The Mineral-Water Interface

  • A. Liittge
  • R. S. Arvidson

The typical satellite view of Earth’s surface reveals ubiquitous contact between rocks and water (Fig. 3.1). Rocks are composed primarily of minerals, naturally crystallized materials having a periodic structure. The long-range structure of crystals, expressed internally as the periodic lattice, determines their fundamental physical and chemical properties. Water, in addition to supplying the basis for life on Earth, is also its critical solvent. It is the dominant medium through which rocks and minerals “communicate” during chemical precipitation and dissolution reactions. However, at room temperature the mobility of ions via diffusion to and from sites in the solid bulk crystal is extremely limited. Dissolution and precipitation reactions thus usually occur at the mineral-water interface (Fig. 3.2). This interface is the locus of exchange and interaction between the surface atoms of the solid and the overlying aqueous phase. In addition to water molecules, the fluid contains dissolved components: e.g., inorganic salts, hydrogen and hydroxyl ions, gases such as CO2 and O2, and organic molecules. These components interact with each other as well as with the mineral surface, yielding a complex distribution of species and functional groups (moieties) that characterize even compositionally “simple” solutions. This fluid-solid interaction alters both the surface layers of the crystal and the boundary layer of the fluid (Fig. 3.3). As used here, the term “boundary layer” applies to that fluid in direct contact with the mineral surface. Although the bulk fluid may be in turbulent motion (e.g., a stirred reactor), intermolecular attractive forces between the mineral surface and the fluid bring the fluid velocity to zero (“no-slip” condition). In classical theory, this constraint reduces advection and turbulent mixing within the boundary layer, whose thickness is a function of the flow characteristics prevailing in the overlying bulk fluid. The demands of reactive fluxes from precipitation or dissolution of the underlying mineral surface must be satisfied by the diffusive flux of components through the boundary layer. Much discussion is often devoted to the question of whether reactions are “controlled” by transport or surface reaction mechanisms (i.e., molecular detachment or attachment); because of the interplay between diffusion and reaction, the more pertinent question is whether the crystal surface is close to thermodynamic equilibrium with the fluid (see e.g., discussion in Lasaga, 1998). It is thus critical to recognize that at this interface neither the crystal nor the fluid is equivalent to its bulk counterpart. This central distinction is the subject of this chapter: the nature of the interfacial contact between a crystalline surface and an aqueous fluid, how this region of the crystal differs in terms of physical and chemical properties and behavior from its surroundings, how these differences are the basic engine for dynamic, scale-dependent interface processes, and how these atomic-scale processes express themselves as macroscopic phenomena.


Atomic Force Microscopy Dissolution Rate Water Interface Crystal Surface Mineral Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anbeek C. (1992) Surface roughness of minerals and implications for dissolution studies. Geochim. Cosmochim. Acta 56, 1461-1469.CrossRefGoogle Scholar
  2. Arvidson R. S., Collier M., Davis K. J., Vinson M. D., Amonette J. E., and Luttge A. (2006) Magnesium inhibition of calcite dissolution kinetics. Geochim. Cosmochim. Acta 70, 583-594.CrossRefGoogle Scholar
  3. Arvidson R. S., Davis K. J., Collier M., Amonette J. E., and L üttge A. (2004) Etch pit morphology and magnesium inhibition of calcite dissolution. In Proceedings of the 11th International Symposium on Water-Rock Interaction WRI-11, Saratoga Springs, New York (eds. R. B. Wanty and R. R. Seal). Balkema, New York, pp. 721-725.Google Scholar
  4. Arvidson R. S., Ertan I. E., Amonette J. A., and L üttge A. (2003) Variation in calcite dissolution rates: A fundamental problem? Geochim. Cosmochim. Acta 67, 1623-1634.CrossRefGoogle Scholar
  5. Biino G. G., Mannella N., Kay A., Mun B., and Fadley C. S. (1999) Surface chemical characterization and surface diffraction effects of real margarite (001): An angle-resolved XPS investigation. Am. Mineral. 84, 629-638.Google Scholar
  6. Blum A. E., Lasaga A. C., and Yund R. A. (1990) The effect of dislocation density on the dissolution rate of quartz. Geochim. Cosmochim. Acta 54, 283-297.CrossRefGoogle Scholar
  7. Blum A. E. and Lasaga A. C. (1987) Monte Carlo simulations of surface reaction rate laws. In Aquatic Surface Chemistry; Chemical Processes at the Particle-Water Interface (ed. W. Stumm). Wiley, New York, pp. 255-292.Google Scholar
  8. Boughriet A., Gengembre L., Laureyns J., Recourt P., Langeline H. R., and Nacer A. (2000) Generation of uranyl/carbonate/hydroxide “coatings” at the vaterite surface. Phys. Chem. Chem. Phys. 2, 1059-1068.CrossRefGoogle Scholar
  9. Bragg W. L. (1912) The diffraction of short electromagnetic waves by a crystal. Proc. Cambridge Phil. Soc. 17, 43-57.Google Scholar
  10. Brantley S. L. and Chen Y. (1995) Chemical weathering rates of pyroxenes and amphiboles. In Chemical Weathering Rates of Silicate Minerals (eds. A. F. White and S. L. Brantley). Reviews in Mineralogy, Vol. 31, Mineral Society of America, Washington, DC, pp. 119-172.Google Scholar
  11. Brantley S. L. and Mellot N. P. (2000) Surface area and porosity of primary silicate minerals. Am. Mineral. 85, 1767-1783.Google Scholar
  12. Briggs D. and Seah M. P. (1983) Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy. Wiley, Chichester.Google Scholar
  13. Brunauer S., Emmet P. H., and Teller E. (1938) Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309-319.CrossRefGoogle Scholar
  14. Burton W. K., Cabrera N., and Frank F. C. (1951) The growth of crystals and the equilibrium structure of their surfaces. Phil. Trans. Royal Soc. London A (Math. Phys. Sci.) 243, 299-358.CrossRefGoogle Scholar
  15. Cygan R. T. (2001) Molecular modeling in mineralogy and geochemistry. In Molecular Modeling Theory: Applications in the Geosciences (eds. R. T. Cygan and J. D. Kubicki). Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Washington, DC, pp. 1-35.Google Scholar
  16. Cygan R. T. and Kubicki, J. D. (2001) (eds.), Molecular Modeling Theory: Applications in the Geosciences. Reviews in Mineralogy and Geochemistry, Vol. 42, Mineralogical Society of America, Washington, DC.Google Scholar
  17. Denniston R. F., Shearer C. K., Layne G. D., and Vaniman D. T. (1997) SIMS analysis of minor and trace element distributions in fracture calcite from Yuccca Mountain, Nevada, USA. Geochim. Cosmochim. Acta 61, 1803-1818.CrossRefGoogle Scholar
  18. Ewald P. P. (1913) Zur Theorie der Interferenzen der R öntgenstrahlen. Phys. Z. 14, 465-472.Google Scholar
  19. Finch A. A., Shaw P. A., Weedon G. P., and Holmgren K. (2001) Trace element variation in speleothem aragonite: Potential for palaeoenvironmental reconstruction. Earth Planet. Sci. Lett. 186, 255-267.CrossRefGoogle Scholar
  20. Friedrich W., Knipping P., and von Laue M. (1912) Interferenz-Erscheinungen bei R ögenstrahlen, Sitzungsberichte der K öniglich. Bayerischen Akademie der Wissenschaften 303-322.Google Scholar
  21. Gautier J. - M., Oelkers E. H., and Schott J. (2001) Are quartz dissolution rates proportional to B.E.T. surface areas? Geochim. Cosmochim. Acta 65, 1059-1070.CrossRefGoogle Scholar
  22. Gilmer G. H. (1976) Growth on imperfect crystal faces. I. Monte Carlo growth rates. J. Cryst. Growth 35, 15-28.CrossRefGoogle Scholar
  23. Gilmer G. H. (1977) Computer simulations of crystal growth. J. Cryst. Growth 42, 3-10.CrossRefGoogle Scholar
  24. Gilmer G. H. (1980) Computer models of crystal growth. Science 208, 355-363.CrossRefGoogle Scholar
  25. Goldstein J. I., Newbury D. E., Echlin P., Joy D. C., Romig A. D., Jr., Lyman C. E., Fiori C., and Lifshin E. (1992) Scanning Electron Microscopy and X-ray Microanalysis: A Text for Biologists, Material Scientists, and Geologists, 2nd edition. Plenum Press, New York.Google Scholar
  26. Goldstein J. I, Newbury D. E., Echlin P., Joy D. C., Lyman C. E., Lifshin E., Sawyer L., and Michael J. R. (2003) Scanning Electron Microscopy and X-ray Microanalysis, 3rd edition. Kluwer, New York.Google Scholar
  27. Hehre W. J. (1995) Practical Strategies for Electronic Structure Calculations. Wavefunction, Irvine, CA.Google Scholar
  28. Hehre W. J. (2003) A Guide To Molecular Mechanics and Quantum Chemical Calculations. Wavefunction, Irvine, CA.Google Scholar
  29. Hehre W. J., Radom L., Schleyer P. V. R., and Pople J. A. (1986) Ab Initio Molecular Orbital Theory. Wiley, New York.Google Scholar
  30. Helgeson H. C., Murphy W. M., and Aagard P. (1984) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions II. Rate constants, effective surface area, and the hydrolysis of feldspar. Geochim. Cosmochim. Acta 48, 2405-2432.CrossRefGoogle Scholar
  31. Hochella M. P., Jr. (1988) Auger electron and x-ray photoelectron spectroscopies. In Spectroscopic Methods in Mineralogy and Geology (ed. F. E. Hawthorne). Reviews in Mineralogy vol. 18. Mineralogical Society of America, Washington, DC, pp. 573-637.Google Scholar
  32. Hochella M. F., Jr. (1995) Mineral surfaces: Characterization methods, and their chemical, physical, and reactive nature. In Mineral Surfaces, vol. 5 (eds. D. Vaughan and R. Pattrick). Chapman & Hall, London, pp. 17-60.Google Scholar
  33. Hochella M. F., Jr. and Banfield J. F. (1995) Chemical weathering of silicates in nature: A microscopic perspective with theoretical considerations. In Chemical Weathering Rates Of Silicate Minerals (eds. A. F. White and S. L. Brantley). Reviews in Mineralogy vol. 31. Mineralogical Society of America, Washington, DC, pp. 353-406.Google Scholar
  34. Hoffmann U. and Stipp, S. L. (2001) The behavior of Ni2+ on calcite surfaces. Geochim. Cosmochim. Acta 65, 4131-4139.CrossRefGoogle Scholar
  35. Huang H. M., Fairchild I. J., Borsato A., Frisia S., Cassidy N. J., McDermott F., and Hawkesworth C. J. (2001) Seasonal variation in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy). Chem. Geol. 175, 429-448.CrossRefGoogle Scholar
  36. Jeffree, R. A., Markich S. L., Lefebvre R., Thellier M., and Ripoll C. (1995) Shell microlaminations in the freshwater bivalve Hyridella depressa (Lamarck) as an archival monitor of manganese water concentration: Experimental validation by depth profiling using secondary ion mass spectrometry (SIMS). Experientia 51, 838-848.CrossRefGoogle Scholar
  37. Jeschke A. A. and Dreybrodt W. (2002) Dissolution rates of minerals and their relation to surface morphology. Geochim. Cosmochim. Acta 66, 3055-3062.CrossRefGoogle Scholar
  38. Klein C. (2002) Mineral Science, 22nd edition. Wiley, New York.Google Scholar
  39. Krinsley D. H., Pye K., Jr., Boggs S., and Tovey N. K. (1998) Backscattered Scanning Electron Microscopy and Image Analysis of Sediments and Sedimentary Rocks. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  40. Kubicki J. D., Blake G. A., and Apitz S. E. (1996) Ab initio calculations on Q3 Si4+ and Al3+ species: Implications for atomic structure of mineral surfaces. Am. Mineral. 81, 789-799.Google Scholar
  41. Lasaga A. C. (1990) Atomic treatment of mineral-water surface reactions. In Mineral-Water Interface Geochemistry (eds. M. F. Hochella, Jr. and A. F White). Reviews in Mineralogy vol. 23. Mineralogical Society of America, Washington DC, pp 17-85.Google Scholar
  42. Lasaga A. C. (1992) Ab initio methods in mineral surface reactions. Rev. Geophys. 30,269-303.CrossRefGoogle Scholar
  43. Lasaga A. C. (1998) Kinetic Theory and Applications in Earth Sciences. Princeton Press, Princeton.Google Scholar
  44. Lasaga A. C. and Blum A. E. (1986) Surface chemistry, etch pits and mineral-water reactions. Geochim. Cosmochim. Acta 50, 2363-2379.CrossRefGoogle Scholar
  45. Lasaga A. C. and Gibbs G. V. (1990) Ab initio quantum mechanical calculations of water-rock interactions: Adsorption and hydrolysis reactions. Am. J. Sci. 290, 263-295.Google Scholar
  46. Lasaga A. C. and L üttge A. (2001) Variation of crystal dissolution rate based on a dissolution stepwave model. Science 291, 2400-2404.CrossRefGoogle Scholar
  47. Lasaga A. C. and L üttge A. (2003) A model for crystal dissolution. Eur. J. Min. 15, 603-615.CrossRefGoogle Scholar
  48. Lasaga A. C. and L üttge A. (2004) A fundamental approach to mineral dissolution kinetics. Am. Mineral. 89, 527-540.Google Scholar
  49. L üttge A., Zhang L., and Nealson K. H. (2005) Mineral surfaces and their implications for microbial attachment: Results from Monte Carlo simulations and direct surface observations. Am. J. Sci. 305, 766-790.CrossRefGoogle Scholar
  50. Li C. and Tsukamoto K. (2001) The direct interference intensity phase analyzing technique for in situ Michelson interference and its application in studying of the fluctuation of crystal growth rates. J. Cryst. Growth 223, 336-342.CrossRefGoogle Scholar
  51. Lupu C., Arvidson R. S., Luttge A., and Barron A. R. (2005) Phosphonate mediated surface reaction and reorganization: implications for the mechanism controlling cement hydration inhibition. Chemical Communications 2005(18), 2354-2356.CrossRefGoogle Scholar
  52. L üttge A., Bolton E. W., and Lasaga A. C. (1999) An interferometric study of the dissolution kinetics of anorthite: The role of reactive surface area. Am. J. Sci. 299, 652-678.CrossRefGoogle Scholar
  53. Lüttge A. (2004a) Crystal dissolution kinetics studied by Vertical Scanning Inter-ferometry (VSI) and Monte Carlo simulations: A brief review and outlook. In Nanoscale Structure And Assembly at Solid-Fluid Interfaces. Vol. I. Interfacial Structures Versus Dynamics. Series on Nanoscience and Technologies (eds. X.-Y. Liu and J. J. De Yoreo). Kluwer, New York, 700 pp.Google Scholar
  54. L üttge A. (2004b) Connecting the molecular-with the macro-scale: An integrated approach towards a quantitative understanding of crystal dissolution. In Proceedings of the 11th International Symposium on Water-Rock Interaction WRI-11, Saratoga Springs, New York (eds. R. B. Wanty and R. R. Seal). Balkema, New York, pp. 841-844.Google Scholar
  55. L üttge A. (2005) Etch pit coalescence, surface area, and overall mineral dissolution rates. Am. Mineral. 90, 1776-1783.CrossRefGoogle Scholar
  56. L üttge A., Winkler U., and Lasaga A. C. (2003) Dolomite dissolution kinetics studied with vertical scanning white light interferometry. Geochim. Cosmochim. Acta 67,1099-1116.CrossRefGoogle Scholar
  57. MacInnis I. N. and Brantley S. L. (1992) The role of dislocations and surface morphology in calcite dissolution. Geochim. Cosmochim. Acta 56, 1113-1126.CrossRefGoogle Scholar
  58. MacInnis I. N. and Brantley S. L. (1993) Development of etch pit size distributions on dissolving minerals. Chem. Geol. 105, 31-49.CrossRefGoogle Scholar
  59. Maiwa K., Tsukamoto K., and Sunagawa I. (1990) Activities of spiral growth hillocks on the (111) faces of barium nitrate crystals growing in an aqueous solution. J. Cryst. Growth 102, 43-53.CrossRefGoogle Scholar
  60. Metz V. and Ganor J. (2001) Stirring effect on kaolinite dissolution rate. Geochim. Cosmochim. Acta 65, 3475-3490.CrossRefGoogle Scholar
  61. Metz V., Raanan H., Pieper H., Bosbach D., and Ganor J. (2004) Towards the establishment of a reliable proxy for the reactive surface area of smectite. Geochim. Cosmochim. Acta 69, 2581-2591.CrossRefGoogle Scholar
  62. Oelkers E. (2001) General kinetic description of multioxide silicate mineral and glass dissolution. Geochim. Cosmochim. Acta 65, 3703-3720.CrossRefGoogle Scholar
  63. Ohmoto H., Hayashi K., Onuma K., Tsukamoto K., Kitakaze A., Nakano Y., and Yamamoto Y. (1991) Solubility and reaction kinetics of solution-solid reactions determined by in situ observations. Nature 351, 634-636.CrossRefGoogle Scholar
  64. Onuma K., Tsukamoto K., and Sunagawa I. (1989) Measurements of surface supersaturations around a growing k-alum crystal in aqueous solution. J. Cryst. Growth 98,377-383.CrossRefGoogle Scholar
  65. Onuma K., Tsukamoto K., and Sunagawa I. (1990) Growth kinetics of K-Alum crystals in relation to the surface supersaturations. J. Cryst. Growth 100, 125-132.CrossRefGoogle Scholar
  66. Parker S. C., de Leeuw N. H., and Redfern S. E. (1999) Atomistic simulation of oxide surfaces and their reactivity with water. Faraday Disc. 114, 381-393.CrossRefGoogle Scholar
  67. Sunagawa I. (ed.) (1987) Morphology of Crystals Part A, Materials Science of Minerals and Rocks. Reidel, Dordrecht.Google Scholar
  68. Tang R., Nancollas G. H., and Orme C. A. (2001) Mechanism of dissolution of sparingly soluble electrolytes. J. Am. Chem. Soc. 123, 5437-5443.CrossRefGoogle Scholar
  69. Tang R., Orme C. A., and Nancollas G. H. (2003) A new understanding of demineralization: The dynamics of brushite dissolution: J. Phys. Chem., Part B 107, 10653-10657.CrossRefGoogle Scholar
  70. Tang R., Orme C. A., and Nancollas G. H. (2004) Dissolution of crystallites: Surface energetic control and size effect. Chem. Phys. Chem. 5, 688-696.Google Scholar
  71. Tossel J. A. and Vaughan D. J. (1992) Theoretical Geochemistry: Applications of Quantum Mechanics in the Earth and Mineral Sciences. Oxford University Press, New York.Google Scholar
  72. Tsukamoto K. (1983) In situ observation of mono-molecular growth steps on crystals growing in aqueous solution. J. Cryst. Growth 61, 199-209.CrossRefGoogle Scholar
  73. Tsukamoto K. (1994) In situ observation of crystal growth from solution. Faraday Disc. 95, 183-189.CrossRefGoogle Scholar
  74. Van der Eerden J. P., Bennema P., and Cheiepanova T. A. (1978) Survey of Monte Carlo simulations of crystal surfaces and crystal growth. Progr. Crys. Growth Character 1, 219-251.CrossRefGoogle Scholar
  75. Vekilov P. G., Kuznetzov Y. G., and Chernov A. A. (1990) Dissolution morphology and kinetics of (101) ADP face: Mild etching of possible surface defects. J. Cryst. Growth 102, 706-716.CrossRefGoogle Scholar
  76. Vekilov P. G. and Galkin O. (2004) Fundamental aspects of nucleation theory revealed in experiments with protein solid phases. In Nanoscale Structure and Assembly at Solid-fluid Interfaces (eds. X. Y. Lui and J. J. De Yoreo). Kluwer Press, New York, pp. 105-144.Google Scholar
  77. Vering G., Crone C., Bijima J., and Arlinghaus H. F. (2003) TOF-SIMS characteri-zation of planktonic foraminifera. Appl. Surf. Sci. 203, 785-788.CrossRefGoogle Scholar
  78. Vinson M. D. and L üttge A. (2005) Multiple length-scale kinetics: An integrated study of calcite dissolution rates and strontium inhibition. Am. J. Sci. 305, 119-146.CrossRefGoogle Scholar
  79. Wehrli B. (1989a) Monte Carlo simulations of surface morphologies during mineral dissolution. J. Colloid Interface Sci. 132, 230-242.CrossRefGoogle Scholar
  80. Wehrli B. (1989b) Surface structure and mineral dissolution kinetics: A Monte Carlo study. In Proceedings of the 6th International Symposium on Water-Rock Interaction, Malvern, Rotterdam, The Netherlands (ed. D. L. Miles). A. A. Balkema, Rotterdam, pp. 751-753.Google Scholar
  81. White A. F. and Peterson M. L. (1990) Role of reactive surface area characterization in geochemical kinetic models. Am. Chem. Soc. Symp. Ser. 416, 461-475.Google Scholar
  82. Xiao Y. and Lasaga A. C. (1994) Ab initio quantum mechanical studies of the kinetics and mechanisms of silicate dissolution: H3 O+ catalysis. Geochim. Cosmochim. Acta. 58, 5379-5400.CrossRefGoogle Scholar
  83. Xiao Y. and Lasaga A. C. (1996) Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution. OH catalysis. Geochim. Cosmochim. Acta. 60, 2283-2295.CrossRefGoogle Scholar
  84. Xiao Y. and L üttge A. (2002) Solvated ab initio and density functional theory (DFT) modeling of mineral-fluid surface reactions: Towards a fundamental understanding of aluminosilicate dissolution mechanisms. Geological Society of America, Annual Meeting Abstracts with Programs (abstr.).Google Scholar
  85. Zhang L. and L üttge A. (2003) Monte Carlo simulations of feldspar dissolution kinetics. Eos Transactions American Geophysical Union 84(46), Fall Meeting Supplement, #V11D-0531 (abstr.).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. Liittge
    • 1
  • R. S. Arvidson
    • 2
  1. 1.Department of Earth Science, Department of Chemistry, and Center for Biological and Environmental NanotechnologyRice UniversityUSA
  2. 2.Department of Earth ScienceRice UniversityUSA

Personalised recommendations