Kinetics of Sorption—Desorption

  • Jon Chorover
  • Mark L. Brusseau

The fate of nutrients, pollutants and other solutes in natural waters is coupled to their distribution between solid, aqueous and gas phases. The processes of phase distribution are many, including penetration and absorption into one of the phases, or accumulation at the interface between them. The term sorption is defined here as the full range of processes whereby matter is partitioned between the gas, aqueous and solid phases. In geochemical systems, this includes adsorption of matter at the surfaces of solid particles (minerals and organic matter) or at the air—water interface, and absorption into the solids during surface precipitation or solid phase diffusion. The complexity of natural geomedia (Fig. 4.1) implies that both broad classes of “sorption” reaction may occur simultaneously. As discussed in this chapter, recent research into the kinetics and mechanisms of sorption for inorganic and organic species indicates that both processes are indeed important. The relative predominance of a given reaction and sorbate—sorbent structure is a function of time scale, system loading and geochemical conditions.


Mineral Surface Natural Organic Matter Intraparticle Diffusion Surface Excess Hydrous Ferric Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aharoni C. and Sparks D. L. (1991) Kinetics of soil chemical reactions: A theoretical treatment. In Sparks D. L. and Suarez D. L. (eds.), Rates of Soil Chemical Processes. SSSA Spec. Publ. No. 27, Soil Science Society of America, Madison, WI.Google Scholar
  2. Ainsworth C. C., Pilon J. L., Gassman P. L., and Van Der Sluys W. G. (1994) Cobalt, cadmium and lead sorption to hydrous iron oxide: Residence time effect. Soil Sci. Soc. Am. J. 58, 1615-1623.CrossRefGoogle Scholar
  3. Anderson M. A., Tejedor-Tejedor M. I., and Stanforth R. R. (1985) Influence of aggregation on the uptake kinetics of phosphate by goethite. Environ. Sci. Technol. 19,632-637.CrossRefGoogle Scholar
  4. Avena M. J. and Koopal L. K. (1999) Kinetics of humic acid adsorption at solidwater interfaces. Environ. Sci. Technol. 33, 2739-2744.CrossRefGoogle Scholar
  5. Backes C. A., McLaren R. G., Rate A. W., and Swift R. S. (1995) Kinetics of cadmium and cobalt desorption from iron and manganese oxides. Soil Sci. Soc. Am. J. 59, 778-785.CrossRefGoogle Scholar
  6. Bernasconi C. F. (1976) Relaxation Kinetics. Academic Press, New York.Google Scholar
  7. Brown, G. E., Jr. (2001) How minerals react with water. Science 294, 67-69.CrossRefGoogle Scholar
  8. Brown G. E., Jr. and Sturchio N. C. (2002) An overview of synchrotron radiation applications to low temperature geochemistry and environmental science. Rev. Mineral. Geochem. 49, 1-115.CrossRefGoogle Scholar
  9. Brusseau M.L. (1993) Using QSAR to evaluate phenomenological models for sorption of organic compounds by soil. Environ. Toxic. Chem. 12, 1835-1846.CrossRefGoogle Scholar
  10. Brusseau M. L. and Rao P. S. C. (1989) Sorption nonideality during organic contaminant transport in porous media. CRC Crit. Rev. Environ. Control. 19, 33-99.CrossRefGoogle Scholar
  11. Brusseau M. L. and Srivastava R. (1997) Nonideal transport of reactive solutes in heterogeneous porous media: 2. Quantitative analysis of the borden naturalgradient field experiment. J. Contam. Hydrol. 28, 115-155.CrossRefGoogle Scholar
  12. Brusseau M. L. and Srivastava R. (1999). Nonideal transport of reactive solutes in heterogeneous porous media: 4. Analysis of the Cape Cod Natural-Gradient Field Experiment. Water Resour. Res. 35, 1113-1125.CrossRefGoogle Scholar
  13. Brusseau M. L., Jessup R. E., and Rao P. S. C. (1989) Modeling the transport of solutes influenced by multiprocess nonequilibrium. Water Resour. Res. 25, 1971-1988.CrossRefGoogle Scholar
  14. Brusseau M. L., Jessup R. E., and Rao P. S. C. (1991) Nonequilibrium sorption of organic chemicals: elucidation of rate-limiting processes. Environ. Sci. Technol. 25,134-142.CrossRefGoogle Scholar
  15. Brusseau M. L., Popovicova J., and Silva J. A. K. (1997) Characterizing gas-water-interfacial and bulk-water partitioning for gas-phase transport of organic contaminants in unsaturated porous media. Environ. Sci. Technol. 31:1645-1649.CrossRefGoogle Scholar
  16. Casey W. H. (2001) A view of reactions at mineral surfaces from the aqueous phase. Mineral. Mag. 65, 323-337.CrossRefGoogle Scholar
  17. Chang F. - R. and Sposito G. (1996) The electrical double layer of a disk-shaped clay mineral particle: effects of electrolyte properties and surface charge density. J. Colloid Interface Sci. 178, 555-564.CrossRefGoogle Scholar
  18. Charlet L. and Manceau A. (1993) Structure, formation and reactivity of hydrous oxide particles: Insights from x-ray absorption spectroscopy. In Buffle J. and van Leeuwen H. P. (eds.) Environmental Particles, Vol. 2, Lewis Publishers, Boca Raton, pp. 117-164.Google Scholar
  19. Chiou C. T. and Shoup T. D. (1985) Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity. Environ. Sci. Technol. 19, 1196-1200.CrossRefGoogle Scholar
  20. Choi S., O’Day P. A., Rivera N. A., Mueller K. T., Vairavamurthy M. A., Seraphin S., and Chorover J. (2006) Strontium speciation during reaction of kaolinite with simulated tank-waste leachate: bulk and microfocused EXAFS analysis. Environ. Sci. Technol. 40, 2608-2614.CrossRefGoogle Scholar
  21. Chorover J., Choi S., Amistadi M. K., Karthikeyan K. G., Crosson G., and Mueller K. T. (2003) Linking cesium and strontium uptake to kaolinite weathering in simulated tank waste leachate. Environ. Sci. Technol. 37, 2200-2208CrossRefGoogle Scholar
  22. Chorover J., Zhang J., Amistadi M. K., and Buffle J. (1997) Comparison of hematite coagulation by charge screening and phosphate adsorption: Differences in aggregate structure. Clays Clay Miner. 45, 690-708.CrossRefGoogle Scholar
  23. Criscenti L. J. and Sverjensky D. A. (2002) A single-site model for divalent transition and heavy metal adsorption over a range of metal concentrations.J. Colloid Interface Sci. 253, 329-352.CrossRefGoogle Scholar
  24. Fleer G. J., Cohen-Stuart M. A., Scheutjens J. M. H. M., Cosgrove T., and Vincent B. (1993) Polymers at Interfaces. Chapman & Hall, London.Google Scholar
  25. Goss K. - U. (1992) Effects of temperature and relative humidity on the sorption of organic vapors on quartz sand. Environ. Sci. Technol. 26, 2287-2294.CrossRefGoogle Scholar
  26. Goss K. - U. and Eisenreich S. J. (1996) Adsorption of VOCs from the gas phase to minerals and a mineral mixture. Environ. Sci. Technol. 30, 2135-2142.CrossRefGoogle Scholar
  27. Grossl P. R., Eick M., Sparks D. L., Goldberg S., and Ainsworth C. C. (1997) Arse-nate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ. Sci. Technol. 31, 321-326.CrossRefGoogle Scholar
  28. Hachiya K., Sasaki M., Saruta Y., Mikami N., and Yasanuga T. (1984) Static and kinetic studies of adsorption-desorption of metal ions on the γ-Al2 O3 surface. 2. Kinetic study by means of a pressure jump technique. J. Phys. Chem. 88, 23-31.CrossRefGoogle Scholar
  29. Hoff J. T., Mackay D., Gillham R. W., and Shlu W. Y. (1993) Partitioning of or-ganic chemicals at the air-water interface in environmental systems. Environ. Sci. Technol. 27, 2174-2180.CrossRefGoogle Scholar
  30. Huang W., Young T., Schlautman M. A., Hu H., and Weber W. J., Jr. (1997) A dis-tributed reactivity model for sorption by soils and sediments. 9. General isotherm non-linearity and applicability of the dual reactive domain model. Environ. Sci. Technol. 31, 1703-1710.CrossRefGoogle Scholar
  31. Hundal L. S., Thompson M. L., Laird D. A., and Carmo A. M. (2001) Sorption of phenanthrene by reference smectites. Environ. Sci. Technol. 35, 3456-3461.CrossRefGoogle Scholar
  32. Jeon B. - H., Dempsey B. A., Burgos W. D., Royer R. A., and Roden E. E. (2004) Modeling the sorption kinetics of divalent metal ions to hematite. Wat. Res. 38, 2499-2504.CrossRefGoogle Scholar
  33. Kaplan D. I. and Serne R. J. (1998) Pertechnetate exclusion from sediments. Radiochim. Acta 81, 117-124.Google Scholar
  34. Karger B. L., Castells R. C., Sewell P. A., and Hartkopf A. (1971) Study of the adsorption of insoluble and sparingly soluble vapors at the gas-liquid interface of water by gas chromatography. J. Phys. Chem. 75, 3870-3879.CrossRefGoogle Scholar
  35. Karickhoff S. W. (1981) Semi-empirical estimation of sorption of hydrophobic pol-lutants on natural sediments and soils. Chemosphere 10, 833-846.CrossRefGoogle Scholar
  36. Kubicki J. D., Itoh M. J., Schroeter L. M., Nguyen B. N., and Apitz S. E. (1999) At-tenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces. Geochim. Cosmochim. Acta, 63, 2709-2725.CrossRefGoogle Scholar
  37. Laird D. A., Shang C (1997) Relationship between cation exchange selectivity and crystalline swelling in expanding 2:1 phyllosilicates. Clays Clay Miner. 45, 681-689.CrossRefGoogle Scholar
  38. Lasaga A. C. (1998) Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton, NJ, 811 pp.Google Scholar
  39. Lorden S. W., Chen W., and Lion L. W. (1998) Experiments and modeling of the transport of trichloroethene vapor in unsaturated aquifer material. Environ. Sci. Technol. 32, 2009-2017.CrossRefGoogle Scholar
  40. Lu Y. and Pignatello J. J. (2002) Demonstration of the “conditioning effect” in soil organic matter in support of a pore deformation mechanism for sorption hysteresis. Environ. Sci. Technol. 36, 4553-4561.CrossRefGoogle Scholar
  41. Lu Y. and Pignatello J. J. (2004) History-dependent sorption in humic acids and a lignite in the context of a polymer model for natural organic matter. Environ. Sci. Technol. 36, 4553-4561.CrossRefGoogle Scholar
  42. Manceau A., Marcus M. A., and Tamura N. (2002) Quantitative speciation of heavy metals in soils and sediments by synchrotron x-ray techniques. In Fenter, P. A. et al. (ed.) Applications of Synchrotron Radiation in Low Temperature Geochemistry and Environmental Science, Vol. 49. Mineralogical Society of America, Washington, DC.Google Scholar
  43. Morel F. M. M. and Hering J. G. (1993) Principles and Applications of Aquatic Chemistry. Wiley, New York.Google Scholar
  44. Park C., Fenter P. A., Nagy K. L., and Sturchio N. C. (2006) Hydration and distribution of ions at the mica-water interface. Phys. Rev. Lett. 97, 016101.CrossRefGoogle Scholar
  45. Pignatello J. J. (2000) The measurement and interpretation of sorption and desorption rates for organic compounds in soil media. Adv. Agron. 69, 1-73.CrossRefGoogle Scholar
  46. Polmeier A. and Lustfeld H. (2004) Reaction rates of heavy metal ions at goethite: Relaxation experiments and modeling. J. Colloid Interface Sci. 269, 131-142.CrossRefGoogle Scholar
  47. Rate A. W., McLaren R. G., and Swift R. S. (1992) Evaluation of a long-normal distribution first-order kinetic model for copper(II)-humic acid complex dissociation. Environ. Sci. Technol. 26, 2477-2483.CrossRefGoogle Scholar
  48. Scheidegger A. M, Strawn D. G., Lamble G. M., and Sparks D. L. (1998) The kinet-ics of mixed Ni-Al hydroxide formation on clay and aluminum oxide minerals: a time-resolved XAFS study. Geochim. Cosmochim. Acta 63, 2233-2245.CrossRefGoogle Scholar
  49. Schlegel M. L., Charlet L., and Manceau A. (1999) Sorption of metal ions on clay minerals - II. Mechanism of Co sorption on hectorite at high and low ionic strength and impact on the sorbent stability. J. Coll. Interface Sci. 220, 392-405.CrossRefGoogle Scholar
  50. Schlegel M. L., Manceau A., Charlet L., and Hazemann J. L. (2001a) Adsorption mechanisms of Zn on hectorite as a function of time, pH, and ionic strength. Am. J. Sci. 301, 798-830.CrossRefGoogle Scholar
  51. Schlegel M. L., Manceau A., Charlet L., Chateigner D., and Hazemann J. L. (2001b) Sorption of metal ions on clay minerals. III. Nucleation and epitaxial growth of Zn phyllosilicate on the edges of hectorite. Geochim. Cosmochim. Acta 65, 4155-4170.CrossRefGoogle Scholar
  52. Sparks D. L. (1999) Kinetics and mechanisms of chemical reactions at the soil mineral/water interface. In Sparks D. L. (ed.) Soil Physical Chemistry, 2nd Edition. CRC Press, Boca Raton, FL, pp. 135-191.Google Scholar
  53. Sparks D. L. and Jardine P. M. (1984) Comparison of kinetic equations to describe K-Ca exchange in pure and in mixed systems. Soil Sci. 138, 115-122.CrossRefGoogle Scholar
  54. Sposito G. (1994) Chemical Equilibria and Kinetics in Soils. Oxford University Press, New York.Google Scholar
  55. Sposito G., Skipper N. T., Sutton R., Park S. H., Soper A. K., Greathouse J. A. (1999) Surface geochemistry of the clay minerals. Proc. Nat. Acad. Sci. USA 96, 3358-3364.CrossRefGoogle Scholar
  56. Sposito G. (2004) The Surface Chemistry of Natural Particles. Oxford University Press, New York.Google Scholar
  57. Stumm W. (1992) Chemistry of the Solid-Water Interface. Wiley Interscience, New York.Google Scholar
  58. Suarez D. L., Goldberg S., and Su C. (1998) Evaluation of oxyanion adsorption mechanisms on oxides using FTIR spectroscopy and electrophoretic mobility. In Sparks D. L. and Grundl T. J. (ed.) Mineral-Water Interfacial Reactions. ACS Symposium Series 715, American Chemical Society, Washington, DC, pp. 136-168.Google Scholar
  59. Sutton R. and Sposito G. (2005) Molecular structure in soil humic substances: the new view. Environ. Sci. Technol. 39, 9009-9015.CrossRefGoogle Scholar
  60. Torrent J., Schwertmann U., and Barron, V. (1992) Fast and slow phosphate sorption by goethite-rich natural materials. Clays Clay Miner. 40, 14-21.CrossRefGoogle Scholar
  61. Tringides M. C. (1997) Surface Diffusion: Atomistic and Collective Processes. NATO ASI Series B-Physics, Vol. 360, Plenum Press, New York.Google Scholar
  62. Trivedi P., Axe L. (1999) A comparison of strontium sorption to hydrous aluminum, iron, and manganese Oxides. J. Colloid Interface Sci. 218, 554-563.CrossRefGoogle Scholar
  63. Valsaraj K. T. (1994) Hydrophobic compounds in the environment: adsorption equilibrium at the air-water interface. Water Res. 28, 819-830.CrossRefGoogle Scholar
  64. Verberg K. and Baveye P. (1994) Hysteresis in the binary exchange of cations on 2/1 clay-minerals - A critical review. Clays Clay Mineral. 41, 207-220.CrossRefGoogle Scholar
  65. Weber W. J., Jr., McGinley P. M., and Katz L. E. (1992) A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments. Environ. Sci. Technol. 26, 1955-1962.CrossRefGoogle Scholar
  66. Wehrli B., Ibric S., and Stumm W. (1990) Adsorption kinetics of vanadyl(IV) and chromium(III) to aluminum oxide: Evidence for a two-step mechanism. Colloids Surf. 51, 77-88.CrossRefGoogle Scholar
  67. Yasunaga T. and Ikeda T. (1986) Adsorption-desorption kinetics at the oxide-solution interface studied by relaxation methods. Chapter 12. In Davis J. A. and Hayes K. F. (ed.) Geochemical Processes at Mineral Surfaces. American Chemical Society, Washington, DC.Google Scholar
  68. Zachara J. M., Smith S. C., Liu C., McKinley J. P., Serne R. J., and Gassman P. L. (2002) Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA. Geochim. Cosmochim. Acta 66, 193-211.CrossRefGoogle Scholar
  69. Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Pøedota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., B én ézeth P., Anovitz L., Palmer D. A., Machesky M. L., and Wesolowski D. J. (2004) Ion adsorption at the rutile-water interface: Linking molecular and macroscopic properties. Langmuir 20, 4954-4969.CrossRefGoogle Scholar
  70. Zhao D., Pignatello J. J., White J. C., Braida W., and Ferrandino F. (2001) Dual-mode modeling of competitive and concentration-dependent sorption and des-orption kinetics of polycyclic aromatic hydrocarbons in soils. Wat. Resour. Res. 37,2205-2212.CrossRefGoogle Scholar
  71. Zhou Q., Maurice P. A., and Cabaniss S. E. (2001) Size fractionation upon adsorption of fulvic acid on goethite: Equilibrium and kinetic studies. Geochim. Cosmochim. Acta 65, 803-812.CrossRefGoogle Scholar
  72. Zimmerman A. R., Goyne K. W., Chorover J., Komarneni S., and Brantley S. L. (2004) Mineral mesopore effects on nitrogenous organic matter adsorption. Org. Geochem. 35, 355-375.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jon Chorover
    • 1
  • Mark L. Brusseau
    • 1
  1. 1.Department of Soil, Water and Environmental ScienceUniversity of ArizonaUSA

Personalised recommendations