Nucleation, Growth, and Aggregation of Mineral Phases: Mechanisms and Kinetic Controls

  • Liane G. Benning
  • Glenn A. Waychunas

The formation of any phase, whether natural or synthetic (Fig. 7.1), is usually a disequilibrium process that follows a series of steps until a thermodynamically stable state (equilibrium) is achieved. The first step in the process of creating a new solid phase from a supersaturated solution (either aqueous or solid) is called nucleation. A particle formed by the event of nucleation usually has a poorly ordered and often highly hydrated structure. This particle is metastable with respect to ordering into a well-defined phase, which can accompany growth of the particle. This process of initiation of a new phase is defined as a first order transition and can follow various pathways involving a host of mechanisms. One of these pathways occurs when individual nuclei coalesce into larger clusters, a process defined as aggregation, which itself can follow a series of different pathways. The new phase is thermodynamically defined when the growing nucleus or aggregate has distinct properties relative to its host matrix; for example, a well-defined crystal structure, composition and/or density. These processes depend on a plethora of chemical and physical parameters that control and strongly affect the formation of new nuclei, the growth of a new crystal, or the aggregation behavior of clusters, and it is these issues that will be the focus of this chapter. We will discuss the mechanisms and rates of each process as well as the methods of quantification or modeling from the point of view of existing theoretical understanding. Each step will be illustrated with natural examples or laboratory experimental quantifications. Complementary to the information in this chapter, a detailed analysis of the mechanisms and processes that govern dissolution of a phase are discussed in detail in Chap. 5 and more detailed information about molecular modeling approaches are outlined in Chap. 2.


Free Energy Nucleation Rate Heterogeneous Nucleation Screw Dislocation Pair Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avrami M. (1941) Kinetics of phase change III. J. Chem. Phys. 9, 177-184.Google Scholar
  2. Badro J., Gillet P., McMillan P. F., Polian A., and Itie J. - P. (1997) A combined XAS and XRD study of the high-pressure behavior of GaAsO4 berlinite. Europhys. Lett. 40, 533-538.Google Scholar
  3. Bailey J. K. and Macartney M. L. (1992) Formation of colloidal silica particles from alkoxides. Coll. Surf. 63(1-2), 151-161.Google Scholar
  4. Ball R. C., Weitz D. A., Witten T. A., and Leyvraz F. (1987) Universal kinetics in reaction-limited aggregation. Phys. Rev. Lett. 58, 274-277.Google Scholar
  5. Bandura A. V., Sykes D., Shapovalov V., Truong T. N., and Kubicki J. D. (2004) Adsorption of water on the TiO2 (rutile) [110] surface: A DFT study. J. Phys. Chem. B 108, 7844-7853.Google Scholar
  6. Banfield J. F. and Zhang H. (2001) Nanoparticles in the environment, In Revs. in Miner. & Geochem. 44, 1-58. Mineralogical Society of America, Washington, DC.Google Scholar
  7. Barabasi A. L. and Stanley H. E. (1995) Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge.Google Scholar
  8. Bassett W. A., Anderson A. J., Mayanovic R. A., and Chou I. M. (2000) Modified hydrothermal diamond anvil cells for XAFS analyses of elements with low energy absorption edges in aqueous solution at sub-and supercritical conditions. Zeit. Krist. 215,711-717.Google Scholar
  9. Beale A. M., van der Eerden A. M. J., Jacques S. D. M., Leynaud O., O’Brien M. G., Meneau F., Nikitenko S., Bras W., and Weckhuysen, B. M. (2006) A combined SAXS/WAXS/XAFS setup capable of observing concurrent changes across the nano-to-micrometer size range in inorganic solid crystallization processes. J. Am. Chem. Soc. 128, 12386-12387.Google Scholar
  10. Becker R. and Doring W. (1935) Kinetische behandlung der keimbildung in übers ättigten dampfen. Ann. Phys. 24, 719-752 (in German).Google Scholar
  11. Beelen T. P. M., Shi W., Morrison G. R., Van Garderen H. F., Browne M. T., Van Santen R. A., and Pantos E. (1997) Scanning transmission x-ray microscopy; a new method for the investigation of aggregation in silica. J. Coll. Interface Sci. 185,217-227.Google Scholar
  12. Benning L. G., Phoenix V., Yee N., and Tobin M. J. (2004a) Molecular characterization of cyanobacterial cells (I): a synchrotron-based infrared study. Geochim. Cosmochim. Acta 68, 743-757.Google Scholar
  13. Benning L. G., Phoenix V. R., Yee N., and Konhauser K. O. (2004b) The dynamics of cyanobacterial silicification: an infrared micro-spectroscopic investigation. Geochim. Cosmochim. Acta. 68, 729-741.Google Scholar
  14. Benning L. G., Phoenix V., and Mountain B. W. (2005): Biosilicification: the role of cyanobacteria in silica sinter deposition. In Society of General Microbiology Symposium book Micro-Organisms and Earth Systems - Advances in Geomicro-biology (Eds. G. M. Gadd, K. T. Semple and H. M. Lappin-Scott), pp. 131-150.Google Scholar
  15. Binks B. P. (Ed.) (1999) Modern Characterization Methods of Surfactant Systems. Surfactant Science Series, Vol. 83. Marcel Dekker, New York, Basel. 616 pp.Google Scholar
  16. Boukari H., Lin J. S., and Harris M. T. (1997) Probing the dynamics of the silica nanostructure formation and growth by SAXS. Chem. Mater. 9, 2376-2384.Google Scholar
  17. Bras W., Derbyshire G. E., Ryan A. J., Mant G. R., Felton A., Lewis R. A., Hall C. J., and Greaves G. N. (1993) Simultaneous time resolved SAXS and WAXS experiments using synchrotron radiation. Nucl. Instr. Methods Phys. Res. A 326, 587-591.Google Scholar
  18. Bras W. and Ryan A. J. (1998) Sample environments and techniques combined with small angle x-ray scattering. Adv. Coll. Interface Sci. 75, 1-43.Google Scholar
  19. Bras W., Greaves G. N., Oversluizen M., Clark S. M., and Eeckhaut G. (2005) The development of monodispersed alumino-chromate spinel nanoparticles in doped cordierite glass, studied by in situ x-ray small and wide angle scattering, and chromium x-ray spectroscopy. J. Non-Cryst. Solids 351, 2178-2193.Google Scholar
  20. Brown G. E. and Sturchio N. C. (2002) An overview of synchrotron radiation appli-cations to low temperature geochemistry and environmental science. Rev. Mineral 49,1-116.Google Scholar
  21. Brown G. E., Calas G., Waychunas G. A., and Petiau J. (1988) X-Ray absorption spectroscopy: Applications in mineralogy and geochemistry. Rev. Mineral. 18, 431-512.Google Scholar
  22. Brydson R. (2001) Electron energy loss spectroscopy. Springer, New York, 160 pp.Google Scholar
  23. Bunde A. and Havlin S. (1991) Fractals and Disordered Systems. Springer-Verlag, Berlin.Google Scholar
  24. Burton W. K., Cabrera N., and Frank F. C. (1951) The growth of crystals and the equilibrium structure of their surfaces. Phil. Trans. Royal Soc. London A (Math. Phys. Sci.) 243, 299-358.Google Scholar
  25. Buseck P. R. (Ed.) (1992) Minerals and Reactions at the Atomic Scale: Transmis-sion Electron Microscopy, Mineralogical Society of America, Washington, DC, 508 pp.Google Scholar
  26. Butter K., Bomans P. H. H., Frederik P. M. Vroege G. J., and Philipse A. P. (2003) Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nat. Materials 2, 88-91.Google Scholar
  27. Cahn J. W. and Hilliard J. E. (1958) Free energy of a non-uniform system. I. Interface free energy. J. Chem. Phys. 28, 258-267.Google Scholar
  28. Cahn J. W. (1962) Coherent fluctuations and nucleation in isotropic solids. Acta Met. 10, 907-913.Google Scholar
  29. Cahn J. W. (1966) The later stages of spinodal decomposition and the beginnings of particle coarsening. Acta Met. 14, 1685-1692.Google Scholar
  30. Carpenter M. A., Putnis A., Navrotsky A., and McConnell J. D. C. (1983) Enthalpy effects associated with Al, Si ordering in anhydrous Mg-cordierite. Geochim. Cosmochim. Acta 47, 899-906.Google Scholar
  31. Cashman K. V. and Marsh B. D. (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II. Makaopuhi lava lake. Contrib. Mineral Petrol 99, 292-305.Google Scholar
  32. Castro M., Dominguez-Adame F., Sanchez A., and Rodriguez T. (1999) Model for crystallization kinetics: Deviations from Kolmogorov-Johnson-Mehl-Avrami kinetics. Appl. Phys. Lett. 75, 2205-2207.Google Scholar
  33. Chernov A. A. (1984) Modern Crystallography III, Crystal Growth. Springer, Berlin.Google Scholar
  34. Clemm P. J. and Fisher J. C. (1955) The influence of grain boundaries on the nucleation of secondary phases. Acta Met. 3,70-73.Google Scholar
  35. Davidson L, Benning L. G., Shaw S., and Terrill N. J. (2005) The effect of arsenic on the nucleation and growth of schwertmannite: An in situ SAXS study. Geochim. Cosmochim. Acta 69/10S, A773 (abstr).Google Scholar
  36. DeFontaine D. (1975) Clustering effects in solid solutions. Treatise on Solid State Chemistry, Vol. 5 (Eds. N. B. Hannay), Plenum, New York, p. 129.Google Scholar
  37. Eden M. (1961) In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. IV (Ed. F. Neyman). University of California, Berkeley, p. 233.Google Scholar
  38. Everett D. H. (1988) Basic Principles of Colloid Science. Royal Society of Chemistry Paperbacks, London.Google Scholar
  39. Farkas L. (1927) Keimbildungsgeschwindigkeit in übers ättigten D ämpfen. Z. Physik. Chem. 125, 236-242. (in German).Google Scholar
  40. Fauchadour D., Pouget T., Lechaire J.-P., Rouleau L., and Normand L. (1999) Eval-uation of cryotechniques for TEM observation of sols - application to boehmite sols used in catalysts forming. Oil Gas Sci. Technol. Rev. IFP 54(4), 513-524.Google Scholar
  41. Frank F. C. (1949) The influence of dislocations on crystal growth. Disc. Farad. Soc. 5, 48.Google Scholar
  42. Frederik P. M., Bomans P. H. H., Laeven P. F. J., and Nijpels F. J. T. (2002) Device for preparing specimens for a cryoelectron microscope. Netherlands Industrial Property Office (RO/NL).Google Scholar
  43. Frenkel J. (1939) A general theory of heterophase fluctuations and pretransition phenomena. J. Chem. Phys. 7, 538-547.Google Scholar
  44. Frenkel J. (1955) Kinetic Theory of Liquids. Dover, New York.Google Scholar
  45. Fultz B. and Howe J. M. (2002) Transmission Electron Microscopy and Diffractometry of Materials, 2nd edition; Series: Advanced Texts in Physics, Springer.Google Scholar
  46. Galoisy L. (2004) X-ray absorption spectroscopy in geosciences: information from the EXAFS region. In Spectroscopic Methods in Mineralogy (Eds. A. Beran and E. Libowitzky), Eötvös University Press, Budapest.Google Scholar
  47. Gedde U. W. (1995) Polymer Physics. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  48. Gilbert B., Huang F., Zhang H., Ren Y., Haskel D., Lang J. C., Srajer G., J ürgenssen A., Waychunas G., and Banfield J. F. (2004) Analysis and simulation of a nanoparticle structures observed in a surface-driven transition. J. Chem. Phys. 120, 11785-11795.Google Scholar
  49. Glatter O. (1992) Small-angle scattering. In: International Tables for Crystallography (Ed. A. J. C. Wilson), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 89-112.Google Scholar
  50. Glatter O. and Kratky O. (1982) Small Angle X-ray Scattering. Academic Press, London.Google Scholar
  51. Goldstein J., Newbury D. E., Joy D. C., Lyman C. E., Echlin P., Lifshin E., Sawyer L. C., and Michael J. R. (2003) Scanning Electron Microscopy and X-ray Microanalysis, 3rd edition. Kluwer Academic Plenum Publishers, New York, 586 pp.Google Scholar
  52. Granasy L., Wang T., and James P. (1998) Kinetics of wollastonite nucleation in CaO · SiO2 glass. J. Chem. Phys. 108, 7317-7326.Google Scholar
  53. Green D. L., Lin J. S., Lam Y-F, Hu M. Z. - C., Schaefer D. W., and Harris M. T. (2003) Size, volume fraction, and nucleation of stober silica nanoparticles. J. Coll. Interface Sci. 266, 346-358.Google Scholar
  54. Grunwaldt J. D., Caravati M. Hannemann S. ,and Baiker A. (2004) X-ray absorption spectroscopy under reaction conditions: suitability of different reaction cells for combined catalyst characterization and time-resolved studies. Phys. Chem. Chem. Phys. 6, 3037-3047.Google Scholar
  55. Guinier A. (1939). La diffraction des rayons X aux tres petits angles: Application al’ étude de ph énomenes ultramicroscopiques. Ann. Phys. 12, 161-237.Google Scholar
  56. Guinier A and Fournet G. (1955) Small-Angle Scattering of X-Rays. Wiley, New York.Google Scholar
  57. Hamad S. Cristol C., and Catlow R. A. (2002) Surface structures and crystal mor-phology of ZnS: Computational study. J. Phys. Chem. B 106(42), 11002-11008.Google Scholar
  58. Hartman P. and Perdok W. G. (1955) On the relations between structure and mor-phology of crystals. Acta Cryst. 8, 49-52.Google Scholar
  59. Hayat M. A. (2000) Principles and Techniques of Electron Microscopy: Biological Applications. Cambridge University Press, p. 543.Google Scholar
  60. Heaney P. J., Vicenzi E. P., Gianuzzi L. P., and Livi K. J. T. (2001) Focused ion beam milling: a method of site-specific sample extraction for microanalysis of earth and planetary materials. Am. Mineral. 86, 1094-1099.Google Scholar
  61. Henderson C. M. B. (2002) Earth and environmental sciences synchrotron research in the UK: Ongoing work and future prospects. Geochem. News 110, 14-17.Google Scholar
  62. Henry M. (2003) First-principles derivation of vacuum surface energies from crystal structures. Solid State Sci. 5, 1201-1205.Google Scholar
  63. Herring C. (1951) Some theorems on the free energies of crystal surfaces. Phys. Rev. 82,87-93.Google Scholar
  64. Hochella M. F. Jr. (2002a) Nanoscience and technology: the next revolution in the earth sciences. Earth Planet. Sci. Lett. 203, 593-605.Google Scholar
  65. Hochella M. F. Jr. (2002b) There’s plenty of room at the bottom: nanoscience in geochemistry. Geochim. Cosmochim. Acta 66, 735-743.Google Scholar
  66. Hochella M. F., Jr. and Banfield J. F. (1995) Chemical weathering of silicates in nature: a microscopic perspective with theoretical considerations. In Chemical Weathering Rates of Silicate Minerals (Eds. A. F. White and S. L. Brantley). Reviews in Mineralogy, Vol. 31, Mineralogical Society of America, Washington DC, pp. 353-406.Google Scholar
  67. Hof M., Hutterer R., and Fidler V. (Ed.) (2005) Fluorescence Spectroscopy In Biology: Advanced Methods and Their Applications to Membranes, Proteins, DAN and cells. Springer Series on Fluorescence. Series Editor O. S. Wolfbeis, Springer, 305 pp.Google Scholar
  68. Huang F., Zhang H., and Banfield J. F. (2003) Two-stage crystal growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett. 3, 373-378.Google Scholar
  69. Hulbert S. F. (1969) Models for solid-state reactions in powder compacts: A review. J Br. Ceramic Soc. 6, 11-20.Google Scholar
  70. Icopini G. A., Brantley S. L., and Heaney P. J. (2005) Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength at 25 C. Geochim. Cosmochim. Acta 69/2, 293-303.Google Scholar
  71. Iler R. K. (1979) The Colloid Chemistry of Silica and Silicates, Cornell University press, Ithaca, NY.Google Scholar
  72. Iler R. K. (1980) Isolation and characterization of particle nuclei during the poly-merization of silicic acid to colloidal silica. J. Coll. Interface Sci 71, 138-148.Google Scholar
  73. Israelachvili J. (1992) Intermolecular and Surface Forces. Academic Press, London.Google Scholar
  74. Jiang Z. and Ebner C. (1989) Dynamical Monte Carlo study of crystal growth in a solid-on-solid model. Phys. Rev. B 40, 4833-4837.Google Scholar
  75. Johnson W. A. and Mehl R. F. (1939) Reaction kinetics in processes of nucleation and growth. Trans. Amer. Inst. Min. Engrs. 135, 416-458.Google Scholar
  76. Katchalsky A. and Curran P. F. (1965) Nonequilibrium Thermodynamics in Biophysics. Harvard University Press, Cambridge, MA, 248 pp.Google Scholar
  77. Kelton K. F. and Greer A. L. (1988) Test of classical nucleation theory in glasses. Phys. Rev. B 38, 10089-10092.Google Scholar
  78. Kirkpatrick R. J. (1981) Kinetics of crystallization in igneous rocks. In Kinetics of Geochemical Processes. Reviews in Mineralogy (Eds. A. C. Lasaga, R. J. Kirkpatrick (eds), Mineralogical Society of America Vol. 8, pp. 321-398.Google Scholar
  79. Kisker C., Schindelin H., and Rees D. C. (1997) Molybdenum-cofactor-containing enzymes: Structure and mechanism. Ann. Rev. Biochem. 66, 233-267.Google Scholar
  80. Kubota N. and Mullin J. W. (1995) A kinetic model for crystal growth from aqueous solution in the presence of impurity. J. Cryst. Growth 152, 203-208.Google Scholar
  81. Lehn J-M. (2002) Toward self-organization and complex matter. Science 295, 2400-2403.Google Scholar
  82. Lifshitz I. M. and Slyozov V. V. (1961) The kinetics of precipitation from supersatu-rated solid solutions. J. Phys. Chem. Solids 19, 35-50 (translated by R. D.Lowde).Google Scholar
  83. Lin M. Y., Lindsay H. M., Weitz D. A., Ball R. C., Klein R., and Meakin P. (1990) Universal reaction-limited colloid aggregation. Phys Rev. A 41/4, 2005-2020.Google Scholar
  84. Liu X. Y., Maiwa K., and Tsukamoto K. (1997) Heterogeneous two-dimensional nucleation and growth kinetics. J. Chem. Phys. 106, 1870-1879.Google Scholar
  85. Makrides A. C., Turner M., and Slaughter J. (1980) Condensation of silica from supersaturated silicic acid solutions. J Coll Interf. Sci. 73, 345-367.Google Scholar
  86. Mandelbrot B. B. (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156, 636-638.Google Scholar
  87. Mandelbrot B. B. (1975) Les Objets Fractals: Form, Hasard et Dimension. Flamarion, Paris.Google Scholar
  88. Mandelbrot B. B. (1983) The Fractal Geometry of Nature. W. H. Freeman and Co., New York, 495 pp.Google Scholar
  89. Mann U., Neisel J. D., Burchard W. G., Heinen V., and Welte D. H. (1994) Fluidrock interfaces as revealed by cryo-scanning electron microscopy. First Break, 12,131-36.Google Scholar
  90. Marasli N. and Hunt J. D. (1998) The use of measured values of surface energies to test heterogeneous nucleation theory. J. Cryst. Growth 191, 558-562.Google Scholar
  91. Marsh B. D. (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. I. theory. Contrib. Mineral. Petrol 99, 277-229.Google Scholar
  92. Martin J. E. (1987) Slow aggregation of colloidal silica. Phys. Rev. A 36/7, 3415-3426.Google Scholar
  93. Martin J. E., Wikcoxon J. P., Schaefer D., and Odinek J. (1990) Fast aggregation of colloidal silica. Phys. Rev. A 41/8, 4379-4391.Google Scholar
  94. McLaren A. C. (1991) Transmission Electron Microscopy of Minerals and Rocks. Cambridge University Press, p. 399.Google Scholar
  95. Meakin P. (1998) Fractals, Scaling and Growth Far from Equilibrium. Cambridge University Press, Cambridge.Google Scholar
  96. Meakin P. (1983) Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys. Rev. Lett. 51, 1119-1122.Google Scholar
  97. Meakin P. and Family F. (1987) Structure and dynamics of reaction-limited aggregation. Phys. Rev. A 36, 5498-5501.Google Scholar
  98. Megens M., van Kats C. M., B ösecke P., and Vos W. L. (1997) In situ characterization of colloidal spheres by synchrotron small-angle x-ray scattering. Langmuir 13,6120-6129.Google Scholar
  99. Meneau. F., Cristol S., Sankar S., Dolbnya I. P, Bras W., Catlow C. R. A., Thomas J. M., and Greaves G. N. (2003) In situ study of the formation of CdS nanoparticles by small-angle x-ray scattering. J. Appl. Cryst. 36, 718-721.Google Scholar
  100. Mottana A. (2004) X-ray absorption spectroscopy in mineralogy: Theory and ex-periment in the XANES region. In Spectroscopic Methods in Mineralogy (Eds. A. Beran and E. Libowitzky), Eötvös University Press, Budapest.Google Scholar
  101. Naqui A., Chance B., and Cadenas E. (1986) Reactive oxygen intermediates in biochemistry. Ann. Rev. Biochem. 55, 137-166.Google Scholar
  102. Navrotsky A. (2004) Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proc. Natl. Acad. Sci. USA 101, 12096-12101.Google Scholar
  103. Navrotsky A. (1999) High temperature reaction calorimetry applied to metastable and nanophase materials. J. Therm. Anal. Cal. 57, 653-658.Google Scholar
  104. Nielsen A. E. (1064) The Kinetics of Precipitation, McMillan, New York, p. 151.Google Scholar
  105. Nicolis G. and Prigogine I. (1977) Self-organization in non-equilibrium systems: From dissipative structures to order through fluctuations. Wiley & Sons, New York.Google Scholar
  106. Ohara M. and Reid P. C. (1973) Modelling Crystal Growth Rates from Solution. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  107. Ostwald W. (1900) Über die vermeintliche isomerie des roten und gelben quecksil-beroxyds und die oberfl ächenspannung fester körper. Zeitschrift fur Physikalische Chemie, Stochiometrie und Verwandschaftslehre, 34, 495-503. (in German).Google Scholar
  108. Oxtoby D. W. (1992) Homogeneous nucleation: Theory and experiment. J. Phys. Condensed Matter 4, 7627-7650.Google Scholar
  109. Palenik C. S., Utsunomiya S., Reich M., Kesler S. E., Wang L.,and Ewing R. C. (2004) “Invisible” gold revealed: Direct imaging of gold nanoparticles in a Carlintype deposit. Am. Mineral. 89, 1359-1366.Google Scholar
  110. Pan Y., Brown A., Brydson R., Warley A., Li A., and Powell J. (2006) Electron beam damage studies of synthetic 6-line ferrihydrite and ferritin molecule cores within a human liver biopsy. Micron 37(5), 403-411.Google Scholar
  111. Paquette J. and Reeder R. J. (1995) Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochim. Cosmochim. Acta 59, 735-749.Google Scholar
  112. Penn R. L. and Banfield J. F. (1999) Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochem. Cosmochim. Acta 63, 1549-1557.Google Scholar
  113. Perry C. C. (2003) Silicification: the processes by which organisms capture and mineralize silica. In Biomineralization (Eds. P. M. Dove, J. J. De Yoreo and S. Weiner) Reviews in Mineralogy and Geochemistry, 54, 291-327.Google Scholar
  114. Pfeifer P. and Obert M. (1989) The Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers. (Ed. D. Avnir) Wiley, New York.Google Scholar
  115. Pickering I. J., Sansone M., Marsch J., and George G. N. (1993) Diffraction anom-alous fine structure: a new technique for probing local atomic environment. J. Am. Chem. Soc. 115, 6302-6311.Google Scholar
  116. Pina C. M., Putnis A., and Astilleros J. M. (2004) The growth mechanisms of solid solutions crystallizing from aqueous solutions. Chem. Geol. 204, 145-161.Google Scholar
  117. Pina C. M., Becker U., Risthaus P., Bosbach D., and Putnis A. (1998) Molecularscale mechanisms of crystal growth in barite. Nature 395, 483-486.Google Scholar
  118. Pontoni D., Narayanan T., and Rennie A. R. (2002) Time-resolved SAXS study of nucleation and growth of silica colloids. Langmuir 18, 56-59.Google Scholar
  119. Price F. P. (1965) Some comments on the “Avrami” equation. J. Appl. Phys. 36, 3014-3016.Google Scholar
  120. Prigogine I. (1961) Introduction to the Thermodynamics of Irreversible Processes. Interscience, New York.Google Scholar
  121. Raghavan V. and Cohen M. (1975) Solid State Phase Transformations. In Treatise on Solid State Chemistry, Vol. 5. Changes of State (Ed. N. B. Hannay). Plenum Press, New York, pp. 67-128.Google Scholar
  122. Ranade M. R., Navrotsky A., Zhang H. Z., Banfield J. F., Elder S. H., Zaban A., Borse P. H., Kulkarni S. K., Doran G. S., and Whitfield H. J. (2002) Proc. Natl. Acad. Sci. USA 99(Suppl. 2), 6476-6481.Google Scholar
  123. Randolph A. D. and Larsen M. A. (1971) Theory of Particulate Processes. Academic Press, New York, 251 pp.Google Scholar
  124. Ratsch C. and Venables J. A. (2003) Nucleation theory and the early stages of thin film growth. J. Vac. Soc. Technol. A 21, S96-S109.Google Scholar
  125. Ressler T., Wienold J., Jentoft R. E., Neisius T., and Gunter M. M. (2002) Kinetics of solid-state reactions in heterogeneous catalysis from time-resolved x-ray absorption spectroscopy. Topics Catalysis 18, 46-52.Google Scholar
  126. Rothbaum H. P. and Wilson R. D. (1977) Effect of temperature and concentration on the rate of polymerisation of silica in geothermal waters. In: Geochemistry 1977.218,37-43. New Zealand Department of Scientific and Industrial Research Bulletin.Google Scholar
  127. Samson I. M. and Walker R. T. (2000) Cryogenic Raman spectroscopic studies in the system NaCl-CaCl2-H2O and implications for low-temperature phase behavior in aqueous fluid inclusions. Can. Mineral. 38, 35-43.Google Scholar
  128. Sandk ühler P., Lattuada P., Wu H., Sefcik J., and Morbidelli M. (2005) Further in-sights into the universality of colloidal aggregation. Adv. Coll. Interface Sci. 113, 65-83.Google Scholar
  129. Sarma K. R., Shlichta P. J., Wilcox W. R., and Lefever R. A. (1997) Epitaxy versus oriented heterogeneous nucleation of organic crystals on ionic substrates. J. Cryst. Growth 174, 487-494.Google Scholar
  130. Shaw S., Henderson C. M. B., and Komanschek B. U. (2000) Dehydration/recrystallization mechanisms, energetics, and kinetics of hydrated calcium silicate minerals: an in situ TGA/DSC and synchrotron radiation SAXS/WAXS study. Chem. Geol. 167, 141-159.Google Scholar
  131. Schenk O., Urai J. L., and Piazolo S. (2006) Structure of grain boundaries in wet, synthetic polycrystalline, statically recrystallizing halite - evidence from cryoSEM observations. Geofluids 6(1), 93-104.Google Scholar
  132. Singh M. A., Harkless C. R., Nagler S. E., Shannon R. F., and Ghosh S. S. (1993) Time-resolved small angle x-ray scattering study of ordering kinetics in diblock styrene-butadiene. Phys. Rev. B 47(14), 8425-8435.Google Scholar
  133. Smoluchowski M. V. (1916) Drei vortrage uber diffusion, brownsche bewegung und koagulation von kolloidteilchen. Physik. Zeit. 17, 557-585. (in German).Google Scholar
  134. Steefel C. I. and Van Cappellen P. (1990) A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors, and Ostwald ripening. Geochimica et Cosmochimica Acta 54, 2657-2677.Google Scholar
  135. St öber W., Fink A., and Bohn E. (1968) Controlled growth of monodisperse. Silica spheres in the micron size range J. Coll. Interface Sci. 26, 62.Google Scholar
  136. St öhr J. (1992) NEXAFS Spectroscopy. Springer-Verlag, Berlin.Google Scholar
  137. Sutherland D. N. (1967) Theoretical model of floc structure. J. Coll. Interface Sci. 25(3),373-380.Google Scholar
  138. Svergun D. I. (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Cryst. 25, 495-503.Google Scholar
  139. Svergun D. I. (1999) Restoring low resolution structure of biological macromole-cules from solution scattering using simulated annealing. Biophys. J. 76, 2879-2886.Google Scholar
  140. Svergun D. I and Koch M. H. J. (2003) Small-angle scattering studies of biological macromolecules in solution. Rep. Prog. Phys. 66, 1735-1782.Google Scholar
  141. Talanquer V. and Oxtoby D. W. (1994) Dynamical density functional theory of gasliquid nucleation. J. Chem. Phys. 100, 5190-5200.Google Scholar
  142. Thoral S., Rose J., Garnier J. M., Van Geen A., Refait P., Traverse A., Fonda E., Na-hon, D., and Bottero J. Y. (2005) XAS Study of iron and arsenic speciation during Fe(II) oxidation in the presence of As(III). Environ. Sci. Technol. 39, 9478-9485.Google Scholar
  143. Tiller W. A. (1991) The Science of Crystallization: Microscopic Interfacial Phenomena. Cambridge University Press, New York.Google Scholar
  144. Tiller W. A. (1992) The Science of Crystallization: Macroscopic Phenomena and Defect Generation. Cambridge University Press, New York.Google Scholar
  145. Tobler D. J., Benning L. G., and Shaw S. (2006) Nucleation and growth of silica nanoparticles: An in-situ SAXS and DLS study. Geochim. Cosmochim. Acta 70/18: A652, (abstr).Google Scholar
  146. Tokuyama M., Kawasaki K., and Yoshihisa E. (1986) Kinetic equations for Ostwald ripening. Physica A, 134(2), 323-338.Google Scholar
  147. Toschev S. (1973) Homogeneous Nucleation. In Crystal Growth: An Introduction (Ed. P. Hartman). Elsevier, Amsterdam, pp. 1-49.Google Scholar
  148. Trivedi R., Liu S., and Williams S. (2002) Interface pattern formation in nonlinear dissipative systems. Nat. Mater. 1, 157-159.Google Scholar
  149. Turnbull D. (1950) Formation of crystal nuclei in liquid metals. J. Appl. Phys. 21, 1022-1028.Google Scholar
  150. Turnbull D. (1956) Phase changes. Solid State Phys. 3, 224-306.Google Scholar
  151. Turnbull D. and Fisher J. C. (1949) Rate of nucleation in condensed systems. J. Chem. Phys. 17, 71-73.Google Scholar
  152. Utsunomiya S. and Ewing R. C. (2003) Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive x-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment. Environ. Sci. Technol. 37, 786-791.Google Scholar
  153. van Enckevort W. J. P., van der Berg A. C. J., Kreuwel K. B. G., Derksen A. J., and Couto M. S. (1996) Impurity blocking of growth steps: Experiments and theory. J. Cryst. Growth 166, 156-161.Google Scholar
  154. Venables J. A., Spiller G. D. T., and Hanb ücken M. (1984) Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399-459.Google Scholar
  155. Vicsek T. and Family F. (1984) Dynamic scaling for aggregation of clusters. Phys. Rev. Lett. 52, 1669-1672.Google Scholar
  156. Vicsek T. (1992) Fractal Growth Phenomena. World Scientific, Singapore.Google Scholar
  157. Vold M. J. (1959) Sediment volume and structure in dispersions of anisometric particles. J. Phys. Chem. 63, 1608-1612.Google Scholar
  158. Vold M. J. (1963) Computer simulation of floc formation in a colloidal suspension. J. Coll. Sci. 8(7), 684-695.Google Scholar
  159. Volmer M. (1939) Kinetik der Phasenbildung. Steinkopf Verlag, Leipzig-Dresden (in German).Google Scholar
  160. Volmer M. and Weber A. (1925) Keimbildung in übers ättigten gebilden. Z. Phys. Chem. 119, 277-301. (in German).Google Scholar
  161. Voorhees P. W. and Glicksman M. E., (1984) Solution to the multiparticle diffusion problem with applications to Ostwald ripening. I.theory. Acta Meta. 32(11), 2001-2011.Google Scholar
  162. Voorhees P. W. (1985) The theory of Ostwald ripening. J. Statist. Phys. 38(1-2), 231-252.Google Scholar
  163. Wagner C. (1961) Theorie der Alterung von Niderschlagen durch Umlosen (Ost-wald Reifung). Zeitschrift fur Electrochemie 65, 581-591. (in German).Google Scholar
  164. Waychunas G. A, Ning Xu, Fuller C. C., Davis J. A., and Bigham J. M., (1995) XAS study of AsO4− and SeO4− substituted schwertmannites. Physica B 208/209, 481-483.Google Scholar
  165. Waychunas G. A., Kim C. S., and Banfield J. F. (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J. Nanopart. Technol. 7, 409-433.Google Scholar
  166. Waychunas G., Davis J., and Reitmeyer R. (1999) Grazing-incidence EXAFS study of Fe3+ sorption on single crystal quartz substrates. J. Synchrotron Radiation 6, 615-617.Google Scholar
  167. Waychunas G. A., Myneni S. C. B., Traina S. J., Bigham J. M., Fuller C. F., and Davis J. A., (2001) Reanalysis of the schwertmannite structure and the incorpo-ration of SO4 - Groups: an IR, XAS, WAXS and simulation study. Conference-abstract: Eleventh annual V.M. Goldschmidt Conference.Google Scholar
  168. Waychunas G. A. (2001) Structure, aggregation and characterization of nanoparti-cles. In Nanoparticles and the environment, Vol. 44 (Eds. J. F. Banfield and A. Navrotsky), pp. 105-166. Reviews in Mineralogy and Geochemistry, Mineralog-ical Society of America, Washington, DC.Google Scholar
  169. Waychunas G. A. (2002) Grazing-incidence x-ray absorption and emission spec-troscopy. In Applications of Synchrotron radiation in Low-Temperature Geo-chemistry and Environmental Science, Vol. 49 (Eds. P. A. Fenter, M. L. Rivers, N. C. Sturchio and S. R. Sutton), pp. 267-316. Reviews in Mineralogy and Geo-chemistry, Mineralogical Society of America, Washington, DC.Google Scholar
  170. Waychunas G. A., Rehr J. J., Fuller C. C., and Davis J. A (2003) Surface com-plexation and precipitate geometry for aqueous Zn(II) sorption on ferrihydrite: II. XANES analysis and simulation. Geochim. Cosmochim. Acta 67, 1031-1043.Google Scholar
  171. Weeks J. D. and Gilmer G. H. (1979) Dynamics of crystal growth. Adv. Chem. Phys. 40,157-228.Google Scholar
  172. Weeks J. D., Gilmer G. H., and Jackson K. A. (1976) Analytical theory of crystal growth. J. Chem. Phys. 65, 712-720.Google Scholar
  173. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A., Weitz, D. A., (2000) Threedimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287(5453), 627-631.Google Scholar
  174. Weitz D. A., Huang J. S., Lin M. Y., and Sung J. (1984) Dynamics of diffusionlimited kinetic aggregation. Phys. Rev. Lett. 53/17, 1657-1660.Google Scholar
  175. Weres O., Yee A., and Tsao L. (1981) Kinetics of silica polymerization. J. Coll. Interf. Sci. 84, 379-402.Google Scholar
  176. Whitesides G. M. and Grzybowski B. (2002) Self-assembly at all scales. Science 295,2418-2421.Google Scholar
  177. Witten T. A. Jr. and Sander L. M. (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400-1403.Google Scholar
  178. Wu D. T. (1997) Nucleation theory. Solid State Phys. 50, 37-187.Google Scholar
  179. Wulff G. (1901) Zur frage der geschwindigkeit des wachstums und der aufl ösung der kristallflachen. Zeitschrift f ür Kristallographie 34, 449-530. (in German).Google Scholar
  180. Wyss H. M., Huetter M., Mueller M., Meier L. P., and Gauckler L. J., (2002) Quan-tification of microstructures in stable and gelated suspensions from Cryo-SEM. J. Coll. Interface Sci. 248, 340-346.Google Scholar
  181. Yao J. H, Elder K. R., Guo G., and Gran M. (1993) Theory and simulation of Ostwald ripening. Phys. Rev. B 47, 14110-14125.Google Scholar
  182. Yund R. A. J., McLaren A. C. J., and Hobbs B. E. J. (1974) Coarsening kinetics of the exsolution microstructure in alkali feldspar. Contrib. Min. Pet. 48, 45-55.Google Scholar
  183. Zeldovich J. B. (1943) On the theory of new phase formation: cavitation. Zhur. Eksper. Teor. Fiz. 12 (1942), pp. 525ff (in Russian); Acta Physicochim. URSS, 18 (1943), pp. 1-22 (in English).Google Scholar
  184. Zhu J., Chen L.-Q., Shen J., and Tikare V. (1999) Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: Application of a semi-implicit Fourier spectral method. Phys. Rev. E 60, 3564-3572.Google Scholar
  185. Zhang H., Gilbert B., Huang F., and Banfield J. F. (2003) Water-driven structure transformation in nanoparticles at room temperature. Nature 424, 1025-1029.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Liane G. Benning
    • 1
  • Glenn A. Waychunas
    • 2
  1. 1.Earth and Biosphere Institute, School of Earth and EnvironmentUniversity of LeedsUK
  2. 2.Molecular Geochemistry and Nanogeoscience Group, Geochemistry Department, Earth Sciences DivisionLawrence Berkeley National LaboratoryUSA

Personalised recommendations