Microbiological Controls on Geochemical Kinetics 2: Case Study on Microbial Oxidation of Metal Sulfide Minerals and Future Prospects

  • Eric E. Roden

Sulfide minerals are components of magmatic, igneous, and sedimentary rocks, as well as hydrothermal deposits (ore bodies). They are exploited economically as sources of sulfuric acid and metals, such as Co, Cu, Au, Ni, and Zn that are present either as discrete sulfide phases (e.g., CuS, Gu2S, NiS, ZnS) or coprecipitates with major iron-sulfide phases such as FeS2 (e.g., chalcopyrite, CuFeS2). However, in many situations, sulfide minerals (in particular FeS2, the most abundant sulfide phase in most mineral deposits) are waste (“gangue”) phases associated with mining and metallurgical operations. Exposure of these phases to atmospheric O2 during and after such operations causes acid mine/acid rock drainage (referred to hereafter simply as acid mine drainage or AMD; see Table 9.1 for a list of abbreviations), an environmental problem of major environmental concern (Evangelou and Zhang, 1995). A vast amount of research has been conducted on the mechanisms and controls on sulfide mineral oxidation for the purposes of (i) understanding and predicting environmental risk associated with AMD; (ii) understanding sulfur and metal cycling associated with natural sulfide mineral weathering; and (iii) optimizing commercial recovery of metals from low-grade ores and wastes. Microorganisms play a pivotal role in sulfide mineral oxidation, and this phenomenon represents another premier example of how microbial activity exerts fundamental control on water—rock interaction phenomena.


Extracellular Polymeric Substance Acid Mine Drainage Mineral Surface Mineral Dissolution Acidithiobacillus Ferrooxidans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilera D. R., Jourabchi P., Spiteri C., and Regnier P. (2005) A knowledge-based reactive transport approach for the simulation of biogeochemical dynamics in Earth systems. Geochem. Geophys. Geosys. 6, Art. No. Q07012 JUL 27 2005.Google Scholar
  2. Arredondo R., Garcia A., and Jerez C. A. (1994) Partial removal of lipopolysaccharide from Thiobacillus ferrooxidans affects it adhesion to solids. Appl. Environ. Microbiol. 60, 2846-2851.Google Scholar
  3. Baker B. J. and Banfield J. F. (2003) Microbial communities in acid mine drainage. FEMS Microb. Ecol. 44, 139-152.Google Scholar
  4. Banfield J. F., Tyson G. W., Allen E. A., and Whitaker R. J. (2005) The search for a molecular-level understanding of processes that underpin Earth’s biogeo-chemical cycles. In Molecular Geomicrobiology, Vol. 59 (eds. J. F. Banfield, J. Cervini-Silva, and K. H. Nealson), pp. 1-7. Mineralogical Society of America, Washington DC.Google Scholar
  5. Bennet J. C. and Tributsch H. (1978) Bacterial leaching patterns on pyrite crystal surface. J. Bacteriol. 134, 310-326.Google Scholar
  6. Bevilaqua D., Leite A. L. L. C., Garcia O., and Tuovinen O. H. (2002) Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks. Process. Biochem. 38, 587-592.Google Scholar
  7. Bigman J. M., Schwertmann U., Carlson L., and Murad E. (1990) A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochim. Cosmochim. Acta 54, 2743-2758.Google Scholar
  8. Blake R. and Johnson D. B. (2000) Phylogenetic and biochemical diversity among acidophilic bacteria that respire on iron. In Environmental metal-microbe inter-actions (ed. D. R. Lovley), pp. 53-78. ASM Press, Washington DC.Google Scholar
  9. Blake R. C., Sasaki K., and Ohmura N. (2001) Does aporusticyanin mediate the adhesion of Thiobacillus ferrooxidans to pyrite? Hydrometallurgy 59, 357-372.Google Scholar
  10. Blake R. C., Shute E. A., and Howard G. T. (1994) Solubilization of minerals by bacteria: Electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite, and sulfur. Appl. Environ. Microbiol. 60, 3349-3357.Google Scholar
  11. Blake R. C., Shute E. A., Greenwood M. M., Spencer G. H., and Ingledew W. J. (1993) Enzymes of aerobic respiration on iron. FEMS Microbiol. Rev. 11, 9-18.Google Scholar
  12. Bond P. L., Druschel G. K., and Banfield J. F. (2000a) Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosys-tems. Appl. Environ. Microbiol. 66, 4962-4971.Google Scholar
  13. Bond P. L., Smriga S. P., and Banfield J. F. (2000b) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl. Environ. Microbiol. 66, 3842-3849.Google Scholar
  14. Boon M. and Heijnen J. J. (1998a) Chemical oxidation kinetics of pyrite in bioleaching processes. Hydrometallurgy 48, 27-41.Google Scholar
  15. Boon M. and Heijnen J. J. (1998b) Gas-liquid mass transfer phenomena in biooxidation experiments of sulphide minerals: A critical review of literature data. Hydrometallurgy 48, 187-204.Google Scholar
  16. Boon M., Brasser H. J., Hansford G. S., and Heijnen J. J. (1999) Comparison of the oxidation kinetics of different pyrites in the presence of Thiobacillus ferrooxidans or Leptospirillum ferrooxidans. Hydrometallurgy 53, 57-72.Google Scholar
  17. Boon M., Hansford G. S., and Heijnen J. J. (1995) The role of bacterial ferrous iron oxidation in the bio-oxidation of pyrite. In Biohydrometallurgical Processing, Volume 1 (eds. T. Vargas, C. A. Jerez, J. V. Wiertz, and H. Toledo), pp. 153-163. University of Chile, Santiago, Chile.Google Scholar
  18. Boon M., Meeder T. A., Thone C., Ras C., and Heijnen J. J. (1998a) The ferrous iron oxidation kinetics of Thiobacillus ferrooxidans in continuous cultures. Appl. Microbiol. Biotechnol. 51, 820-826.Google Scholar
  19. Boon M., Ras C., and Heijnen J. J. (1998b) The ferrous iron oxidation kinetics of Thiobacillus ferrooxidans in batch cultures. Appl. Microbiol. Biotechnol. 51, 813-819.Google Scholar
  20. Boudreau B. P. (1997) Diagenetic Models and Their Implementation. Springer, Berlin.Google Scholar
  21. Braddock J. F., Luong H. V., and Brown E. J. (1984) Growth kinetics of Thiobacillus ferrooxidans isolated from arsenic mine drainage. Appl. Environ. Microbiol. 48, 48-55.Google Scholar
  22. Brown P. N., Byrne G. D., and Hindmarsh A. C. (1989) VODE: A variable-coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10, 1038-1051.Google Scholar
  23. Chandraprabha M. N., Modak J. M., Natarajan K. A., and Raichur A. M. (2003) Modeling and analysis of biooxidation of gold bearing pyrite-arsenopyrite con-centrates by Thiobacillus ferrooxidans. Biotechnol. Prog. 19, 1244-1254.Google Scholar
  24. Chin K.-J., Esteve-Nunez A., Leang C., and Lovley D. R. (2004) Direct correlation between rates of anaerobic respiration and levels of mRNA for key respiratory genes in Geobacter sulfurreducens. Appl. Environ. Microbiol. 70, 5183-5189.Google Scholar
  25. Clark D. A. and Norris P. R. (1996) Acidimicrobium ferrooxidans gen. nov. sp. nov. mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142, 785-790.Google Scholar
  26. Coram N. J. and Rawlings D. E. (2002) Molecular relationships between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 C. Appl. Environ. Microbiol. 68, 838-845.Google Scholar
  27. Covert M. W. and Palsson B. O. (2002) Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J. Biol. Chem. 277, 28058-28064.Google Scholar
  28. Croal L. R., Gralnick J. A., Malasarn D., and Newman D. K. (2004) The genetics of geochemistry. Annu. Rev. Genet. 38, 175-202.Google Scholar
  29. Crundwell F. (1996) The formation of biofilms of iron-oxidizing bacteria on pyrite. Miner. Engin. 9, 1081-1089.Google Scholar
  30. Crundwell F. K. (1988) The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals. Hydrometallurgy 21.Google Scholar
  31. Crundwell F. K. (1994) Mathematical modeling of batch and continuous bacterial leaching. Chem. Eng. Biochem. Eng. J. 54, 207-220.Google Scholar
  32. Crundwell F. K. (1997) Physical chemistry of bacterial leaching. In Biomining (ed. D. E. Rawlings), pp. 177-200. Springer-Verlag, Berlin Heidelberg, Germany.Google Scholar
  33. Curutchet G., Pogliani C., and Donati E. (1995) Indirect bioleaching of covellite by Thiobacillus thiooxidans with an oxidant agent. Biotechnol. Lett. 17, 1251-1256.Google Scholar
  34. Curutchet G., Tedesco P., and Donati E. (1996) Combined degradation of covellite by Thiobacillus ferroxidans and Thiobacillus thiooxidans. Biotechnol. Lett. 18, 1471-1476.Google Scholar
  35. DeLong E. F. (2004) Microbial population genomics and ecology: The road ahead. Environ. Microbiol. 6, 875-878.Google Scholar
  36. Devasia P., Natarajan K. A., Sathyanarayana D. N., and Rao G. R. (1993) Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surfaces. Appl. Environ. Microbiol. 59, 4051-4055.Google Scholar
  37. DeWulf-Durand P., Bryant L. J., and Sly L. I. (1997) PCR-mediated detection of acidophilic, bioleaching-associated bacteria. Appl. Environ. Microbiol. 62, 2944-2948.Google Scholar
  38. Donati E., Curutchet G., Pogliani C., and Tedesco P. (1996) Bioleaching of covellite using pure and mixed cultures of Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Proc. Biochem. 31, 129-134.Google Scholar
  39. Dopson M. and Lindstrom E. B. (1999) Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl. Environ. Microbiol.Google Scholar
  40. Druschel G. K., Baker B. J., Gihring T. M., and Banfield J. F. (2004) Acid mine drainage biogeochemistry at Iron Mountain, California. Geochemical Transactions 5, 13-32.Google Scholar
  41. Dzombak D. A. and Morel F. M. M. (1990) Surface Complexation Modeling: Hydrous Ferric Oxide. John Wiley & Sons, NY.Google Scholar
  42. Edwards J. S., Covert M., and Palsson B. (2002) Metabolic modelling of microbes: The flux-balance approach. Environ. Microbiol. 4, 133-140.Google Scholar
  43. Edwards K. J. and Rutenberg A. D. (2001) Microbial response to surface microtopography: The role of metabolism in localized mineral dissolution. Chem. Geol. 180,19-32.Google Scholar
  44. Edwards K. J., Bond P. L., and Banfield J. F. (2000a) Characteristics of attachment and growth of Thiobacillus caldus on sulphide minerals: A chemotactic response to sulphur minerals? Environ. Microbiol. 2, 324-332.Google Scholar
  45. Edwards K. J., Bond P. L., Druschel G. K., McGuire M. M., Hamers R. J., and Banfield J. F. (2001a) Geochemical and biological aspects of sulfide mineral dis-solution: Lessons from Iron Mountain, California. Chem. Geol. 169, 383-397.Google Scholar
  46. Edwards K. J., Bond P. L., Gihring T. M., and Banfield J. F. (2000b) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287, 1701-1876.Google Scholar
  47. Edwards K. J., Goebel B. M., Rogers T. M., Schrenk M. O., Gihring T. M., Car-dona M. M., Hu B., McGuire M. M., Hamers R. J., Pace N. R., and Banfield J. F. (1999) Geomicrobiology of pyrite (FeS2 ) dissolution: Case study at Iron Mountain, California. Geomicrobiol. J. 16, 155-179.Google Scholar
  48. Edwards K. J., Hu B., Hamers R. J., and Banfield J. F. (2001b) A new look at micro-bial leaching patterns on sulfide minerals. FEMS Microbial Ecology 34, 197-206.Google Scholar
  49. Edwards K. J., Schrenk M. O., Hamers R. J., and Banfield J. F. (1998) Microbial oxidation of pyrite: Experiments using microorganisms from an extreme acid environment. Am. Min. 83, 1444-1453.Google Scholar
  50. Ehrlich H. L. (2002) Geomicrobiology. Marcel Dekker, NY.Google Scholar
  51. Espejo R. and Ruiz P. (1987) Growth of free and attached Thiobacillus ferrooxidans in ore suspension. Biotechnol. Bioengin. 30, 586-592.Google Scholar
  52. Evangelou V. P. and Zhang Y. L. (1995) A review: Pyrite oxidation mechanisms and acid mine drainage prevention. Crit Rev Environ Sci Technol 25, 141-199.Google Scholar
  53. Falco L., Pogliani C., Curutchet G., and Donati E. (2003) A comparison of bi-oleaching of covellite using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a mixed culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy 71, 31-36.Google Scholar
  54. Fang Y., Yeh G. T., and Burgos W. D. (2003) A general paradigm to model reaction-based biogeochemical processes in batch systems. Wat. Resour. Res. 39, 1083-1108.Google Scholar
  55. Fernandez M. G. M., Mustin C., Dedonato P., Barres O., Marion P., and Berthelin J. (1995) Occurrences at mineral bacteria interface during oxidation of arsenopyrite by Thiobacillus Ferrooxidans. Biotechnology and Bioengineering 46, 13-21.Google Scholar
  56. Fowler T. A. and Crundwell F. K. (1998) Leaching of zinc sulfide by Thiobacillus ferrooxidans: Experiments with a controlled redox potential indicate no direct bacterial mechanism. Appl. Environ. Microbiol. 64, 3570-3575.Google Scholar
  57. Fowler T. A. and Crundwell F. K. (1999) Leaching of zinc sulfide by Thiobacillus ferrooxidans: Bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous iron. Appl. Environ. Microbiol. 65, 5285-5292.Google Scholar
  58. Fowler T. A., Holmes P. R., and Crundwell F. K. (1999) Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 65, 2987-2993.Google Scholar
  59. Fowler T. A., Holmes P. R., and Crundwell F. K. (2001) On the kinetics and mechanism of the dissolution of pyrite in the presence of Thiobacillus ferooxidans. Hydrometallurgy 59, 257-270.Google Scholar
  60. Garcia O., Bigham J. M., and Tuovinen O. H. (1995a) Oxidation of galena by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian J. Microbiology 41, 508-514.Google Scholar
  61. Garcia O., Bigham J. M., and Tuovinen O. H. (1995b) Sphalerite oxidation by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Can. J. Microbiol. 41, 578-584.Google Scholar
  62. Gehrke T., Hallmann R., and Sand W. (1995) Importance of exopolymers from Thiobacillus ferrooxidans and Leptospirillum ferrooxidans for bioleaching. In Biohydrometallurgical Processing, Volume 1 (eds. T. Vargas, C. A. Jerez, J. V. Wiertz, and H. Toledo), pp. 1-11. University of Chile, Santiago, Chile.Google Scholar
  63. Gehrke T., Telegdi J., Thierry D., and Sand W. (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl. Environ. Microbiol. 64, 2743-2747.Google Scholar
  64. Grundl T. and Delwiche J. (1993) Kinetics of ferric oxyhydroxide precipitation. J. Contam. Hydrol 14, 71-97.Google Scholar
  65. Hallmann R., Friedrich A., Koops H. P., Pommereningroser A., Rohde K., Zenneck C., and Sand W. (1992) Physiological-characteristics of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans and physicochemical factors influ-ence microbial metal leaching. Geomicrobiol. J. 10, 193-206.Google Scholar
  66. Handelsman J. (2004) Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669-685.Google Scholar
  67. Hansford G. S. (1997) Recent developments in modeling the kinetics of bioleaching. In Biomining (ed. D. E. Rawlings), pp. 153-175. Springer-Verlag, Heidelberg NY.Google Scholar
  68. Hansford G. S. and Chapman J. T. (1992) Batch and continuous biooxidation kinetics of a refractory gold-bearing pyrite concentrate. Miner. Eng. 6, 597-612.Google Scholar
  69. Hansford G. S. and Drossou M. (1988) A propogating-pore model for the batch bioleach kinetics of refractor gold-bearing pyrite. In Biohydrometallurgy: Proceedings of the 1987 International Symposium (eds. P. R. Norris and D. P. Kelly), pp. 345-358. Kew: Science and Technology Letters.Google Scholar
  70. Hart A., Murrell J. C., Poole R. K., and Norris P. R. (1991) An acid-stable cytochrome in iIron-oxidizing Leptospirillum ferrooxidans. FEMS Microbiol. Lett. 81,89-94.Google Scholar
  71. Hoff K. A. (1993) Total and specific bacterial counts by simultaneous staining with DAPI and fluorochrome-labeled antibodies. In Handbook of Methods in Aquatic Microbial Ecology (eds. P. F. Kemp, B. F. Sherr, and E. B. Cole). Lewis Publishers, Boca Raton, FL.Google Scholar
  72. Holmes D. E., Nevin K. P., and Lovley D. R. (2004) In situ expression of nifD in Geobacteraceae in subsurface sediments. Appl. Environ. Microbiol. 70, 7251-7259.Google Scholar
  73. Holmes D. E., Nevin K. P., O’Neil R. A., Ward J. E., Adams L. A., Woodard T. L., Vrionis H. A., and Lovley D. R. (2005) Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes. Appl. Environ. Microbiol. 71,6870-6877.Google Scholar
  74. Holmes P. R. and Crundwell F. K. (2000) The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: An electrochemical study. Geochim. Cosmochim. Acta 64, 263-274.Google Scholar
  75. Holmes P. R., Fowler T. A., and Crundwell F. K. (1999) The mechanism of bacterial action in the leaching of pyrite by Thiobacillus ferrooxidans: An electrochemical study. J. Electrochem. Soc. 146, 2906-2912.Google Scholar
  76. Hunter K. S., Wang Y., and VanCappellen P. (1998) Kinetic modeling of microbially - driven redox chemistry of subsurface environments: Coupling transport, microbial metabolism and geochemistry. J. Hydrol. 209, 53-80.Google Scholar
  77. Islam J. and Singhal N. (2002) A one-dimensional reactive multi-component landfill leachate transport model. Environ. Model. Softw. 17, 531-543.Google Scholar
  78. Jackson B. E. and McInerney M. J. (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415, 454-456.Google Scholar
  79. Jin Q. and Bethke C. M. (2003) A new rate law describing microbial respiration. Appl. Environ. Microbiol. 69, 2340-2348.Google Scholar
  80. Johnson D. B. (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol. Ecol. 27, 307-317.Google Scholar
  81. Johnson D. B. and Roberto F. R. (1997) Heterotrophic acidophiles and their roles in the bioleaching of sulfide minerals. In Biomining (ed. D. E. Rawlings), pp. 259-279. Springer-Verlag, Heidelberg, NY.Google Scholar
  82. Jones C. A. and Kelly D. P. (1983) Growth of Thiobacillus ferroxidans on ferrous iron in chemostat culture: Influence of product and substrate inhibition. J. Chem. Technol. Biotechnol. 33B, 241-261.Google Scholar
  83. Kelly D. P. and Jones C. A. (1978) Factors affecting metabolism and ferrous iron oxidation in suspensions and batch cultures of Thiobacillus ferroxidans: Rele-vance to ferric iron leach solution regeneration. In Metallurgical applications of bacterial leaching and related microbiological phenomena (eds. L. E. Murr, A. E. Torma, and J. A. Brierley), pp. 19-44. Academic Press, San Diego, CA.Google Scholar
  84. Kelly D. P. and Wood A. P. (2000) Re-classification of some species of Thiobacillus to the newly designated genera Acidthiobacillus gen. novl, Halothiobacillus gen. nov., and Thermithiobacillus gen. nov. Int. J. Syst. Evol. Microbiol. 50, 511-516.Google Scholar
  85. Kinzler K., Gehrke T., Telegdi J., and Sand W. (2003) Bioleaching—a result of inter-facial processes caused by extracellular polymeric substances (EPS). Hydrometallurgy 71, 83-88.Google Scholar
  86. Koch A. L. (1991) Diffusion: The crucial process in many aspects of the biology of bacteria. Adv. Microb. Ecol. 11: 37-70.Google Scholar
  87. Konishi Y., Asai S., and Sakai H. K. (1990) Bacterial dissolution of pyrite by Thiobacillus ferrooxidans. Bioprocess Eng. 5, 5-17.Google Scholar
  88. Krautle S. and Knabner P. (2005) A new numerical reduction scheme for fully coupled multicomponent transport-reaction problems in porous media. Wat. Resour. Res. 41, Art. No. W09414 SEP 20 2005.Google Scholar
  89. Lovley D. R. (2003) Cleaning up with genomics: Applying molecular biology to bioremediation. Nat. Rev. Micro. 1, 35-44.Google Scholar
  90. Lu L., Wang R. C., Xue J. Y., Chen F. R., and Chen J. (2005) Dependence of reaction rate of pyrite oxidation on temperature, pH and oxidant concentration. Science in China Series D-Earth Sci. 48, 1690-1697.Google Scholar
  91. Macalady J. and Banfield J. F. (2003) Molecular geomicrobiology: Genes and geochemical cycling. Earth Planet. Sci. Lett. 209, 1-17.Google Scholar
  92. Madsen E. L. (2005) Identifying microorganisms responsible for ecologically sig-nificant biogeochemcial processes. Nat. Rev. Microbiol. 3, 439-446.Google Scholar
  93. Mahadevan R., Bond D. R., Butler J. E., Esteve-Núñez A., Coppi M. V., Palsson B. O., Schilling C. H., and Lovley D. R. (2006) Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl. Environ. Microbiol. 72, 1558-1568.Google Scholar
  94. Malasarn D., Saltikov C. W., Campbell K. M., Santini J. M., Hering J. G., and Newman D. K. (2004) arrA is a reliable marker for As(V) respiration. Science 306, 455.Google Scholar
  95. Maurer M. and Rittmann B. E. (2004) Modeling intrinsic bioremediation for inter-pret observable biogeochemical footprints of BTEX biodegradation: The need for fermentation and abiotic chemical processes. Biodegradation 15, 405-417.Google Scholar
  96. Mayer K. U., Frind E. O., and Blowes D. W. (2002) Multicomponent reactive trans-port modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Wat. Resour. Res. 38, Art. No. 1174 SEP 2002.Google Scholar
  97. McGuire M. M., Edwards K. J., Banfield J. F., and Hamers R. J. (2001a) Kinet-ics, surface chemistry, and structural evolution of microbially mediated sulfide mineral dissolution. Geochim. Cosmochim. Acta 65, 1243-1258.Google Scholar
  98. McGuire M. M., Jallad K. N., Ben-Amotz D., and Hamers R. J. (2001b) Chemi-cal mapping of elemental sulfur on pyrite and arsenopyrite surfaces using near-infrared Raman imaging microscopy. Appl. Surf. Sci. 178, 105-115.Google Scholar
  99. McKibben M. A. and Barnes H. L. (1986) Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures. Geochim. Cosmochim. Acta 50, 1509-1520.Google Scholar
  100. Meruane G., Salhe C., Wiertz J., and Vargas T. (2002) Novel electrochemical-enzymatic model which quantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans. Biotechnol. Bioeng. 80,280-288.Google Scholar
  101. Mielke R. E., Pace D. L., Porter T., and Southam G. (2003) A critical stage in the formation of acid mine drainage: Colonization of pyrite by Acidithiobacillus ferrooxidans under pH-neutral conditions. Geobiology 1, 81-90.Google Scholar
  102. Moses C. O., Nordstrom D. K., Herman J. S., and Mills A. L. (1987) Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geo. et Cos Acta 51, 1561-1571.Google Scholar
  103. Mustin C., Berthelin J., Marion P., and deDonato P. (1992a) Corrosion and electrochemical oxidation of a pyrite by Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 58, 1175-1182.Google Scholar
  104. Mustin C., DeDonato P., and Berthelin J. (1992b) Quantification of the intragranular porosity formed in bioleaching of pyrite by Thiobacillus ferrooxidans. Biotechnol. Bioeng. 39, 1121-1127.Google Scholar
  105. Mustin C., Dedonato P., and Berthelin J. (1992c) Quantification of the intragranular porosity formed in bioleaching of pyrite by Thiobacillus-Ferrooxidans. Biotechnol. Bioeng. 39, 1121-1127.Google Scholar
  106. Ndlovu S. and Monhemius A. J. (2005) The influence of crystal orientation on the bacterial dissolution of pyrite. Hydrometallurgy 78, 187-197.Google Scholar
  107. Nicholson R. V., Gillham R. W., and Rearson E. J. (1988) Pyrite oxidation in carbonate-buffered solution: I. Experimental kinetics. Geochim. Cosmochim. Acta 52, 1077-1085.Google Scholar
  108. Nordstrom D. K. and Southam G. (1997) Geomicrobiology of sulfide mineral ox-idation. In Geomicrobiology: Interactions between Microbes and Minerals, Vol. 35 (eds. J. F. Banfield and K. Nealson), pp. 361-382. Mineralogical Society of America, Washington DC.Google Scholar
  109. Norris P. R., Barr D. W., and Hinson D. (1988) Iron and mineral oxidation by aci-dophilic bacteria: Affinities for iron and attachment to pyrite. In Biohydrometal-lurgy: Proceedings of the 1987 International Symposium (eds. P. R. Norris and D. P. Kelly), pp. 43-59. Kew: Science and Technology Letters.Google Scholar
  110. Ohmura N., Kitamura K., and Saiki H. (1993) Selective adhesion of Thiobacillus ferrooxidans to pyrite. Appl. Environ. Microbiol. 59, 4044-4050.Google Scholar
  111. Okibe N. and Johnson D. B. (2004) Biooxidation of pyrite by defined mixed cul-tures of moderately thermophilic acidophiles in pH-controlled bioreactors: Sig-nificance of microbial interactions. Biotechnol. Bioeng. 87, 574-583.Google Scholar
  112. Oremland R. S., Capone D. G., Stolz J. F., and Fuhrman J. (2005) Whither or wither geomicrobiology in the era of ‘community metagenomics’. Nat. Rev. Micro. 3, 572-578.Google Scholar
  113. Pace D. L., Mielke R. E., Southam G., and Porter T. L. (2005) Scanning force microscopy studies of the colonization and growth of A. ferrooxidans on the surface of pyrite minerals. Scanning 27, 136-140.Google Scholar
  114. Parkhurst D. A. and Appelo C. A. (1999) User’s guide to PHREEQC (Version 2). Water-Resources Investigation Report 99-4259.Google Scholar
  115. Pearson C. E. (1968) On a differential equation of boundary layer type‘. J. Math. Phys. 47, 134-154.Google Scholar
  116. Peccia J., Marchand E. A., Silverstein J., and Hernandez M. (2000) Develop-ment and application of small-subunit rRNA probes for assessment of selected Thiobacillus species and members of the genus Acidiphilium. Appl. Environ. Microbiol. 66, 3065-3072.Google Scholar
  117. Phanikumar M. S. and McGuire J. T. (2004) A 3D partial-equilibrium model to simulate coupled hydrogeological, microbiological, and geochemical processes in subsurface systems. Geophys. Res. Lett. 31, Art. No. L11503 JUN 15 2004.Google Scholar
  118. Pizarro J., Jedlicki E., Orellana O., romero J., and Espejo R. T. (1996) Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation. Appl. Environ. Microbiol. 62, 1323-1328.Google Scholar
  119. Pogliani C. and Donati E. (1999) The role of exopolymers in the bioleaching of a non-ferrous metal sulphide. J. Indust. Microbiol. Biotechnol. 22, 88-92.Google Scholar
  120. Pogliani C. and Donati E. (2000) Enhancement of copper dissolution from a sulfide ore by using Thiobacillus thiooxidans. Geomicrobiol. J. 17, 35-42.Google Scholar
  121. Pogliani C., Curutchet G., Donati E., and Tedesco P. H. (1990) A need for direct contact with particle surfaces in the bacterial oxidation of covellite in the absence of a chemical lixiviant. Biotechnol. Lett. 12, 515-518.Google Scholar
  122. Pramanik J., Trelstad P. L., Schuler A. J., Jenkins D., and Keasling J. D. (1999) Development and validation of a flux-based stoichiometric model for enhanced biological phosphorus removal metabolism. Wat. Res. 33, 462-476.Google Scholar
  123. Press W. H., Teukolsky S. A., Vetterling W. T., and Flannery B. P. (1992) Numerical Recipes in FORTRAN. Cambridge University Press, Cambridge.Google Scholar
  124. Price N. D., Reed J. L., and Palsson B. O. (2004) Genome-scale models of microbial cells: Evaluating the consequences of constraints. Nat. Rev. Micro. 2, 886-897.Google Scholar
  125. Pronk J. T., Meulenberg R., Hazeu W., Bos P., and Kuenen J. G. (1990) Oxidation of reduced inorganic sulfur compounds by acidophilic thiobacilli. FEMS Microbiol. Rev. 75, 293-306.Google Scholar
  126. Ram R. J., VerBerkmoes N. C., Thelen M. P., Tyson G. W., Baker B. J., Blake R. C., Shah M., Hettich R. L., and Banfield J. F. (2005) Community proteomics of a natural microbial biofilm. Science 308, 1915-1920.Google Scholar
  127. Ramirez P., Guiliani N., Valenzuela L., Beard S., and Jerez C. A. (2004) Differen-tial protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl. Environ. Microbiol. 70, 4491-4498.Google Scholar
  128. Rawlings D. E. (2002) Heavy metal mining using microbes. Annu. Rev. Microbiol. 56,65-91.Google Scholar
  129. Rawlings D. E., Tributsch H., and Hansford G. S. (1999) Reasons why ‘Leptospir-illum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145, 5-13.Google Scholar
  130. Rawn J. D. (1983) Biochemistry. Harper and Row, NY.Google Scholar
  131. Regnier P., O’Kane J. P., Steefel C. I., and Vanderborght P. (2002) Modeling com-plex multi-component reactive-transport systems: Towards a simulation environ-ment based on the concept of a Knowledge Base. Appl. Math. Model. 26, 913-927.Google Scholar
  132. Rickard P. A. D. and Vanselow D. G. (1978) Investigations into the kinetics and stoichiometry of bacterial oxidation of covellite (CuS) using a polarographic oxygen probe. Can. J. Microbiol. 24, 998-1003.Google Scholar
  133. Rimstidt J. D. and Vaughan D. J. (2003) Pyrite oxidation: A state-of-the-art assess-ment of the reaction mechanism. Geochim. Cosmochim. Acta 67, 873-880.Google Scholar
  134. Rittmann B. E. and McCarty P. L. (2001) Environmental Biotechnology. McGraw-Hill, NY.Google Scholar
  135. Roden E. E., Fang Y., Scheibe T. D., Brooks S. C., and Burgos W. D. (2005) TEAPREVU: A numerical simulation model of Terminal Electron-Accepting Processes in a Representative Elementary Volume of Uranium-contaminated sub-surface sediment. Available at:∼eroden/Reports&OtherDocuments.html.
  136. Rodrieguez L. M. and Tributsch H. (1988) Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite. Arch. Microbiol 149, 401-405.Google Scholar
  137. Rodriguez Y., Ballester A., Blazquez M. L., Gonzalez F., and Munoz J. A. (2003) Study of bacterial attachment during the bioleaching of pyrite, chalcopyrite, and sphalerite. Geomicrobiol. J. 20, 131-141.Google Scholar
  138. Rohwerder T., Gehrke T., Kinzler K., and Sand W. (2003) Bioleaching review part A: Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation. Arch. Microbiol. Biotechnol. 63, 239-248.Google Scholar
  139. Rojas-Chapana J. A. and Tributsch H. (2004) Interfacial activity and leaching pat-terns of Leptospirillum ferrooxidans on pyrite. FEMS Microbiol. Ecol. 47, 19-29.Google Scholar
  140. Rojas-Chapana J. and Tributsch H. (2000) Bio-leaching of pyrite accelerated by cysteine. Process Biochem. 35, 815-824.Google Scholar
  141. Rojas-Chapana J. and Tributsch H. (2001) Biochemistry of sulfur extraction in bio-corrosion of pyrite by Thiobacillus ferrooxidans. Hydrometallurgy 59, 291-300.Google Scholar
  142. Rojas-Chapana J., Giersig M., and Tributsch H. (1995) Sulfur colloids as temporary energy reservoirs for Thiobacillus ferrooxidans during pyrite oxidation. Arch. Microbiol. 163, 256-352.Google Scholar
  143. Sakaguchi H., Torma A. E., and Silver M. (1976) Microbiological oxidation of synthetic chalcocite and covellite by Thiobacillus ferroxidans. Appl. Environ. Microbiol. 31, 7-10.Google Scholar
  144. Sand W., Gehrke T., Hallmann R., and Schippers A. (1995) Sulfur chemistry, biofilm, and the (in)direct attack mechanism—a critical evaluation of bacterial leaching. Appl. Environ. Microbiol. 43, 961-966.Google Scholar
  145. Sand W., Gehrke T., Jozsa P. G., and Schippers A. (2001) (Bio)chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometallurgy 59, 159-175.Google Scholar
  146. Sand W., Rohde K., Sobotke B., and Zenneck G. (1992) Evaluation of Leptospiril-lum ferrooxidans for leaching. Appl. Environ. Microbiol. 58, 85-92.Google Scholar
  147. Schecher W. D. and McAvoy D. C. (1998) MINEQL + A chemical equilibrium mod-eling system. Version 4.0 for Winders User’s Manual. Environmental Research Software.Google Scholar
  148. Scheibe T. D., Fang Y., Murray C. J., Roden E. E., Chen J., Chien Y. J., Brooks S. C., and Hubbard S. S. (2006) Transport and biogeochemical reaction of metals in a physically and chemically heterogeneous aquifer. Geosphere 2, 220-235.Google Scholar
  149. Schiesser W. E. (1991) The Numerical Method of Lines. Academic Press, San Diego, CA.Google Scholar
  150. Schilling C. H., Edwards J. S., and Palsson B. O. (1999) Toward metabolic phe-nomics: Analysis of genomic data using flux balances. Biotechnol. Prog. 15, 288-295.Google Scholar
  151. Schink B. (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61, 262-280.Google Scholar
  152. Schippers A. and Sand W. (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl. Environ. Microbiol. 65, 319-321.Google Scholar
  153. Schippers A., Jozsa P. G., and Sand W. (1996) Sulfur chemistry in bacterial leaching of pyrite. Appl. Environ. Microbiol. 62, 3424-3431.Google Scholar
  154. Schrenk M. O., Edwards K. J., Goodman R. M., Hamers R. J., and Banfield J. F. (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxi-dans: Implications for generation of acid mine drainage. Science 279, 1519-1522.Google Scholar
  155. Shubert B. and Tributsch H. (1990) Photoinduced electron transfer by coordination chemical pathways across pyrite/electrolyte interfaces. Inorg. Chem. 29, 5041-5046.Google Scholar
  156. Silverman M. P. and Ehrlich H. L. (1964) Microbial formation and degradation of minerals. Adv. Appl. Microbiol. 6, 153-206.Google Scholar
  157. Singer P. C. and Stumm W. (1972) Acid mine drainage—the rate limiting step. Science 167, 1121-1123.Google Scholar
  158. Steefel C. I. and Lasaga A. C. (1994) A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am. J. Sci. 294, 529-592.Google Scholar
  159. Steefel C. I. and MacQuarrie K. T. B. (1996) Approaches to modeling of reactive transport in porous media. In Reactive transport in porous media, Vol. 34 (eds. P. C. Lichtner, C. I. Steefel, and E. H. Oelkers), pp. 83-129. Mineralogical Society of America, Washington DC.Google Scholar
  160. Steefel C. I. and VanCappellen P. (1998) Reactive transport modeling of natural systems. J. Hydrol. 209, 1-7.Google Scholar
  161. Stuedel R. (1996) Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes. Ind. Eng. Chem. Res. 35, 1417-1423.Google Scholar
  162. Thullner M., Van Cappellen P., and Regnier P. (2005) Modeling the impact of microbial activity on redox dynamics in porous media. Geochim. Cosmochim. Acta 69,5005-5019.Google Scholar
  163. Ting Y. P., Senthil-Kumar A., Rahman M., and Chia B. K. (2000) Innovative use of Thiobacillus ferrooxidans for biological machining of metals. Acta Biotechnol. 20,87-96.Google Scholar
  164. Torma A. E. and Sakaguchi H. (1978) Relation between the solubility product and the rate of metal sulfide oxidation by Thiobacillus ferroxidans. J. Ferment. Technol. 56, 173-178.Google Scholar
  165. Tributsch H. (2001) Direct versus indirect bioleaching. Hydrometallurgy 59, 177-185.Google Scholar
  166. Tributsch H. and Bennett J. C. (1981a) Semiconductor-electrochemical aspects of bacterial leaching. I. Oxidation of metal sulphides with large energy gaps. J. Chem. Technol. Biotechnol. 32, 565-577.Google Scholar
  167. Tributsch H. and Bennett J. C. (1981b) Semiconductor-electrochemical aspects of bacterial leaching. II. Survey of rate-controlling sulphide properties. J. Chem. Technol. Biotechnol. 32, 627-635.Google Scholar
  168. Tyson G. W. and Banfield J. F. (2005) Cultivating the uncultivated: A community genomics perspective. Trends Microbiol. 13, 411-415.Google Scholar
  169. Tyson G. W., Chapman J., Hugenholtz P., Allen E. E., Ram R. J., Richardson P. M., Solovyev V. V., Rubin E. M., Rokhsar D. S., and Banfield J. F. (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37-43.Google Scholar
  170. Tyson G. W., Lo I., Baker B. J., Allen E. E., Hugenholtz P., and Banfield J. F. (2005) Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotro-phum sp nov from an acidophilic microbial community. Appl. Environ. Microbiol. 71,6319-6324.Google Scholar
  171. Urrutia M. M. (1997) General bacterial sorption processes. In Biosorbents for Metal Ions (eds. J. D. A. Wase and C. Forster), pp. 39-66. Taylor & Francis, London, UK.Google Scholar
  172. vanScherpenzeel D. A., Boon M., Ras C., Hansford G. S., and Heijnen J. J. (1998) Kinetics of ferrous iron oxidation by Leptospirillum bacteria in continuous culture. Biotechnol. Prog. 14, 425-433.Google Scholar
  173. Varma A. and Palsson B. O. (1994a) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 60, 3724-3731.Google Scholar
  174. Varma A. and Palsson B. O. (1994b) Metabolic flux balancing: Basic concepts, scientific and practical use. Bio-Technology 12, 994-998.Google Scholar
  175. Vasquez M. and Espejo R. T. (1997) Chemolithotrophic bacteria in copper ores leached at high sulfuric acid concentration. Appl. Environ. Microbiol 63, 332-334.Google Scholar
  176. Watson I. A., Oswald S. E., Banwart S. A., Crouch R. S., and Thornton S. F. (2005) Modeling the dynamics of fermentation and respiratory processes in a ground-water plume of phenolic contaminants interpreted from laboratory-to field-scale. Environ. Sci. Technol. 39, 8829-8839.Google Scholar
  177. Watson I. A., Oswald S. E., Mayer R. U., Wu Y., and Banwart S. A. (2003) Modeling kinetic processes controlling hydrogen and acetate concentrations in an aquiferderived microcosm. Environ. Sci. Technol. 37, 3910-3919.Google Scholar
  178. Westall J. C. (1986) MICROQL I. A chemical equilibrium program in BASIC. Re-port 86-02, Department of Chemistry, Oregon State University, Corvallis, OR.Google Scholar
  179. Whitaker R. J. and Banfield J. F. (2005) Population dynamics through the lens of extreme environments. In Molecular Geomicrobiology, Vol. 59 (eds. J. F. Banfield, J. Cervini-Silva, and K. H. Nealson), pp. 259-277. Mineralogical Society of America, Washington DC.Google Scholar
  180. Williamson M. A. and Rimstidt J. D. (1994) The kinetics and electrochemical ratedetermining step of aqueous pyrite oxidation. Geochim. Cosmochim. Acta 58, 5443-5454.Google Scholar
  181. Wirtz K. A. (2003) Control of biogeochemical cycling by mobility and metabolic strategies of microbes in sediments: An integrated model study. FEMS Microbiol. Ecol. 46, 295-306.Google Scholar
  182. Yarzabal A., Brasseur G., and Bonnefoy V. (2002a) Cytochromes c of Acidithiobacillus ferrooxidans. FEMS Microbiol. Lett. 209, 189-195.Google Scholar
  183. Yarzabal A., Brasseur G., Ratouchniak J., Lund K., Lemesle-Meunier D., DeMoss J. A., and Bonnefoy V. (2002b) The high-molecular-weight cytochrome c Cyc2 of of Acidithiobacillus ferrooxidans is an outer membrane protein. FEMS Microbiol. Lett. 209, 189-195.Google Scholar
  184. Yeh G. T., Iskra G., Zachara J. M., and Szecsody J. E. (1998) Development and verification of a mixed chemical kinetic and equilibrium model. Adv. Environ. Res. 2, 24-56.Google Scholar
  185. Yeh G. T., Burgos W. D., and Zachara J. M. (2001) Modeling and measuring biogeochemical reactions: System consistency, data needs, and rate formulations. Adv. Environ. Res. 5, 219-237.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Eric E. Roden
    • 1
  1. 1.Department of Geology and GeophysicsUniversity of WisconsinUSA

Personalised recommendations