchez, W. Schmickler, subm. to Phys. Rev. B74 (2006) 035422.Google Scholar
  50. 50.
    M.G. Del Pópolo, PhD. Thesis, Facultad de Ciencias Químicas de la Universidad Nacional de Córdoba (2002).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Universidad Nacional de Córdoba, Unidad de Matemática y Física, Facultad de Ciencias Químicas, INFIQCCórdobaArgentina
  2. 2.Department of Theoretical ChemistryUniversity of UlmUlmGermany

Personalised recommendations