Transition State Theory and Molecular Orbital Calculations Applied to Rates and Reaction Mechanisms in Geochemical Kinetics

  • James D. Kubicki

For much of the history of geochemistry, thermodynamics has dominated discussions on geological processes. Geologic time is so long that systems were generally thought to reach equilibrium, so only knowledge of the reactants and products were considered important. As an emphasis on lower temperature processes and environment geochemistry has increased, the need to understand reaction rates has become more obvious. As geochemists have become more aware of the role of kinetics, disequilibrium has been found to be common. Even in mantle rocks where high temperatures and long equilibration times are the norm, disequilibrium has been observed (Bell and Ihinger, 2000).


Potential Energy Surface Acid Mine Drainage Reaction Pathway Elementary Step Transition State Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramczyk H., Brozek-Pluska B., Kurczewski K., Szymczyk I., Szymczyk I., Blaszczyk T., Scholl H., and Czajkowski, W. (2006) Femtosecond transient absorption, Raman, and electrochemistry studies of tetrasulfonated copper phthalo-cyanine in water solutions. J. Phys. Chem. A 110: 8627-8636.CrossRefGoogle Scholar
  2. Ayala P. Y. and Schlegel H. B. (1998) Identification and treatment of internal rotation in normal mode vibrational analysis. J. Chem. Phys. 108, 2314-2325.CrossRefGoogle Scholar
  3. Barnes I., Stuart W. T., and Fisher D. W. (1964) Field investigations of mine waters in the northern anthracite field. Pennsylvania. U.S.G.S. Prof. Paper 473-B.Google Scholar
  4. Becke A. D. (1993) Density-functional thermochemistry.3. The role of exact exchange. J. Chem. Phys. 98, 5648-5652.CrossRefGoogle Scholar
  5. Becker U., Rosso K. M., and Hochella M. F. (2001) The proximity effect on semiconducting mineral surfaces: A new aspect of mineral surface reactivity and surface complexation theory? Geochim. Cosmochim. Acta 65, 2641-2649.CrossRefGoogle Scholar
  6. Binkley J. S., Pople J. A., and Hehre W. J. (1980) Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc. 102, 939-947.CrossRefGoogle Scholar
  7. Bell D. R. and Ihinger P. D. (2000) The isotopic composition of hydrogen in nominally anhydrous mantle minerals. Geochim. Cosmochim. Acta 64, 2109-2118.CrossRefGoogle Scholar
  8. Borda M. J., Elsetinow A. R., Strongin D. R., and Schoonen M. A. A. (2003) A mechanism for the production of hydroxyl radical at surface defect sites on pyrite. Geochim. Cosmochim. Acta 67, 935-939.CrossRefGoogle Scholar
  9. Bunker B. C., Tallant D. R., Headley T. J., Turner G. L., and Kirkpatrick R. J. (1988) The structure of leached sodium borosilicate glass. Phys. Chem. Glasses 29, 106-120.Google Scholar
  10. Canc ès E., Mennucci B., and Tomasi J. (1997) A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 107, 3032-3041.CrossRefGoogle Scholar
  11. Casey W. H., Westrich H. R., Massis T., Banfield J. F., and Arnold G. W. (1989) The surface of labradorite feldspar after acid-hydrolysis. Chem. Geol. 78 (3-4), 205-218.CrossRefGoogle Scholar
  12. Casey W. H., Lasaga A. C., and Gibbs G. V. (1990) Mechanisms of silica dissolution as inferred from the kinetic isotope effect. Geochim. Cosmochim. Acta 54, 3369-3378.CrossRefGoogle Scholar
  13. Casey W. H., Hochella M. F., and Westrich H. R. (1993) The surface chemistry of manganiferous silicate minerals as inferred from experiments on tephroite (Mn2 SiO4 ). Geochim. Cosmochim. Acta 57, 785-793.CrossRefGoogle Scholar
  14. Cerjan C. J. and Miller W. H. (1981) On finding transition states. J. Chem. Phys. 75, 2800-2807.CrossRefGoogle Scholar
  15. Chizallet C., Costentin G., Che M., Delbecq F., and Sautet, P. (2006) Revisiting acido-basicity of the MgO surface by periodic density functional theory calcu lations: Role of surface topology and ion coordination on water dissociation. J. Phys. Chem. B 110: 15878-15886.CrossRefGoogle Scholar
  16. Ciccotti G., Kapral R., and Vanden-Eijnden E. (2005) Blue moon sampling, vectorial reaction coordinates, and unbiased constrained dynamics. ChemPhysChem 6: 1809-1814.CrossRefGoogle Scholar
  17. Cohn C. A., Mueller S., Wimmer E., Leifer N., Greenbaum S., Strongin D.R., Schoonen M. A. A. (2006) Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochem. Trans. 7: Art. No. 3.Google Scholar
  18. Cramer C. J. (2002) Essentials of Computational Chemistry. John Wiley & Sons Ltd., West Sussex, England, 542 pp.Google Scholar
  19. Criscenti L. J., Brantley S. L., Mueller K.T., Tsomaia N., and Kubicki J. D. (2005) Theoretical and 27 Al CPMAS NMR investigation of aluminum coordi- nation changes during aluminosilicate dissolution. Geochim. Cosmochim. Acta, 69,2205-2220.CrossRefGoogle Scholar
  20. Criscenti L. J., Kubicki J. D., and Brantley S. L. (2006) Silicate glass and mineral dissolution: Calculated reaction paths and activation energies for hydrolysis of a Q3 Si by H3 O+ using ab initio methods. J. Phys. Chem. A, 110, 198-206.CrossRefGoogle Scholar
  21. Curtiss L. A., Raghavachari K., and Pople J. A. (1993) Gaussian-2 theory using reduced Møller-Plesset orders. J. Chem. Phys. 98, 1293-1298.CrossRefGoogle Scholar
  22. DiChristina T. J., Fredrickson J. K., and Zachara J. M. (2005) Enzymology of electron transport: Energy generation with geochemical consequences. In Molecular Geomicrobiology, J.F. Banfield, J. Cervini-Silva, and K.M. Nealson (eds), Miner-alogical Society of America and Geochemical Society, Chantilly VA, pp. 27-52.Google Scholar
  23. East A. L. L. and Radom L. (1997) Ab initio statistical thermodynamical models for the computation of third-law entropies. J. Chem. Phys. 106, 6655-6674.CrossRefGoogle Scholar
  24. Elsetinow A. R., Borda M. J., Schoonen M. A. A., and Strongin D. R. (2003) Suppression of pyrite oxidation in acidic aqueous environments using lipids having two hydrophobic tails. Adv. Environ. Res. 7, 969-974.CrossRefGoogle Scholar
  25. Felipe M., Xiao Y., and Kubicki J. D. (2001) Molecular orbital modeling and transition state theory in the geosciences. In Molecular Modeling Theory: Applications in the Geosciences, Reviews in Mineralogy and Geochemistry 42, R. T. Cygan and J. D. Kubicki (eds.) Geochemical Society. 485-531.Google Scholar
  26. Felipe M. A., Kubicki J. D., and Rye D. M. (2003) Hydrogen isotope exchange kinetics between H2 O and H4 SiO4 from ab initio calculations. Geochim. Cosmochim. Acta 67, 1259-1276.CrossRefGoogle Scholar
  27. Felipe M. A., Kubicki J. D., and Freeman K. H. (2005) A mechanism for carbon isotope exchange between aqueous acetic acid and CO2 /HCO3 − : An ab initio study. Geochim. Cosmochim. Acta in press.Google Scholar
  28. Foresman J. B. and Frisch A. (1996) Exploring Chemistry with Electronic Structure Methods Second Edition; Gaussian, Inc.: Pittsburgh, 302 pp.Google Scholar
  29. Frisch et al. (2004) Gaussian 03, Revision C.01, Wallingford CT.Google Scholar
  30. Gibbs G. V. (1982) Molecules as models for bonding in silicates. Am. Mineral. 67, 421-450.Google Scholar
  31. Gibbs G. V., Finger L. W., and Boisen M. B. Jr. (1987) Molecular mimicry of the bond length-bond strength variations in oxide crystals. Phys. Chem. Miner. 14, 327-331.CrossRefGoogle Scholar
  32. Gilijamse J. J., Lock A. J., and Bakker H. J. (2005) Dynamics of confined water molecules. Proceedings of the National Academy of Sciences of the United States of America 102: 3202-3207.CrossRefGoogle Scholar
  33. Gonzalez C. and Schlegel H. B. (1989) An improved algorithm for reaction path following. J. Phys. Chem. 90, 2154-2161.CrossRefGoogle Scholar
  34. Gonzalez C. and Schlegel H. B. (1990) Reaction-path following in mass-weighted internal coordinates. J. Phys. Chem. 94, 5523-5527.CrossRefGoogle Scholar
  35. Goodman A. L., Bernard E. T., and Grassian V. H. (2001) Spectroscopic study of nitric acid and water adsorption on oxide particles: Enhanced nitric acid uptake kinetics in the presence of adsorbed water. J. Phys. Chem. A 105(26), 6443-6457.CrossRefGoogle Scholar
  36. Gordon M. S., Binkley S., Pople J. A., Pietro W. J., and Hehre W. J. (1982) Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J. Am. Chem. Soc. 104, 2797-2803.CrossRefGoogle Scholar
  37. Grassian V. H. (2001) Heterogeneous uptake and reaction of nitrogen oxides and volatile organic compounds on the surface of atmospheric particles including oxides, carbonates, soot and mineral dust: Implications for the chemical balance of the troposphere. Int. Rev. Phys. Chem. 20, 467-548.CrossRefGoogle Scholar
  38. Guevremont J. M., Bebie J., Elsetinow A. R., Strongin D. R., and Schoonen M. A. A (1998) Reactivity of the (100) plane of pyrite in oxidizing gaseous and aqueous environments: Effects of surface imperfections. Environ. Sci. Technol. 32, 3743-3748.CrossRefGoogle Scholar
  39. Halgren T. A. and Lipscomb W. N. (1977) The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett. 49, 225-232.CrossRefGoogle Scholar
  40. Hamilton J. P., Brantley S. L., Pantano C. G., Criscenti L., and Kubicki J. D. (2001) Dissolution of nepheline, jadeite and albite glasses: Toward better models for aluminosilicate dissolution. Geochim. Cosmochim. Acta 65, 3683-3702.CrossRefGoogle Scholar
  41. Hass K. C., Schneider W. F., Curioni A., and Andreoni W. (2000) First-principles molecular dynamics simulations of H2 O on alpha-Al2 O3 (0001). J. Phys. Chem. B 104, 5527-5540.CrossRefGoogle Scholar
  42. Hellmann R., Eggleston C. M., Hochella M. F., and Crerar D. A. (1990) The formation of leached layers on albite surfaces during dissolution under hydrothermal conditions. Nature 350, 488-491.Google Scholar
  43. Hellmann R., Penisson J. M., Hervig R. L., Thomassin J. H., and Abrioux M. F. (2003) An EFTEM/HRTEM high-resolution study of the near surface of labradorite feldspar altered at acid pH: Evidence for interfacial dissolutionreprecipitation. Phys. Chem. Miner. 30, 192-197.CrossRefGoogle Scholar
  44. Hiemstra T. and van Riemsdijk W. H. (1990) Multiple activated complex dissolution of metal (hydr)oxides—A thermodynamic approach applied to quartz. J. Colloid Interface Sci. 136, 132-150.CrossRefGoogle Scholar
  45. Hohenberg P. and Kohn W. (1964) Inhomogeneous electron gas. Phys. Rev. B. 136, 864-871.CrossRefGoogle Scholar
  46. Keith T. A. and Frisch M. J. (1994) Inclusion of explicit solvent molecules in a selfconsistent-reaction field model of solvation. Modeling the Hydrogen Bond. ACS Symposium Series 569, Washington DC, pp. 22-35.Google Scholar
  47. Klamt A. and Schuurmann G. (1993) COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and it gradient. J. Chem. Soc. Perkin Trans. 2, 799-805.Google Scholar
  48. Kohn W. and Sham L. J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140(4A), A1133-A1138.CrossRefGoogle Scholar
  49. Kubicki J. D., Apitz S. E., and Blake G. A. (1997) Molecular orbital calculations for modeling acetate-aluminosilicate adsorption and dissolution reactions. Geochim. Cosmochim. Acta 61, 1031-1046.CrossRefGoogle Scholar
  50. Kubicki J. D. and Lasaga A. C. (1988) Molecular dynamics simulations of SiO2 melt and glass. Ionic and covalent models. Am. Mineral. 73, 941-955.Google Scholar
  51. Kubicki J. D., Xiao Y., and Lasaga A. C. (1993) Theoretical reaction pathways for the formation of [Si(OH)5 ]1− and the deprotonation of orthosilicic acid in basic solution. Geochim. Cosmochim. Acta, 57, 3847-3853.CrossRefGoogle Scholar
  52. Kubicki J. D., Blake G. A., and Apitz S. E. (1995) G2 theory calculations on [H3 SiO4 ]− , [H4 SiO4 ], [H3 AlO4 ]2− , [H4 AlO4 ]− , and [H5 AlO4 ]: Basis set and elec- tron correlation effects on molecular structures, atomic charges, infrared spectra, and potential energies. Phys. Chem. Miner. 22, 481-488.CrossRefGoogle Scholar
  53. Kubicki J. D., Itoh M. J., Schroeter L. M., Nguyen B. N., and Apitz S. E. (1999) Attenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces. Geochim. Cosmochim. Acta 63, 2709-2725.CrossRefGoogle Scholar
  54. Kubicki J. D. (2001) Integral equation formalism polarized continuum model calculations of aqueous Al3+ ,Fe3+ and Si4+ : Correlations of calculated aqueous-phase deprotonation energies with experimental ln(Ka ) and pKa values. J. Phys. Chem. A 105, 8756-8762.CrossRefGoogle Scholar
  55. Lasaga A. C. (1981) Transition state theory. In: Lasaga A. C. and Kirkpatrick R. J. (ed) Kinetics of Geochemical Processes. Rev Mineral 8. Mineral Society of America, Washington DC, pp. 135-170.Google Scholar
  56. Lasaga A. C. and Gibbs G. V. (1990) Ab-initio quantum mechanical calculations of water-rock interactions: Adsorption and hydrolysis reactions. Am. J. Sci. 290, 263-295.Google Scholar
  57. Lasaga A. C. (1997) Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton, NJ, pp. 811.Google Scholar
  58. Lee C., Yang W., and Parr R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785-789.CrossRefGoogle Scholar
  59. Lee S. K. and Stebbins J. F. (2003) O atom sites in natural kaolinite and muscovite: O-17 MAS and 3QMAS NMR study. Am. Mineral. 88, 493-500.Google Scholar
  60. Lewan M.D. and Ruble T. E. (2002) Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis. Org. Geochem. 33,1457-1475.CrossRefGoogle Scholar
  61. Matsumoto M., Saito S., and Ohmine I. (2002) Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416, 409-413.CrossRefGoogle Scholar
  62. McQuarrie D. A. and Simon J. D. (1997) Physical Chemistry—A Molecular Approach, University Science Books, Sausalito, CA, pp. 1360.Google Scholar
  63. Møller C. and Plesset M. S. (1934) Note on an approximation treatment for manyelectron systems. Phys. Rev. 46, 618-622.CrossRefGoogle Scholar
  64. Parthiban S. and Martin J. M. L. (2001) Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities. J. Chem. Phys. 114, 6014-6029.CrossRefGoogle Scholar
  65. Paul K., Kubicki J. D., and Sparks D. L. (2007) Sulfate adsorption at the Fehydroxide-H2 O interface: Comparison of MO/DFT cluster and periodic DFT models. Int. J. Soil Sci. in press.Google Scholar
  66. Pelmenschikov A. G., Morosi G., and Gamba A. (1997) Adsorption of water and methanol on silica hydroxyls: Ab initio energy and frequency calculations J. Phys. Chem. A 101 (6), 1178-1187.CrossRefGoogle Scholar
  67. Pelmenschikov A., Strandh H., Pettersson L. G. M., and Leszczynski J. (2000) Lattice resistance to hydrolysis of Si-O-Si bonds of silicate minerals: Ab initio calculations of a single water attack onto the (001) and (111) beta-cristobalite surfaces. J. Phys. Chem. B 104 (24), 5779-5783.CrossRefGoogle Scholar
  68. Pelmenschikov A., Leszczynski J., and Petterson L. G. M. (2001) Mechanism of dissolution of neutral silica surfaces: Including effect of self-healing. J. Phys. Chem. A 105, 9528-8532.CrossRefGoogle Scholar
  69. Peng C. and Schlegel H. B. (1994) Combining synchronous transit and quasinewton methods for finding transition states. Israel J Chem. 33, 449-454.Google Scholar
  70. Perdew, J. P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868.CrossRefGoogle Scholar
  71. Petersson G. A., Bennett A., Tensfeldt T. G., Al-Laham M. A., Shirley W. A., and Mantzaris J. (1988) A complete basis set model chemistry.1. The total energies of closed-shell atoms and hydrides of the 1st -row elements. J. Chem. Phys. 89, 2193-2218.CrossRefGoogle Scholar
  72. Phillips B. L., Tossell J. A., and Casey W. H. (1998) Experimental and theoretical treatment of elementary ligand exchange reactions in aluminum complexes. Environ. Sci. Technol. 32, 2865-2870.CrossRefGoogle Scholar
  73. Prince A.P., Wade J. L., Grassian V. H., Kleiber P. D., and Young M. A. (2002) Heterogeneous reactions of soot aerosols with nitrogen dioxide and nitric acid: Atmospheric chamber and Knudsen cell studies. Atmos. Environ. 36, 5729-5740.CrossRefGoogle Scholar
  74. Reedy B. J., Beattie J. K., and Lowson R. T. (1991) A vibrational spectroscopic O-18 tracer study of pyrite oxidation. Geochim. Cosmochim. Acta 55, 1609-1614.CrossRefGoogle Scholar
  75. Richnow H. H., Seifert R., Hefter J., Kastner M., Mahro B., and Michaelis W. (1994) Metabolites of xenobiotica and mineral-oil constituents linked to macromolecular organic-matter in polluted environments. Org. Geochem. 22, 671-681.CrossRefGoogle Scholar
  76. Rimstidt J. D. and Barnes H. L. (1980) The kinetics of silica-water reactions. Geochim. Cosmochim. Acta 44, 1683-1699.CrossRefGoogle Scholar
  77. Rosso K. M. (2001) Structure and reactivity of semiconducting mineral surfaces: Convergence of molecular modeling and experiment. In Molecular Modeling Theory: Applications in the Geosciences, Reviews in Mineralogy and Geochemistry 42, R. T. Cygan and J. D. Kubicki (eds.) Geochemical Society, pp. 199-271.Google Scholar
  78. Rosso K. M. and Rustad J. R. (2001) Structures and energies of AlOOH and FeOOH polymorphs from plane wave pseudopotential calculations. Am. Mineralog. 86, 312-317.Google Scholar
  79. Schlegel H. B. (1987) Optimization of equilibrium geometries and transition structures. Adv. Chem. Phys. 67, 249-286.CrossRefGoogle Scholar
  80. Schoonen M. A. A., Xu Y., and Strongin D. R. (1998) An introduction to geocatalysis. J. Geochem. Explor. 62, 201-215.CrossRefGoogle Scholar
  81. Schoonen M. A. A. and Strongin D. R. (2005) Catalysis of electron transfer reactions at mineral surfaces. In Environmental Catalysis, V. H. Grassian (ed), Taylor & Francis/CRC Press, Boca Raton, FL, pp. 37-60.Google Scholar
  82. Sherman D. M. (2001) Quantum chemistry and classical simulations of metal complexes in aqueous solutions. In Molecular Modeling Theory: Applications in the Geosciences, Reviews in Mineralogy and Geochemistry 42, R. T. Cygan and J. D. Kubicki (eds.) Geochemical Society, pp. 273-317.Google Scholar
  83. Shoemaker J. R., Burggraf L. W., and Gordon M. S. (1999) SIMOMM: An integrated molecular orbital/molecular mechanics optimization scheme for surfaces. J. Phys. Chem. A 103, 3245-3251.CrossRefGoogle Scholar
  84. Stefanovich E. V. and Truong T. N. (1997) A theoretical approach for modeling reactivity at solid-liquid interfaces. J. Chem. Phys. 106, 7700-7705.CrossRefGoogle Scholar
  85. Stewart J. J. P. (2004) Comparison of the accuracy of semiempirical and some DFT methods for predicting heats of formation. J. Mol. Model. 10, 6-12.CrossRefGoogle Scholar
  86. Stixrude L. (2001) First principles theory of mantle and core phases. In Molecular Modeling Theory: Applications in the Geosciences, Reviews in Mineralogy and Geochemistry 42, R. T. Cygan and J. D. Kubicki (eds.) Geochemical Society, pp. 319-343.Google Scholar
  87. Stixrude L. and Peacor D. R. (2002) First-principles study of illite-smectite and implications for clay mineral systems. Nature, 420, 165-168.CrossRefGoogle Scholar
  88. Suarez D.L. and Wood J.D. (1996) Short- and long-term weathering rates of a feldspar fraction isolated from an arid zone soil. Chem. Geolog. 132, 143-150.CrossRefGoogle Scholar
  89. Sykes D., Kubicki J. D., and Farrar T. C. (1997) Molecular orbital calculation of 27 Al and 29 Si NMR parameters in Q3 and Q4 aluminosilicate molecules and implications for the interpretation of hydrous aluminosilicate glass NMR spectra. J. Phys. Chem. A 101, 2715-2722.CrossRefGoogle Scholar
  90. Taylor B.E., Wheeler M.C., and Nordstrom D.K. (1984) Stable isotope geochemistry of acid mine drainage: Experimental oxidation of pyrite. Geochim. Cosmochim. Acta 48, 2669-2678.CrossRefGoogle Scholar
  91. Tsomaia N., Brantley S. L., Hamilton J. P., Pantano C. G., and Mueller K. T. (2003) NMR evidence for formation of octahedral and tetrahedral Al and repolymerization of the Si network during dissolution of aluminosilicate glass and crystal. Am. Mineralog. 88, 54-67.Google Scholar
  92. Usher C. R., Paul K. W., Narayansamy J., Kubicki J. D., Sparks D. L., Schoonen M. A. A., and Strongin D. R. (2005) Aspects of pyrite oxidation in an oxidizing gaseous environment: An in situ HATR-IR isotope study. Environ. Sci. Technol. 39 (19): 7576-7584.CrossRefGoogle Scholar
  93. Van Alsenoy C., Yu C. H., Peeters A., Martin J. M. L., and Schafer L. (1998) Ab initio geometry determinations of proteins. 1. Crambin. J. Phys. Chem. A 102, 2246-2251.CrossRefGoogle Scholar
  94. Wang S. H., Ackermann R., Spicer C. W., Fast J. D., Schmeling M., and Stutz J. (2003) Atmospheric observations of enhanced NO2 -HONO conversion on mineral dust particles. Geophys. Res. Lett. 30: Art. no. 1595.CrossRefGoogle Scholar
  95. White A. F. and Brantley S. L. (2003) The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field? Chem. Geolog. 202, 479-506.CrossRefGoogle Scholar
  96. Windus T. L., Bylaska E. J., Dupuis M., Hirata S., Pollack L., Smith D. M., Straatsma T. P., and Apra E. (2003) NWChem: New functionality. Lecture Notes in Computer Science 2660, 168-177.CrossRefGoogle Scholar
  97. Wong M. W. (1996) Vibrational frequency prediction using density functional theory. Chem. Phys. Lett. 256 (4-5), 391-399.CrossRefGoogle Scholar
  98. Xiao Y. T. and Lasaga A. C. (1994) Ab-initio quantum-mechanical studies of the kinetics and mechanisms of silicate dissolution - H+ (H3 O+ ) catalysis. Geochim. Cosmochim. Acta 58, 5379-5400.CrossRefGoogle Scholar
  99. Xiao Y. T. and Lasaga A. C. (1996) Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution: OH-catalysis. Geochim. Cosmochim. Acta 60, 2283-2295.CrossRefGoogle Scholar
  100. Xu Y., Schoonen M. A. A., and Strongin D. R. (1996) Thiosulfate oxidation: Catalysis of synthetic sphalerite doped with transition metals. Geochim. Cosmochim. Acta 60, 4701-4710.CrossRefGoogle Scholar
  101. Yu P., Lee A. P., Phillips B. L., and Casey W. H. (2003) Potentiometric and F-19 nuclear magnetic resonance spectroscopic study of fluoride substitution in the GaAl12 polyoxocation: Implications for aluminum (hydr)oxide mineral surfaces. Geochim. Cosmochim. Acta 67, 1065-1080.CrossRefGoogle Scholar
  102. Zhang Z., Fenter P., Kelly S. D., Catalano J. G., Bandura A. V., Kubicki J. D., Sofo J. O., Wesolowski D. J., Machesky M. L., Sturchio N. C., and Bedzyk M. J. (2006) Structure of hydrated Zn2+ at the rutile TiO2 (110)-aqueous solution interface: Comparison of X-ray standing wave, X-ray absorption spectroscopy, and density functional theory results, Geochim. Cosmochim. Acta 70, 4039-4056.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • James D. Kubicki
    • 1
  1. 1.Department of Geosciences and the Earth & Environmental Systems InstituteThe Pennsylvania State UniversityUSA

Personalised recommendations