Skip to main content

The typical satellite view of Earth’s surface reveals ubiquitous contact between rocks and water (Fig. 3.1). Rocks are composed primarily of minerals, naturally crystallized materials having a periodic structure. The long-range structure of crystals, expressed internally as the periodic lattice, determines their fundamental physical and chemical properties. Water, in addition to supplying the basis for life on Earth, is also its critical solvent. It is the dominant medium through which rocks and minerals “communicate” during chemical precipitation and dissolution reactions. However, at room temperature the mobility of ions via diffusion to and from sites in the solid bulk crystal is extremely limited. Dissolution and precipitation reactions thus usually occur at the mineral-water interface (Fig. 3.2). This interface is the locus of exchange and interaction between the surface atoms of the solid and the overlying aqueous phase. In addition to water molecules, the fluid contains dissolved components: e.g., inorganic salts, hydrogen and hydroxyl ions, gases such as CO2 and O2, and organic molecules. These components interact with each other as well as with the mineral surface, yielding a complex distribution of species and functional groups (moieties) that characterize even compositionally “simple” solutions. This fluid-solid interaction alters both the surface layers of the crystal and the boundary layer of the fluid (Fig. 3.3). As used here, the term “boundary layer” applies to that fluid in direct contact with the mineral surface. Although the bulk fluid may be in turbulent motion (e.g., a stirred reactor), intermolecular attractive forces between the mineral surface and the fluid bring the fluid velocity to zero (“no-slip” condition). In classical theory, this constraint reduces advection and turbulent mixing within the boundary layer, whose thickness is a function of the flow characteristics prevailing in the overlying bulk fluid. The demands of reactive fluxes from precipitation or dissolution of the underlying mineral surface must be satisfied by the diffusive flux of components through the boundary layer. Much discussion is often devoted to the question of whether reactions are “controlled” by transport or surface reaction mechanisms (i.e., molecular detachment or attachment); because of the interplay between diffusion and reaction, the more pertinent question is whether the crystal surface is close to thermodynamic equilibrium with the fluid (see e.g., discussion in Lasaga, 1998). It is thus critical to recognize that at this interface neither the crystal nor the fluid is equivalent to its bulk counterpart. This central distinction is the subject of this chapter: the nature of the interfacial contact between a crystalline surface and an aqueous fluid, how this region of the crystal differs in terms of physical and chemical properties and behavior from its surroundings, how these differences are the basic engine for dynamic, scale-dependent interface processes, and how these atomic-scale processes express themselves as macroscopic phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anbeek C. (1992) Surface roughness of minerals and implications for dissolution studies. Geochim. Cosmochim. Acta 56, 1461-1469.

    Article  Google Scholar 

  • Arvidson R. S., Collier M., Davis K. J., Vinson M. D., Amonette J. E., and Luttge A. (2006) Magnesium inhibition of calcite dissolution kinetics. Geochim. Cosmochim. Acta 70, 583-594.

    Article  Google Scholar 

  • Arvidson R. S., Davis K. J., Collier M., Amonette J. E., and L üttge A. (2004) Etch pit morphology and magnesium inhibition of calcite dissolution. In Proceedings of the 11th International Symposium on Water-Rock Interaction WRI-11, Saratoga Springs, New York (eds. R. B. Wanty and R. R. Seal). Balkema, New York, pp. 721-725.

    Google Scholar 

  • Arvidson R. S., Ertan I. E., Amonette J. A., and L üttge A. (2003) Variation in calcite dissolution rates: A fundamental problem? Geochim. Cosmochim. Acta 67, 1623-1634.

    Article  Google Scholar 

  • Biino G. G., Mannella N., Kay A., Mun B., and Fadley C. S. (1999) Surface chemical characterization and surface diffraction effects of real margarite (001): An angle-resolved XPS investigation. Am. Mineral. 84, 629-638.

    Google Scholar 

  • Blum A. E., Lasaga A. C., and Yund R. A. (1990) The effect of dislocation density on the dissolution rate of quartz. Geochim. Cosmochim. Acta 54, 283-297.

    Article  Google Scholar 

  • Blum A. E. and Lasaga A. C. (1987) Monte Carlo simulations of surface reaction rate laws. In Aquatic Surface Chemistry; Chemical Processes at the Particle-Water Interface (ed. W. Stumm). Wiley, New York, pp. 255-292.

    Google Scholar 

  • Boughriet A., Gengembre L., Laureyns J., Recourt P., Langeline H. R., and Nacer A. (2000) Generation of uranyl/carbonate/hydroxide “coatings” at the vaterite surface. Phys. Chem. Chem. Phys. 2, 1059-1068.

    Article  Google Scholar 

  • Bragg W. L. (1912) The diffraction of short electromagnetic waves by a crystal. Proc. Cambridge Phil. Soc. 17, 43-57.

    Google Scholar 

  • Brantley S. L. and Chen Y. (1995) Chemical weathering rates of pyroxenes and amphiboles. In Chemical Weathering Rates of Silicate Minerals (eds. A. F. White and S. L. Brantley). Reviews in Mineralogy, Vol. 31, Mineral Society of America, Washington, DC, pp. 119-172.

    Google Scholar 

  • Brantley S. L. and Mellot N. P. (2000) Surface area and porosity of primary silicate minerals. Am. Mineral. 85, 1767-1783.

    Google Scholar 

  • Briggs D. and Seah M. P. (1983) Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy. Wiley, Chichester.

    Google Scholar 

  • Brunauer S., Emmet P. H., and Teller E. (1938) Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309-319.

    Article  Google Scholar 

  • Burton W. K., Cabrera N., and Frank F. C. (1951) The growth of crystals and the equilibrium structure of their surfaces. Phil. Trans. Royal Soc. London A (Math. Phys. Sci.) 243, 299-358.

    Article  Google Scholar 

  • Cygan R. T. (2001) Molecular modeling in mineralogy and geochemistry. In Molecular Modeling Theory: Applications in the Geosciences (eds. R. T. Cygan and J. D. Kubicki). Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Washington, DC, pp. 1-35.

    Google Scholar 

  • Cygan R. T. and Kubicki, J. D. (2001) (eds.), Molecular Modeling Theory: Applications in the Geosciences. Reviews in Mineralogy and Geochemistry, Vol. 42, Mineralogical Society of America, Washington, DC.

    Google Scholar 

  • Denniston R. F., Shearer C. K., Layne G. D., and Vaniman D. T. (1997) SIMS analysis of minor and trace element distributions in fracture calcite from Yuccca Mountain, Nevada, USA. Geochim. Cosmochim. Acta 61, 1803-1818.

    Article  Google Scholar 

  • Ewald P. P. (1913) Zur Theorie der Interferenzen der R öntgenstrahlen. Phys. Z. 14, 465-472.

    Google Scholar 

  • Finch A. A., Shaw P. A., Weedon G. P., and Holmgren K. (2001) Trace element variation in speleothem aragonite: Potential for palaeoenvironmental reconstruction. Earth Planet. Sci. Lett. 186, 255-267.

    Article  Google Scholar 

  • Friedrich W., Knipping P., and von Laue M. (1912) Interferenz-Erscheinungen bei R ögenstrahlen, Sitzungsberichte der K öniglich. Bayerischen Akademie der Wissenschaften 303-322.

    Google Scholar 

  • Gautier J. - M., Oelkers E. H., and Schott J. (2001) Are quartz dissolution rates proportional to B.E.T. surface areas? Geochim. Cosmochim. Acta 65, 1059-1070.

    Article  Google Scholar 

  • Gilmer G. H. (1976) Growth on imperfect crystal faces. I. Monte Carlo growth rates. J. Cryst. Growth 35, 15-28.

    Article  Google Scholar 

  • Gilmer G. H. (1977) Computer simulations of crystal growth. J. Cryst. Growth 42, 3-10.

    Article  Google Scholar 

  • Gilmer G. H. (1980) Computer models of crystal growth. Science 208, 355-363.

    Article  Google Scholar 

  • Goldstein J. I., Newbury D. E., Echlin P., Joy D. C., Romig A. D., Jr., Lyman C. E., Fiori C., and Lifshin E. (1992) Scanning Electron Microscopy and X-ray Microanalysis: A Text for Biologists, Material Scientists, and Geologists, 2nd edition. Plenum Press, New York.

    Google Scholar 

  • Goldstein J. I, Newbury D. E., Echlin P., Joy D. C., Lyman C. E., Lifshin E., Sawyer L., and Michael J. R. (2003) Scanning Electron Microscopy and X-ray Microanalysis, 3rd edition. Kluwer, New York.

    Google Scholar 

  • Hehre W. J. (1995) Practical Strategies for Electronic Structure Calculations. Wavefunction, Irvine, CA.

    Google Scholar 

  • Hehre W. J. (2003) A Guide To Molecular Mechanics and Quantum Chemical Calculations. Wavefunction, Irvine, CA.

    Google Scholar 

  • Hehre W. J., Radom L., Schleyer P. V. R., and Pople J. A. (1986) Ab Initio Molecular Orbital Theory. Wiley, New York.

    Google Scholar 

  • Helgeson H. C., Murphy W. M., and Aagard P. (1984) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions II. Rate constants, effective surface area, and the hydrolysis of feldspar. Geochim. Cosmochim. Acta 48, 2405-2432.

    Article  Google Scholar 

  • Hochella M. P., Jr. (1988) Auger electron and x-ray photoelectron spectroscopies. In Spectroscopic Methods in Mineralogy and Geology (ed. F. E. Hawthorne). Reviews in Mineralogy vol. 18. Mineralogical Society of America, Washington, DC, pp. 573-637.

    Google Scholar 

  • Hochella M. F., Jr. (1995) Mineral surfaces: Characterization methods, and their chemical, physical, and reactive nature. In Mineral Surfaces, vol. 5 (eds. D. Vaughan and R. Pattrick). Chapman & Hall, London, pp. 17-60.

    Google Scholar 

  • Hochella M. F., Jr. and Banfield J. F. (1995) Chemical weathering of silicates in nature: A microscopic perspective with theoretical considerations. In Chemical Weathering Rates Of Silicate Minerals (eds. A. F. White and S. L. Brantley). Reviews in Mineralogy vol. 31. Mineralogical Society of America, Washington, DC, pp. 353-406.

    Google Scholar 

  • Hoffmann U. and Stipp, S. L. (2001) The behavior of Ni2+ on calcite surfaces. Geochim. Cosmochim. Acta 65, 4131-4139.

    Article  Google Scholar 

  • Huang H. M., Fairchild I. J., Borsato A., Frisia S., Cassidy N. J., McDermott F., and Hawkesworth C. J. (2001) Seasonal variation in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy). Chem. Geol. 175, 429-448.

    Article  Google Scholar 

  • Jeffree, R. A., Markich S. L., Lefebvre R., Thellier M., and Ripoll C. (1995) Shell microlaminations in the freshwater bivalve Hyridella depressa (Lamarck) as an archival monitor of manganese water concentration: Experimental validation by depth profiling using secondary ion mass spectrometry (SIMS). Experientia 51, 838-848.

    Article  Google Scholar 

  • Jeschke A. A. and Dreybrodt W. (2002) Dissolution rates of minerals and their relation to surface morphology. Geochim. Cosmochim. Acta 66, 3055-3062.

    Article  Google Scholar 

  • Klein C. (2002) Mineral Science, 22nd edition. Wiley, New York.

    Google Scholar 

  • Krinsley D. H., Pye K., Jr., Boggs S., and Tovey N. K. (1998) Backscattered Scanning Electron Microscopy and Image Analysis of Sediments and Sedimentary Rocks. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Kubicki J. D., Blake G. A., and Apitz S. E. (1996) Ab initio calculations on Q3 Si4+ and Al3+ species: Implications for atomic structure of mineral surfaces. Am. Mineral. 81, 789-799.

    Google Scholar 

  • Lasaga A. C. (1990) Atomic treatment of mineral-water surface reactions. In Mineral-Water Interface Geochemistry (eds. M. F. Hochella, Jr. and A. F White). Reviews in Mineralogy vol. 23. Mineralogical Society of America, Washington DC, pp 17-85.

    Google Scholar 

  • Lasaga A. C. (1992) Ab initio methods in mineral surface reactions. Rev. Geophys. 30,269-303.

    Article  Google Scholar 

  • Lasaga A. C. (1998) Kinetic Theory and Applications in Earth Sciences. Princeton Press, Princeton.

    Google Scholar 

  • Lasaga A. C. and Blum A. E. (1986) Surface chemistry, etch pits and mineral-water reactions. Geochim. Cosmochim. Acta 50, 2363-2379.

    Article  Google Scholar 

  • Lasaga A. C. and Gibbs G. V. (1990) Ab initio quantum mechanical calculations of water-rock interactions: Adsorption and hydrolysis reactions. Am. J. Sci. 290, 263-295.

    Google Scholar 

  • Lasaga A. C. and L üttge A. (2001) Variation of crystal dissolution rate based on a dissolution stepwave model. Science 291, 2400-2404.

    Article  Google Scholar 

  • Lasaga A. C. and L üttge A. (2003) A model for crystal dissolution. Eur. J. Min. 15, 603-615.

    Article  Google Scholar 

  • Lasaga A. C. and L üttge A. (2004) A fundamental approach to mineral dissolution kinetics. Am. Mineral. 89, 527-540.

    Google Scholar 

  • L üttge A., Zhang L., and Nealson K. H. (2005) Mineral surfaces and their implications for microbial attachment: Results from Monte Carlo simulations and direct surface observations. Am. J. Sci. 305, 766-790.

    Article  Google Scholar 

  • Li C. and Tsukamoto K. (2001) The direct interference intensity phase analyzing technique for in situ Michelson interference and its application in studying of the fluctuation of crystal growth rates. J. Cryst. Growth 223, 336-342.

    Article  Google Scholar 

  • Lupu C., Arvidson R. S., Luttge A., and Barron A. R. (2005) Phosphonate mediated surface reaction and reorganization: implications for the mechanism controlling cement hydration inhibition. Chemical Communications 2005(18), 2354-2356.

    Article  Google Scholar 

  • L üttge A., Bolton E. W., and Lasaga A. C. (1999) An interferometric study of the dissolution kinetics of anorthite: The role of reactive surface area. Am. J. Sci. 299, 652-678.

    Article  Google Scholar 

  • Lüttge A. (2004a) Crystal dissolution kinetics studied by Vertical Scanning Inter-ferometry (VSI) and Monte Carlo simulations: A brief review and outlook. In Nanoscale Structure And Assembly at Solid-Fluid Interfaces. Vol. I. Interfacial Structures Versus Dynamics. Series on Nanoscience and Technologies (eds. X.-Y. Liu and J. J. De Yoreo). Kluwer, New York, 700 pp.

    Google Scholar 

  • L üttge A. (2004b) Connecting the molecular-with the macro-scale: An integrated approach towards a quantitative understanding of crystal dissolution. In Proceedings of the 11th International Symposium on Water-Rock Interaction WRI-11, Saratoga Springs, New York (eds. R. B. Wanty and R. R. Seal). Balkema, New York, pp. 841-844.

    Google Scholar 

  • L üttge A. (2005) Etch pit coalescence, surface area, and overall mineral dissolution rates. Am. Mineral. 90, 1776-1783.

    Article  Google Scholar 

  • L üttge A., Winkler U., and Lasaga A. C. (2003) Dolomite dissolution kinetics studied with vertical scanning white light interferometry. Geochim. Cosmochim. Acta 67,1099-1116.

    Article  Google Scholar 

  • MacInnis I. N. and Brantley S. L. (1992) The role of dislocations and surface morphology in calcite dissolution. Geochim. Cosmochim. Acta 56, 1113-1126.

    Article  Google Scholar 

  • MacInnis I. N. and Brantley S. L. (1993) Development of etch pit size distributions on dissolving minerals. Chem. Geol. 105, 31-49.

    Article  Google Scholar 

  • Maiwa K., Tsukamoto K., and Sunagawa I. (1990) Activities of spiral growth hillocks on the (111) faces of barium nitrate crystals growing in an aqueous solution. J. Cryst. Growth 102, 43-53.

    Article  Google Scholar 

  • Metz V. and Ganor J. (2001) Stirring effect on kaolinite dissolution rate. Geochim. Cosmochim. Acta 65, 3475-3490.

    Article  Google Scholar 

  • Metz V., Raanan H., Pieper H., Bosbach D., and Ganor J. (2004) Towards the establishment of a reliable proxy for the reactive surface area of smectite. Geochim. Cosmochim. Acta 69, 2581-2591.

    Article  Google Scholar 

  • Oelkers E. (2001) General kinetic description of multioxide silicate mineral and glass dissolution. Geochim. Cosmochim. Acta 65, 3703-3720.

    Article  Google Scholar 

  • Ohmoto H., Hayashi K., Onuma K., Tsukamoto K., Kitakaze A., Nakano Y., and Yamamoto Y. (1991) Solubility and reaction kinetics of solution-solid reactions determined by in situ observations. Nature 351, 634-636.

    Article  Google Scholar 

  • Onuma K., Tsukamoto K., and Sunagawa I. (1989) Measurements of surface supersaturations around a growing k-alum crystal in aqueous solution. J. Cryst. Growth 98,377-383.

    Article  Google Scholar 

  • Onuma K., Tsukamoto K., and Sunagawa I. (1990) Growth kinetics of K-Alum crystals in relation to the surface supersaturations. J. Cryst. Growth 100, 125-132.

    Article  Google Scholar 

  • Parker S. C., de Leeuw N. H., and Redfern S. E. (1999) Atomistic simulation of oxide surfaces and their reactivity with water. Faraday Disc. 114, 381-393.

    Article  Google Scholar 

  • Sunagawa I. (ed.) (1987) Morphology of Crystals Part A, Materials Science of Minerals and Rocks. Reidel, Dordrecht.

    Google Scholar 

  • Tang R., Nancollas G. H., and Orme C. A. (2001) Mechanism of dissolution of sparingly soluble electrolytes. J. Am. Chem. Soc. 123, 5437-5443.

    Article  Google Scholar 

  • Tang R., Orme C. A., and Nancollas G. H. (2003) A new understanding of demineralization: The dynamics of brushite dissolution: J. Phys. Chem., Part B 107, 10653-10657.

    Article  Google Scholar 

  • Tang R., Orme C. A., and Nancollas G. H. (2004) Dissolution of crystallites: Surface energetic control and size effect. Chem. Phys. Chem. 5, 688-696.

    Google Scholar 

  • Tossel J. A. and Vaughan D. J. (1992) Theoretical Geochemistry: Applications of Quantum Mechanics in the Earth and Mineral Sciences. Oxford University Press, New York.

    Google Scholar 

  • Tsukamoto K. (1983) In situ observation of mono-molecular growth steps on crystals growing in aqueous solution. J. Cryst. Growth 61, 199-209.

    Article  Google Scholar 

  • Tsukamoto K. (1994) In situ observation of crystal growth from solution. Faraday Disc. 95, 183-189.

    Article  Google Scholar 

  • Van der Eerden J. P., Bennema P., and Cheiepanova T. A. (1978) Survey of Monte Carlo simulations of crystal surfaces and crystal growth. Progr. Crys. Growth Character 1, 219-251.

    Article  Google Scholar 

  • Vekilov P. G., Kuznetzov Y. G., and Chernov A. A. (1990) Dissolution morphology and kinetics of (101) ADP face: Mild etching of possible surface defects. J. Cryst. Growth 102, 706-716.

    Article  Google Scholar 

  • Vekilov P. G. and Galkin O. (2004) Fundamental aspects of nucleation theory revealed in experiments with protein solid phases. In Nanoscale Structure and Assembly at Solid-fluid Interfaces (eds. X. Y. Lui and J. J. De Yoreo). Kluwer Press, New York, pp. 105-144.

    Google Scholar 

  • Vering G., Crone C., Bijima J., and Arlinghaus H. F. (2003) TOF-SIMS characteri-zation of planktonic foraminifera. Appl. Surf. Sci. 203, 785-788.

    Article  Google Scholar 

  • Vinson M. D. and L üttge A. (2005) Multiple length-scale kinetics: An integrated study of calcite dissolution rates and strontium inhibition. Am. J. Sci. 305, 119-146.

    Article  Google Scholar 

  • Wehrli B. (1989a) Monte Carlo simulations of surface morphologies during mineral dissolution. J. Colloid Interface Sci. 132, 230-242.

    Article  Google Scholar 

  • Wehrli B. (1989b) Surface structure and mineral dissolution kinetics: A Monte Carlo study. In Proceedings of the 6th International Symposium on Water-Rock Interaction, Malvern, Rotterdam, The Netherlands (ed. D. L. Miles). A. A. Balkema, Rotterdam, pp. 751-753.

    Google Scholar 

  • White A. F. and Peterson M. L. (1990) Role of reactive surface area characterization in geochemical kinetic models. Am. Chem. Soc. Symp. Ser. 416, 461-475.

    Google Scholar 

  • Xiao Y. and Lasaga A. C. (1994) Ab initio quantum mechanical studies of the kinetics and mechanisms of silicate dissolution: H3 O+ catalysis. Geochim. Cosmochim. Acta. 58, 5379-5400.

    Article  Google Scholar 

  • Xiao Y. and Lasaga A. C. (1996) Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution. OH catalysis. Geochim. Cosmochim. Acta. 60, 2283-2295.

    Article  Google Scholar 

  • Xiao Y. and L üttge A. (2002) Solvated ab initio and density functional theory (DFT) modeling of mineral-fluid surface reactions: Towards a fundamental understanding of aluminosilicate dissolution mechanisms. Geological Society of America, Annual Meeting Abstracts with Programs (abstr.).

    Google Scholar 

  • Zhang L. and L üttge A. (2003) Monte Carlo simulations of feldspar dissolution kinetics. Eos Transactions American Geophysical Union 84(46), Fall Meeting Supplement, #V11D-0531 (abstr.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liittge, A., Arvidson, R. (2008). The Mineral-Water Interface. In: Brantley, S., Kubicki, J., White, A. (eds) Kinetics of Water-Rock Interaction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73563-4_3

Download citation

Publish with us

Policies and ethics