Kinetics of Global Geochemical Cycles

  • Abraham Lerman
  • Lingling Wu

Geochemical systems of the Earth’s surface and interior are often studied by means of conceptual models that represent them as geochemical or biogeochemical cycles of chemical elements. Such models usually address the various geological, geochemical, geophysical, and biological processes within the cycle or system, and they focus on the model’s ability to evaluate the system changes at different time scales, often extending from the remote past into the future. The time dimension of changes taking place in the different parts of the Earth System makes it necessary to understand the mechanisms and rates of the numerous processes that control the element interactions in geochemical systems of different physical structures and degrees of complexity.


Dissolution Rate Dissolve Inorganic Carbon Last Glacial Maximum Revise Universal Soil Loss Equation Soil Erosion Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albarède F. (1995) Introduction to Geochemical Modeling. Cambridge University Press, Cambridge, xx + 543 pp.Google Scholar
  2. Albarède F. (2003) Geochemistry: An Introduction. Cambridge University Press, Cambridge, xiv + 248 pp.Google Scholar
  3. Alkattan M., Oelkers E. H., Dandurand J.-L., and Schott J. (1998) An experimental study of calcite and limestone dissolution rates as a function of pH from -1 to 3 and temperature from 25 to 80 C. Chem. Geol. 151, 199-214.Google Scholar
  4. Amiotte-Suchet, P., Probst, A., and Probst, J.-L., 1995. Influence of acid rain on CO2 consumption by rock weathering: local and global scales. Water Air Soil Pollut. 85, 1563-1568.Google Scholar
  5. Amiotte-Suchet P., Aubert D., Probst J.-L., Gauthier-Lafaye F., Probst A., Andreux F., and Viville D. (1999) δ13 C pattern of dissolved inorganic carbon in a small granitic catchment; the Strengbach case study (Vosges Mountains, France). Chem. Geol. 159(1-4), 129-145.Google Scholar
  6. Amram K. and Ganor J. (2005) The combined effect of pH and temperature on smectite dissolution rate under acidic conditions. Geochim. Cosmochim. Acta 69, 2535-2546.Google Scholar
  7. Anderson L. D., Delaney M. L., and Faul K. L. (2001) Carbon to phosphorus ratios in sediments: Implications for nutrient cycling. Global Biogeochem. Cycles 15(1), 65-79.Google Scholar
  8. Anderson S. P. (2005) Glaciers show direct linkage between erosion rate and chemical weathering fluxes. Geomorphology 67(1-2), 147-157.Google Scholar
  9. Anderson S. P., Drever J. I., Frost C. D., and Holden P. (2000) Chemical weathering in the foreland of a retreating glacier. Geochim. Cosmochim. Acta 64(7), 1173-1189.Google Scholar
  10. Amundson R. (2003) Soil formation. In Treatise on Geochemistry, Vol. 3 (ed. J. I. Drever). Elsevier, Amsterdam, pp. 1-35.Google Scholar
  11. Arvidson R. S., Ertan I. E., Amonette J. E., and L üttge A. (2003) Variation in calcite dissolution rates: a fundamental problem? Geochim. Cosmochim. Acta 67, 1623-1634.Google Scholar
  12. Ajtay G. L., Ketner P., and Duvigneaud P. (1979) Terrestrial primary production and phytomass. In: The Global Carbon Cycle (eds. B. Bolin, E. T. Degens, S. Kempe and P. Ketner), SCOPE 13 (Scientific Committee On Problems of the Environment), Unwin Brothers, Gresham Press, Kingston-on-Thames, pp. 129-181.Google Scholar
  13. Bassham J. A. (1974) Photosynthesis. Encycl. Brit., Macropaedia, 1974 edition, 14, 365-373.Google Scholar
  14. Batjes N. H. (1996) Total carbon and nitrogen in the soils of the world. Eur. J. Soil. Sci. 47, 151-163.Google Scholar
  15. Bauer A. and Berger G. (1998) Kaolinite and smectite dissolution rate in high molar KOH solutions at 35 degrees and 80 degrees C. Appl. Geochem. 13(7), 905-916.Google Scholar
  16. Baumgartner A. and Reichel E. (1975) The World Water Balance. R. Oldenburg Verlag, München, Germany, 181 pp.Google Scholar
  17. Becker G. F. (1910) The age of the earth. Smithsonian Misc. Collect. 56, 6-28.Google Scholar
  18. Berner E. K. and Berner R. A. (1996) The Global Environment: Water, Air and Geochemical Cycles. Prentice-Hall, Upper Saddle River, NJ, 376 pp.Google Scholar
  19. Berner R. A. (1982) Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci. 282, 451-473.Google Scholar
  20. Berner R. A. and Kothavala Z. (2001) Geocarb III: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182-204.Google Scholar
  21. Berner R. A. and Maasch K. A. (1996) Chemical weathering and controls on atmospheric O2 and CO2 : fundamental principles were enunciated by J. J. Ebelmen in 1845. Geochim. Cosmochim. Acta 60, 1633-1637.Google Scholar
  22. Berner R. A. and Rao J.-L. (1994) Phosphorus in sediments of the Amazon river and estuary: implications for the global flux of phosphorus to the sea. Geochim. Cosmochim. Acta 58, 2333-2339.Google Scholar
  23. Blum A. E. and Lasaga A. C. (1988) Role of surface speciation in the lowtemperature dissolution of minerals. Nature 331(6155), 431-433.Google Scholar
  24. Blum A. E. and Stillings L. L. (1995) Feldspar dissolution kinetics. In Chemical Weathering Rates of Silicate Minerals (eds. A. F. White and S. L. Brantley). Rev. Mineral. 31, 291-351. Mineralogical Society of America, Washington, DC.Google Scholar
  25. Bosbach D., Charlet L., Bickmore B., and Hochella Jr. M. F. (2000) The dissolution of hectorite; in-situ, real-time observations using atomic force microscopy. Am. Mineral. 85(9), 1209-1216.Google Scholar
  26. Bowen N. L. (1928) The Evolution of Igneous Rocks. Princeton University Press, Princeton, NJ, x + 332 pp.Google Scholar
  27. Brandt F., Bosbach D., Krawczyk-Baersch E., Arnold T., and Bernhard G. (2003) Chlorite dissolution in the acid pH-range; a combined microscopic and macroscopic approach. Geochim. Cosmochim. Acta 67, 1451-1461.Google Scholar
  28. Broecker W. S. (1974) Chemical Oceanography. Harcourt Brace Jovanovich, New York, x + 214 pp.Google Scholar
  29. Brown E. T., Stallard R. F., Larsen M. C., Raisbeck G. M., and Yiou, F. (1995) Denudation rates determined from the accumulation of in situ-produced 10 Be in Luquillo experimental forest, Puerto Rico. Earth Planet. Sci. Lett. 129, 193-202.Google Scholar
  30. Brown L. R., Renner M., and Flavin C. (1997) The Environmental Trends that are Shaping Our Future: Vital Signs 1997. W.W. Norton, New York, 165 pp.Google Scholar
  31. Burch T. E., Nagy K. L., and Lasaga A. C. (1993) Free energy dependence of albite dissolution kinetics at 80 C and pH 8.8. Chem. Geol. 105, 137-162.Google Scholar
  32. Busenberg E. and Plummer L. N. (1982) The kinetics of dissolution of dolomite in CO2 -H2 O systems at 1.5 to 65 C and 0 to 1 atm Pco2 . Am. J. Sci. 282, 45-78.Google Scholar
  33. Cama J., Ganor J., Ayora C., and Lasaga A. C. (2000) Smectite dissolution kinetics at 80 C and pH 8.8. Geochim. Cosmochim. Acta 64, 2701-2717.Google Scholar
  34. Cameron E. M., Hall G. E. M., Veizer J., and Krouse H. R. (1995) Isotopic and elemental hydrogeochemistry of a major river system: Fraser river, British Columbia, Canada. Chem. Geol. 122(1-4), 149-169.Google Scholar
  35. Canfield D. E. and Raiswell R. (1991) Pyrite formation and fossil preservation. In Taphonomy: Releasing the Data Locked in the Fossil Record (eds. P. A. Allison and D. E. G. Briggs). Plenum Press, New York, pp. 337-387.Google Scholar
  36. Carslaw H. S. and Jaeger J. C. (1959) Conduction of Heat in Solids, 2nd edition. Oxford University Press, Oxford, x + 510 pp.Google Scholar
  37. Cerling T. E. (1984) The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet. Sci. Lett. 71(2), 229-240.Google Scholar
  38. Chameides W. L. and Perdue E. M. (1997) Biogeochemical Cycles. Oxford University Press, New York, x + 224 pp.Google Scholar
  39. Chester R. (2000) Marine Geochemistry, 2nd edition. Blackwell, Oxford, xiv + 506 pp.Google Scholar
  40. Chou L., Garrels R. M., and Wollast R. (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem. Geol. 78, 269-282.Google Scholar
  41. Clow D.W. and Drever J. I. (1996) Weathering rates as a function of flow through an alpine soil. Chem. Geol. 132, 131-141.Google Scholar
  42. Colman A. S. and Holland H. D. (2000) The global diagenetic flux of phosphorus from marine sediments to the oceans; redox sensitivity and the control of atmospheric oxygen levels. Soc. Sediment. Geol. Spec. Pub. 66, 53-75.Google Scholar
  43. Croll J. (1871) On a method of determining the mean thickness of the sedimentary rocks of the globe. Geol. Mag. 8(97-102), 285-287.Google Scholar
  44. Cubillas P., K öhler S., Prieto M., Chaïrat C., and Oelkers E. H. (2005) Experimental determination of dissolution rates of calcite, aragonite, and bivalves. Chem. Geol. 216,59-77.Google Scholar
  45. Dalai T. K., Krishnaswami S., and Sarin M. M. (2002) Major ion chemistry in the headwaters of the Yamuna river system: chemical weathering, its temperature dependence and CO2 consumption in the Himalaya. Geochim. Cosmochim. Acta 19,3397-3416.Google Scholar
  46. Deer W. A., Howie R. A., and Zussman J. (1975) An Introduction to the RockForming Minerals. Longman, London, x + 528 pp.Google Scholar
  47. de Jong E. and Kachanoski R. G. (1988) The importance of erosion in the carbon balance of prairie soils. Can. J. Soil Sci. 68, 111-119.CrossRefGoogle Scholar
  48. Delaney M. L. (1998) Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochem. Cycles 12, 563-572.Google Scholar
  49. Dignon J. (1992) NOx and SOx emissions from fossil fuels: a global distribution. Atmospheric Environ. 26, 1157-1163.Google Scholar
  50. Dignon J. and Hameed S. (1989) Global emissions of nitrogen and sulfur oxides from 1860 to 1980. J. Air Poll. Control Assoc. 39, 180-186.Google Scholar
  51. Dong Z. B., Wang X. M., and Liu L. Y. (2000) Wind erosion in arid and semiarid China: an overview. J. Soil Water Conserv. 55, 439-444.Google Scholar
  52. Drever J. I. (1988) The Geochemistry of Natural Waters, 2nd edition. Prentice-Hall, Englewood Cliffs, NJ, xii + 388 pp.Google Scholar
  53. Drever J. I. (1997) The Geochemistry of Natural Waters, 3rd edition. Prentice-Hall, Upper Saddle River, NJ, xii + 388 pp.Google Scholar
  54. Drever J. I. and Clow D. W. (1995) Weathering rates in catchments. In Chemical Weathering Rates of Silicate Minerals (eds. A. F. White and S. L. Brantley). Mineralogical Society of America, Washington, DC. Rev. Mineralogy 31, 463-483.Google Scholar
  55. Drever J. I., Murphy K. M., and Clow D.W. (1994) Field weathering rates versus laboratory dissolution rates: an update. Mineral. Mag. 58A, 239-240.Google Scholar
  56. Dudziak A. and Halas S. (1996) Influence of freezing and thawing on the carbon isotope composition in soil CO2 . Geoderma 69(3-4), 209-216.Google Scholar
  57. Dumas J. (1842) Essai de Statique Chimique des Êtres Organis és, 2 ème édit. Fortin, Masson, Paris, 4 + 88 pp.Google Scholar
  58. Edmond J. M., Palmer M. R., Measures C. I., Brown E. T., and Huh Y. (1996) Fluvial geochemistry of the eastern slope of the northeastern Andes and its foredeep in the drainage of the Orinoco in Colombia and Venezuela. Geochim. Cosmochim. Acta 60, 2949-2974.Google Scholar
  59. Farmer C. E., deMenocal P. B., and Marchitto T. M. (2005) Holocene and deglacial temperature variability in the Benguela upwelling region: implications for low-latitude atmospheric circulation. Paleoceangr. 20, PA2018, doi:10.1029/2004PA001049.Google Scholar
  60. Faure G. (1998) Principles and Applications of Geochemistry, 2nd edition. PrenticeHall, Upper Saddle River, NJ, xv + 600 pp.Google Scholar
  61. Ferruzzi G. G. (1993) The character and rates of dissolution of pyroxenes and pyroxenoids. MS Thesis, University California, Davis, CA, 105 pp.Google Scholar
  62. Filippelli G. M. and Delaney M. L. (1994) The oceanic phosphorus cycle and continental weathering during the Neogene. Paleoceanography 9, 643-652.Google Scholar
  63. Fisher O. (1900) An estimate of the geological age of the earth, by J. Joly, M.A., etc. Geol. Mag., Decade 4 (New Series) 7, 124-132.Google Scholar
  64. Fleer V. N. (1982) The dissolution kinetics of anorthite (Ca2 Al2 Si2 O8 ) and synthetic strontium feldspar (SrAl2 Si2 O8 ) in aqueous solutions at temperatures below 100 C with applications to the geological disposal of radioactive nuclear wastes. Monograph, Pennsylvania State University, University Park, University Park, PA.Google Scholar
  65. Foster G. L. and Vance D. (2006) Negligible glacial-interglacial variation in continental chemical weathering rates. Nature 444, 918-921.Google Scholar
  66. Friedlingstein P., Fung I. Y., Holland E., John J. G., Brasseur G. P., Erickson D., and Schimel D. (1995) On the contribution of CO2 fertilization to the missing biospheric sink. Global Biogeochem. Cycles 9, 541-556.Google Scholar
  67. Friedman I. and O’Neil J. R. (1977) Compilation of stable isotope fractionation factors of geochemical interest, in Data of Geochemistry, 6th edition (ed. M. Fleischer). U.S. Geol. Survey Prof. Pap., 440-KK.Google Scholar
  68. Gaffron H. (1964) Photosynthesis. Encycl. Brit., 1964 edition, 17, 855-856B.Google Scholar
  69. Gaillardet J., Dupr é B., All ègre C. J., and Negrel P. (1997) Chemical and physical denudation in the Amazon river basin. Chem. Geol. 142, 141-173.Google Scholar
  70. Gaillardet J., Dupr é B., Louovat P., and All ègre C. J. (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3-30.Google Scholar
  71. Gaillardet J., Millot R., and Dupr é B. (2003) Chemical denudation rates of the western Canadian orogenic belt: the Stikine terrane. Chem. Geol. 201, 257-279.Google Scholar
  72. Galy A. and France-Lanord C. (1999) Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget. Chem. Geol. 159, 31-60.Google Scholar
  73. Garrels R. M. and Mackenzie F. T. (1967) Origin of the chemical compositions of some springs and lakes. In Equilibrium Concepts in Natural Water Systems (ed. W. Stumm). Adv. Chem. Ser. 67, 222-242.Google Scholar
  74. Garrels R. M. and Mackenzie F. T. (1971) Evolution of Sedimentary Rocks. W. W. Norton, New York, xvi + 397 pp.Google Scholar
  75. Garrels R. M. and Mackenzie F. T. (1972) A quantitative model for the sedimentary rock cycle. Mar. Chem. 1, 27-41.Google Scholar
  76. Garrels R. M. and Perry Jr. E. A. (1974) Cycling of carbon, sulfur and oxygen through geologic time. In The Sea, Vol. 5 (ed. E. D. Godlberg). Wiley, New York, pp. 303-336.Google Scholar
  77. Gautelier M., Oelkers E. H., and Schott J. (1999) An experimental study of dolomite dissolution rates as a function of pH from −0.5 to 5 and temperature from 25 to 80 C. Chem. Geol. 157, 13-26.Google Scholar
  78. Gertner G., Wang G., Fang S., and Anderson A. B. (2002) Effect and uncertainty of digital elevation model spatial resolutions on predicting the topographical factor for soil loss estimation. J. Soil Water Conserv. 57, 164-175.Google Scholar
  79. Gibbs M. T. and Kump L. R. (1994). Global chemical erosion during the last glacial maximum and the present; sensitivity to changes in lithology and hydrology. Paleoceanography 9, 529-543.Google Scholar
  80. Gíslason S. R. and Eugster H. P. (1987) Meteoric water-basalt interactions. I: A laboratory study. Geochim. Cosmochim. Acta 51, 2827-2840.Google Scholar
  81. Gíslason S. R., Arnórsson S., and Ármannsson H. (1996) Chemical weathering of basalt in Southwest iceland: effects of runoff, age of rocks and vegetative/glacial cover. Am. J. Sci. 296, 837-907.Google Scholar
  82. Goldberg E. D. (1971) Atmospheric dust, the sedimentary cycle and man. Geophysics 1, 117-132.Google Scholar
  83. Goldich S. (1938) A study in rock-weathering. J. Geol. 46, 17-58.Google Scholar
  84. Graham, L. (1974) Heat. Encycl. Brit., Macropaedia, 1974 edition., Vol. 8, pp. 700-706; Micropaedia, 1974 edition., Vol. 4, 1007.Google Scholar
  85. Gregor C. B. (1970) Denudation of the continents. Nature 228, 273-275.Google Scholar
  86. Gregor C. B. (1980) Weathering rates of sedimentary and crystalline rocks. Proc. Kon. Ned. Akad. Wet. Ser. B Phys. Sci. 83, 173-181.Google Scholar
  87. Gregor C. B. (1988) Prologue: cyclic processes in geology, a historical sketch. In Chemical Cycles in the Evolution of the Earth (eds. C. B. Gregor, R. M. Garrels, F. T. Mackenzie and J. B. Maynard). Wiley, New York, pp. 5-16.Google Scholar
  88. Gregor C. B. (1992) Some ideas on the rock cycle: 1788-1988. Geochim. Cosmochim. Acta 56, 2993-3000.Google Scholar
  89. Guidry M. W. and Mackenzie F. T. (2003) Experimental study of igneous and sedimentary apatite dissolution: control of pH, distance from equilibrium, and temperature on dissolution rates. Geochim. Cosmochim. Acta 67, 2949-2963.Google Scholar
  90. Gutjahr A., Dabringhaus H., and Lacmann R. (1996) Studies of the growth and dissolution kinetics of CaCO3 polymorphs calcite and aragonite. I. Growth and dissolution rates in water. J. Crystal Growth 158, 296-309.Google Scholar
  91. Hagen L. J. (1991) A wind erosion prediction system to meet the users’ need. J. Soil Water Conserv. 46, 106-111.Google Scholar
  92. Hahn V. and Buchmann N. (2003) δ13 C, δ18 O, δ14 C of soil CO2 and soil respired CO2 . Abstracts of CarboEurope Conference, “The Continental Carbon Cycle”, Paper no. 72, Lisbon, Portugal, 19-21 March 2003.
  93. Hahn V. and Buchmann N. (2005) Measurements of CO2 in soils at six sites in northern and southern Europe in 2001. Personal communication.Google Scholar
  94. Hameed S. and Dignon J. (1992) Global emissions of nitrogen and sulfur oxides in fossil fuel combustion 1970-1986. J. Air Waste Manag. Assoc. 42, 159-163.Google Scholar
  95. Holland H. D. (1978) The Chemistry of the Atmosphere and Oceans. Wiley, New York, xiv + 351 pp.Google Scholar
  96. Huertas F. J., Chou L., and Wollast R. (1999) Mechanism of kaolinite dissolution at room temperature and pressure; Part II, Kinetic study. Geochim. Cosmochim. Acta 63, 3261-3275.Google Scholar
  97. Huh Y. and Edmond J. M. (1999) The fluvial geochemistry of the rivers of eastern Siberia; III, Tributaries of the Lena and Anabar draining the basement terrain of the Siberian Craton and the Trans-Baikal highlands. Geochim. Cosmochim. Acta 63,967-987.Google Scholar
  98. Huh Y., Tsoi M.-Y., Zaitsev A., and Edmond J. M. (1998a) The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena river draining the sedimentary platform of the Siberian Craton. Geochim. Cosmochim. Acta 62, 1657-1676.Google Scholar
  99. Huh Y., Panteleyev G., Babich D., Zaitsev A., and Edmond J. M (1998b) The fluvial geochemistry of the rivers of Eastern Siberia: II. Tributaries of the Lena, Omoloy, Yana, Indigirka, Kolyma, and Anadyr draining the collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges. Geochim. Cosmochim. Acta 62, 2053-2075.Google Scholar
  100. Ingall E. D. and Van Cappellen P. (1990) Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments. Geochim. Cosmochim. Acta 54, 373-386.Google Scholar
  101. Jacobson A. D., Blum J. D., and Walter L. M. (2002) Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes: insights from the carbonate geochemistry of stream waters. Geochim. Cosmochim. Acta 66, 3417-3429.Google Scholar
  102. Jahnke R. A. (1992) The phosphorus cycle. In Global Biogeochemical Cycles (eds. S. S. Butcher, R. J. Charlson, G. H. Orians, and G. V. Wolfe). Academic Press, New York, pp. 301-315.Google Scholar
  103. Jeschke A. A. and Dreybrodt W. (2002) Dissolution rates of minerals and their relation to surface morphology. Geochim. Cosmochim. Acta 66, 3055-3062.Google Scholar
  104. Joly J. (1899) An estimate of the geological age of the earth. Royal Dublin Soc., Sci. Trans [2], 7, 23-66.Google Scholar
  105. Jordan G. and Rammensee W. (1998) Dissolution rates of calcite (1014) obtained by scanning force microscopy; microtopography-based dissolution kinetics on surfaces with anisotropic step velocities. Geochim. Cosmochim. Acta 62, 941-947.Google Scholar
  106. Kalinowski B. E. and Schweda P. (1996) Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1-4, room temperature. Geochim. Cosmochim. Acta 60, 367-385.Google Scholar
  107. Karim A. and Veizer J. (2000) Weathering processes in the Indus river basin: implications from riverine carbon, sulfur, oxygen, and strontium isotopes. Chem. Geol. 170,153-177.Google Scholar
  108. Knauss K. G. and Wolery T. J. (1988) The dissolution kinetics of quartz as a function of pH and time at 70 C. Geochim. Cosmochim. Acta 52, 43-53.Google Scholar
  109. Knauss K. G. and Wolery T. J. (1989) Muscovite dissolution kinetics as a function of pH and time at 70 C. Geochim. Cosmochim. Acta 53, 1493-1501.Google Scholar
  110. K öhler S. J., Dufaud F., and Oelkers E. H. (2003) An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50[deg]C. Geochim. Cosmochim. Acta 67, 3583-3594.Google Scholar
  111. Lasaga A. C. (1998) Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton, NJ, x + 811 pp.Google Scholar
  112. Lerman A. (1979) Geochemical Processes - Water and Sediment Environments. Wiley, New York, viii + 481 pp.Google Scholar
  113. Lerman A. (1988) Weathering rates and major transport processes - an introduction. In Physical and Chemical Weathering in Geochemical Cycles (eds. A. Lerman and M. Meybeck). Kluwer, Dordrecht and Boston, pp. 1-10.Google Scholar
  114. Lerman A. (1994) Surficial weathering fluxes and their geochemical controls. In Material Fluxes on the Surface of the Earth (eds. W. W. Hay and others). Studies in Geophysics, National Research Council, National Academic Press, Washington, DC, pp. 28-45.Google Scholar
  115. Lerman A. and Mackenzie F. T. (2005) CO2 air-sea exchange due to calcium carbonate and organic matter storage, and its implications for the global carbon cycle. Aquatic Geochem. 11, 345-390. Erratum, ibid. 12, 389-390.Google Scholar
  116. Lerman A. and Wu L. (2006) CO2 and sulfuric acid controls of weathering and river water composition. J. Geochem. Exploration 88, 427-430.Google Scholar
  117. Lerman A., Mackenzie F. T., and Garrels R. M. (1975) Modeling of geochemical cycles: phosphorus as an example. Geol. Soc. Am. Mem. 142, 205-218.Google Scholar
  118. Lerman A., Wu L., and Mackenzie F. T. (2006) Carbon dioxide weathering flux since the last glacial maximum to the present, its control of river water composition, and its role in the global carbon cycle. Eos Trans. Am. Geophys. Un. 87(52), Fall Meet. Suppl., Abs. B43B-0266.Google Scholar
  119. Lerman A., Wu L., and Mackenzie F. T. (2007) CO2 and H2 SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance. Mar. Chem. 106, 326-350.Google Scholar
  120. Li Y.-H. (2000) A Compendium of Geochemistry. Princeton University Press, Princeton, NJ, xiv + 475 pp.Google Scholar
  121. Lin F.-C. and Clemency C. V. (1981) The dissolution kinetics of brucite, antigorite, talc and phlogopite at room temperature and pressure. Am. Mineral. 66, 801-806.Google Scholar
  122. Linsey R. K. (1964) Hydrology. Encycl. Brit., 1964 edition, 11, 959-961.Google Scholar
  123. Livingstone D. A. (1963) Chemical composition of rivers and lakes. U. S. Geol. Surv. Prof. Pap. 440G, 64 pp.Google Scholar
  124. Lotka A. J. (1925) Elements of Physical Biology. Williams & Wilkins, Baltimore, MD, published asGoogle Scholar
  125. Lotka A. J. (1956) Elements of Mathematical Biology. Dover, New York, xxx + 465 pp.Google Scholar
  126. Ludwig W., Amiotte-Suchet P., and Probst J.-L. (1999) Enhanced chemical weathering of rocks during the last glacial maximum; a sink for atmospheric CO2 ? Chem. Geol. 159(1-4), 147-161.Google Scholar
  127. L üttge A., Winkler U., and Lasaga A. C. (2003) Interferometric study of the dolomite dissolution; a new conceptual model for mineral dissolution. Geochim. Cosmochim. Acta 67, 1099-1116.Google Scholar
  128. Lyell C. (1830) Principles of Geology, Vol. 1. John Murray, London, xvi + 511 pp. Facsimile of 1st edition. University Chicago Press, Chicago, IL, 1990.Google Scholar
  129. Lyell C. (1872) Principles of Geology, 11th edition, Vol. 2. D. Appleton & Co., New York, xx + 652 pp.Google Scholar
  130. Lyell C. (1875) Principles of Geology, 12th edition, Vol. 2. John Murray, London, xx + 652 pp.Google Scholar
  131. Mackenzie F. T. (1992) Chemical mass balance between rivers and oceans. Encycl. Earth Sys. Science. Academic Press, New York, 1, 431-445.Google Scholar
  132. Mackenzie F. T. and Garrels R. M. (1966) Chemical mass balance between rivers and oceans. Am. J. Sci. 264, 507-525.Google Scholar
  133. Mackenzie F. T., Ver L. M., Sabine C., Lane M., and Lerman A. (1993) C, N, P, S global biogeochemical cycles and modeling of global change. In Interactions of C, N, P and S Biogeochemical Cycles and Global Change (eds. R. Wollast, F. T. Mackenzie and L. Chou). NATO ASI Series. Series I: Global Environmental Change, Vol. 4. Springer-Verlag, Berlin, pp. 1-61.Google Scholar
  134. Mackenzie F. T., Ver L. M., and Lerman A. (2002) Century-scale nitrogen and phosphorus controls of the carbon cycle. Chem. Geol. 190, 13-32.Google Scholar
  135. Mackenzie F. T., Lerman A., and Andersson A. J. (2004) Past and present of sediment and carbon biogeochemical cycling models. Biogeosciences 1, 11-32.Google Scholar
  136. Mason B. H. and Moore C. B. (1982) Principles of Geochemistry, 4th edition. Wiley, New York, vi + 344 pp.Google Scholar
  137. Meadows D. H., Meadows D. L., Randers J., and Behrens III, W. W. (1972) The Limits to Growth. Universe Books, New York.Google Scholar
  138. Metz V., Amram K., and Ganor J. (2005) Stoichiometry of smectite dissolution reaction. Geochim. Cosmochim. Acta 69, 1755-1772.Google Scholar
  139. Meybeck M. (1979) Concentrations des eaux fluviales en él éments majeurs et ap- ports en solution aux oc éans. Rev. G éol. Dyn. G éogr. Phys. 21(3), 215-246.Google Scholar
  140. Meybeck M. (1984) Les fleuves et le cycle g éochimique des él éments. Th èse de Doctorat d’Etat ès Sciences Naturelles, No 84-35. Universit é Pierre et Marie Curie, Paris.Google Scholar
  141. Meybeck M. (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am. J. Sci. 287, 401-428.Google Scholar
  142. Meybeck M. (2003) Global occurrence of major elements in rivers. In Treatise on Geochemistry, Vol. 5 (ed. J. I. Drever), Elsevier, Amsterdam, pp. 207-223.Google Scholar
  143. Meybeck M. and Ragu A. (1995) Water quality of world river basins. UNEP GEMS Collaborating Centre for Fresh Water Quality Monitoring and Assessment, United Nations Environment Programme, Nairobi, Kenya, 40 pp.Google Scholar
  144. Meyer B. S. (1964) Plant physiology. Encycl. Brit., 1964 edition, 18, 16-31.Google Scholar
  145. Miller A. J., Schuur E. A. G., and Chadwick O. A. (2001) Redox control of phos- phorus pools in Hawaiian montane forest soils. Geoderma 102, 219-237.Google Scholar
  146. Milliman J. D. (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochem. Cycles 7, 927-957.Google Scholar
  147. Milliman J. D. and Meade R. H. (1983) World-wide delivery of river sediment to the oceans. J. Geol. 91, 1-21.Google Scholar
  148. Milliman J. D. and Syvitski J. P. M. (1992) Geomorphic/tectonic control of sediment discharge to the ocean; the importance of small mountainous rivers. J. Geol. 100, 525-544.Google Scholar
  149. Millot R., Gaillardet J., Dupr é B., and All ègre C. J. (2002) The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth Planet Sci. Lett. 196, 83-98.Google Scholar
  150. Millot R., Gaillardet J., Dupr é B., and All ègre C. J. (2003) Northern latitude chemical weathering rates: clues from the Mackenzie river basin, Canada. Geochim. Cosmochim. Acta 67, 1305-1329.Google Scholar
  151. Mogollon J. L., Perez D. A., Lo Monaco S., Ganor J., and Lasaga A. C. (1994) The effect of pH, HClO4 , HNO3 and ΔGr on the dissolution rate of natural gibbsite using column experiments. Mineral. Mag. 58A, 619-620.Google Scholar
  152. Mohr F., 1875. Geschichte der Erde, 2. Aufl. Verlag Max Cohen & Sohn, Bonn, xx + 544 pp.Google Scholar
  153. Mook W. G. and Tan F. C. (1991) Stable carbon isotopes in rivers and estuaries. In Biogeochemistry of Major World Rivers (eds. E. T. Degens, S. Kempe and J. E. Richey). SCOPE 42 (Scientific Committee On Problems of the Environment), Wiley, Chichester, Chapter 11.Google Scholar
  154. Mook W. G., Bommerson J. C., and Staverman W. H. (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169-176.Google Scholar
  155. Morse J. W. and Arvidson R. S. (2002) The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci. Rev. 58, 51-84.Google Scholar
  156. Morse J. W. and Mackenzie F. T. (1990) Geochemistry of Sedimentary Carbonates. Elsevier, New York, xvi + 707 pp.Google Scholar
  157. Mortatti J. and Probst J.-L. (2003) Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations. Chem. Geol. 197, 177-196.Google Scholar
  158. Mottl M. J. (2003) Partitioning of energy and mass fluxes between mid-ocean ridge axes and flanks at high and low temperature. In Energy and Mass Transfer in Marine Hydrothermal Systems (eds. P. E. Halbach, V. Tunnicliffe and J. R. Hein). Dahlem University Press, Berlin, pp. 271-286.Google Scholar
  159. Munhoven G. (2002) Glacial-interglacial changes of continental weathering; estimates of the related CO2 and HCO3 − flux variations and their uncertainties. Global Planet. Change 33, 155-176.Google Scholar
  160. Munk W. H. (1966) Abyssal recipes. Deep Sea Res. 13, 707-730.Google Scholar
  161. Nakićenović N. and others (2000) Emissions Scenarios, a Special Report of Working Group III of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, 599 pp.Google Scholar
  162. Nill D. (1997) Valuation of erosion-determining-factors and their quantitative influence on soil loss in tropical Africa. In Soils and environment: soil processes from mineral to landscape scale (eds. K. Auerswald, H. Stanjek and J. M. Bigham). Adv. Geoecol. 30, 23-38.Google Scholar
  163. Oliver L., Harris N., Bickle M., Chapman H., Dise N., and Horstwood M. (2003) Silicate weathering rates decoupled from the 87 Sr/86 Sr ratio of the dissolved load during Himalayan erosion. Chem. Geol. 201, 119-139.Google Scholar
  164. Oliver M. K. (2002) What is the chemical composition of lake Malawi water? How does it compare with lakes Victoria and Tanganyika?
  165. Blick Jr. D. J., Linthurst R. A., DeHaan M. D., and Omernik J. M. (1986) Characteristics of Lakes in the Eastern United States, Vol. II: Lakes Sampled and Descriptive Statistics for Physical and Chemical Variables. U. S. Environmental Protection Agency, Washington, DC, EPA/600/4-86/007b.Google Scholar
  166. Oxburgh R., Drever J. I., and Sun Y.-T. (1994) Mechanism of plagioclase dissolution in acid solution at 25 C. Geochim. Cosmochim. Acta 58, 661-669.Google Scholar
  167. Petit J.-R., Jouzel J., Raynaud D., Barkov N. I., Barnola J.-M., Basile I., Bender M., Chappellaz J., Devis M., Delaygue G., Delmotte G. M., Kotlyakov V. M., Legrand M., Lipenkov V. Y., Lorius C., Pepin L., Ritz C., Saltzman E., and Stievenard M. (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429-436.Google Scholar
  168. Pettijohn F. J. (1957) Sedimentary Rocks, 2nd edition. Harper, New York, xvi + 718 pp.Google Scholar
  169. Plummer L. N., Wigley T. M. L., and Parkhurst D. L. (1978) The kinetics of calcite dissolution in CO2 -water systems at 5 and 60 C and 0.0 to 1.0 atm CO2 . Am. J. Sci. 278, 179-216.Google Scholar
  170. Post W., Emmanuel W., Zinke P., and Stangenberger A. (1982) Soil carbon pools and world life zones. Nature 298, 156-159.Google Scholar
  171. Powers L. A., Johnson T. C., Werne J. P., Casta ñeda I. S., Ellen C. Hopmans E. C., Sinninghe Damst é J. S., and Schouten S. (2005) Large temperature variability in the southern African tropics since the last glacial maximum. Geophys. Res. Lett. 32, L08706, doi:10.1029/2004GL022014.Google Scholar
  172. Probst J.-L. and Brunet F. (2005) δ13 C tracing of dissolved inorganic carbon sources in major world rivers. Abs. 15th Ann. Goldschmidt Conf. Geochim. Cosmochim. Acta 69 (Suppl. 1), A726.Google Scholar
  173. Prospero J. M. (1981) Eolian transport to the world ocean. In The Sea: The Oceanic Lithosphere, Vol. 7 (ed. C. Emiliani). Wiley, New York, pp. 801-874.Google Scholar
  174. Rankama K. and Sahama Th. G. (1950) Geochemistry. University Chicago Press, Chicago, IL, xvi + 912 pp.Google Scholar
  175. Raymond P. A. and Cole J. J. (2003) Increase in the export of alkalinity from North America’s largest river. Science 301, 88-91.Google Scholar
  176. Rea D. K., Hovan S. A., and Janecek T. R. (1994) Late quaternary flux of eolian dust to the pelagic ocean. In Geomaterial Fluxes on the Surface of the Earth (eds. W. W. Hay and others). Studies in Geophysics, National Research Council, National Academy Press, Washington, DC, pp. 116-123.Google Scholar
  177. Richey J. E. (1983) The phosphorus cycle. In The Major Biogeochemical Cycles and their Interactions (eds. B. Bolin and R. B. Cook). Wiley, Chichester, pp. 51-56.Google Scholar
  178. Rightmire C. T. (1978) Seasonal variation in pCO2 and 13 C content of soil atmosphere. Water Resour. Res. 14, 691-692.Google Scholar
  179. Rimstidt J. D. and Barnes H. L. (1980) The kinetics of silica-water reactions. Geochim. Cosmochim. Acta 44, 1683-1700.Google Scholar
  180. Robie R. A., Hemingway B. S., and Fisher J. R. (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. U.S. Geol. Surv. Bull. 1452, 1-456.Google Scholar
  181. Rufe E. and Hochella Jr. M. F. (1999) Quantitative assessment of reactive surface area of phlogopite during acid dissolution. Science 285, 874-876.Google Scholar
  182. Rudnick R. L. and Gao S. (2003) Composition of the continental crust. In Treatise on Geochemistry, Vol. 3 (ed. J. I. Drever). Elsevier, Amsterdam, pp. 1-64.Google Scholar
  183. Ruttenberg K. C. (2004) The global phosphorus cycle. In Treatise on Geochemistry, Vol. 8 (ed. W. Schlesinger). Elsevier, Amsterdam, pp. 585-643.Google Scholar
  184. Ruttenberg K. C. and Canfield D. E. (1994) Chemical distribution of phosphorus in suspended particulate matter from twelve North American rivers: evidence for bioavailability of particulate-P. EOS, Trans. Am. Geophys. Un. 69, 1235.Google Scholar
  185. Schnoor J. L. (1990) Kinetics of chemical weathering; a comparison of laboratory and field weathering rates. In Aquatic Chemical Kinetics (ed. W. Stumm), Wiley, New York, pp. 475-504.Google Scholar
  186. Scholl D. W. and von Huene R. (2004) Exploring the implications for continental basement tectonics if estimated rates of crustal removal (recycling) at Cenozoic subduction zones are applied to Phanerozoic and Precambrian convergent ocean margins. Abs. 17th International Basement Tectonics Association Conference 2004: 4-D Framework of the Continental Crust - Integrating Crustal Processes Through Time. Oak Ridge, Tennessee, pp. 33-36.
  187. Schott J., Berner R. A., and Sjöberg E. L. (1981) Mechanism of pyroxene and amphibole weathering: I, Experimental studies of iron-free minerals. Geochim. Cosmochim. Acta 45, 2123-2135.Google Scholar
  188. Shaw D. B. and Weaver C. E. (1965) The mineralogical composition of shales. J. Sed. Petrology 35(1), 213-222.Google Scholar
  189. Shiklomanov I. A. (1993) World fresh water resources. In Water in Crisis; A Guide to the World’s Fresh Water Resources (ed. P. H. Gleick). Oxford University Press, New York, pp. 13-24.Google Scholar
  190. Shiraki R., Rock P. A., and Casey W. H. (2000) Dissolution kinetics of calcite in 0.1M NaCl solution at room temperature: an atomic force microscopic (AFM) study. Aquatic Geochem. 6, 87-108.Google Scholar
  191. Siegel D. I. and Pfannkuch H. O. (1984) Silicate mineral dissolution at pH 4 and near standard temperature and pressure. Geochim. Cosmochim. Acta 48, 197-201.Google Scholar
  192. Siegenthaler U. and Oeschger H. (1987) Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. Tellus 39B, 140-154.Google Scholar
  193. Sj öberg E. L. (1976) A fundamental equation for calcite dissolution kinetics. Geochim. Cosmochim. Acta 40, 441-447.Google Scholar
  194. Sj öberg E. L. and Rickard D. T. (1984) Temperature-dependence of calcite dissolution kinetics between 1 C and 62 C at pH 2.7 to 8.4 in aqueous solutions. Geochim. Cosmochim. Acta 48, 485-493.Google Scholar
  195. Smith, S. V., Renwick, W. H., Buddemeier, R. W., and Crossland C. J. (2001) Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Global Biogeochem. Cycles 15(3), 697-707.Google Scholar
  196. Stallard R. F. (1988) Weathering and erosion in the humid tropics. In Physical and Chemical Weathering in Geochemical Cycles (eds. A. Lerman and M. Meybeck). Kluwer, Dordrecht, pp. 225-246.Google Scholar
  197. Sternbeck J. and Sohlenius G. (1997) Authigenic sulfide and carbonate mineral formation in Holocene sediments of the Baltic sea. Chem. Geol. 135, 55-73.Google Scholar
  198. Stumm W. and Morgan J. J. (1981) Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters, 2nd edition. Wiley, New York, xvi + 780 pp.Google Scholar
  199. Sutheimer S. H., Maurice P. A., and Zhou Q. (1999) Dissolution of well and poorly crystallized kaolinites; Al speciation and effects of surface characteristics. Am. Mineral. 84, 620-628.Google Scholar
  200. Sverdrup H. U. (1990) The Kinetics of Base Cation Release Due to Chemical Weathering. Lund University Press, Lund, Sweden, 245 pp.Google Scholar
  201. Swoboda-Colberg N. G. and Drever J. I. (1993) Mineral dissolution rates in plotscale field and laboratory experiments. Chem. Geol. 105, 51-69.Google Scholar
  202. Tang R., Henneman Z. J., and Nancollas G. H. (2003) Constant composition kinetics study of carbonated apatite dissolution. J. Crystal Growth 249, 614-624.Google Scholar
  203. Tardy Y., Bustillo V., and Boeglin J.-L. (2004) Geochemistry applied to the watershed survey: hydrograph separation, erosion and soil dynamics. A case study: the basin of the Niger river, Africa. Appl. Geochem. 19, 469-518.Google Scholar
  204. UCAR/OIES (1991) Changes in time in the temperature of the Earth. University Center for Atmospheric Research, Office for Interdisciplinary Earth Studies, Boulder, Colo. EarthQuest 5(1).
  205. Urey H. C. (1952) The Planets: Their Origin and Development. Yale University Press, New Haven, CT, xvii + 245 pp.Google Scholar
  206. Valsami-Jones E., Ragnarsdottír K. V., Putnis A., Bosbach D., Kemp A. J., and Cressey G. (1998) The dissolution of apatite in the presence of aqueous metal cations at pH 2-7. Chem. Geol. 151, 215-233.Google Scholar
  207. Van Cappellen P., Gaillardet, J., and Rabouille C. (1993) Biogeochemical transformations in sediments: kinetic models of early diagenesis. In Interactions of C, N, P and S Biogeochemical Cycles and Global Change (eds. R. Wollast, F. T. Mackenzie and L. Chou). NATO ASI Series. Series I: Global Environmental Change 4, 401-445, Springer-Verlag, Berlin.Google Scholar
  208. Veizer J. (1988) The evolving exogenic cycle. In Chemical Cycles in the Evolution of the Earth (eds. C. B. Gregor, R. M. Garrels, F. T. Mackenzie, and J. B. Maynard). Wiley, New York, pp. 175-261.Google Scholar
  209. Velbel M. A. (1985) Geochemical mass balances and weathering rates in forested watersheds of the southern Blue Ridge. Am. J. Sci. 285, 904-930.Google Scholar
  210. Ver L. M. (1998) Global kinetic models of the coupled C, N, P, and S biogeochemical cycles: implications for global environmental change. Ph. D. Thesis, University Hawaii, Honolulu, HI, xxi + 681 pp.Google Scholar
  211. Ver L. M., Mackenzie F. T., and Lerman A. (1999) Biogeochemical responses of the carbon cycle to natural and human perturbations: past, present and future. Am. J. Sci. 299, 762-801.Google Scholar
  212. Vidic N. (1998) Soil-age relationships and correlations: comparison of chronosequences in the Ljubljana basin, Slovenia and USA. Catena 34, 113-129.Google Scholar
  213. von Huene R. and Scholl D. W. (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 29, 279-316.Google Scholar
  214. Votintsev K. K. (1993) On the natural conditions of lake Baikal in connection with the development of its water quality standard. Water Resour. 20, 595-604.Google Scholar
  215. Walker J. C. G. (1991) Numerical Adventures with Geochemical Cycles. Oxford University Press, New York.Google Scholar
  216. Walling E. (1983) The sediment delivery problem. J. Hydrol. 65, 209-237.Google Scholar
  217. Wedepohl H. K. (1995) The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217-1232.Google Scholar
  218. Weiler R. R. and Chawla V. K. (1969) Dissolved mineral quality of great lakes waters. Proc. 12th Conf. Great Lakes Res., pp. 801-818, International Association of Great Lakes Research, Ann Arbor, MI.Google Scholar
  219. Weisstein E. W. (2005) Sphere Packing. From MathWorld - A Wolfram Web Resource.
  220. Wahlen M. (2002) Carbon-Isotopic Composition of Atmospheric CO2 Since the Last Glacial Maximum. National Snow and Ice Data Center, digital media, Boulder, CO, wahlen/index.html.
  221. White A. F. (1995) Chemical weathering rates in soils. In Chemical Weathering Rates of Silicate Minerals (eds. A. F. White and S. L. Brantley). Mineralogical Society of America, Washington, DC, Rev. Mineralogy 31, 407-458.Google Scholar
  222. White A. F. and Brantley S. L. (eds.) (1995) Chemical Weathering Rates of Silicate Minerals. Mineralogical Society of America., Washington, DC, Rev. Mineralogy 31,1-584.Google Scholar
  223. White A. F. and Brantley S. L. (2003) The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chem. Geol. 202,479-506.Google Scholar
  224. White A. F., Blum A. E., Schulz M. S., Bullen T. D., Harden J. W., and Peterson M. L. (1996) Chemical weathering of a soil chronosequence on granitic alluvium: 1. Reaction rates based on changes in soil mineralogy. Geochim. Cosmochim. Acta 60,2533-2550.Google Scholar
  225. White A. F., Bullen T. D., Schulz M. S., Blum A. E., Huntington T. G., and Peters N. E. (2001) Differential rates of feldspar weathering in granitic regoliths. Geochim. Cosmochim. Acta 65, 847-869.Google Scholar
  226. Whitmarsh J. and Govindjee (1995) The photosynthetic process. In Concepts in Photobiology: Photosynthesis and Photomorphogenesis (eds. G. S. Singhal, G. Renger, S. K. Soppory, K.-D. Irrgang and Govindjee). Kluwer, Dordrecht, pp. 11-51.Google Scholar
  227. Wieland E. and Stumm W. (1992) Dissolution kinetics of kaolinite in acidic aqueous solutions at 25 C. Geochim. Cosmochim. Acta 56, 3357-3363.Google Scholar
  228. Wischmeier W. H. and Smith D. D. (1978) Predicting rainfall erosion losses - a guide to conservation planning. U. S. Department of Agriculture, Agriculture Handbook no. 537, 58 pp.Google Scholar
  229. Woodruff N. P. and Siddoway F. H. (1965) A wind erosion equation. Soil Sci. Soc. Am. Proc. 29, 602-608.CrossRefGoogle Scholar
  230. Wu L. and Huh Y. (2007) Dissolved reactive phosphorus in large rivers of East Asia. Biogeochemistry 85, 263-288.Google Scholar
  231. Yang C., Telmer K., and Veizer J. (1996) Chemical dynamics of the “St. Lawrence” riverine system; δDH2 O , δ18 OH2 O , δ13 CDIC , δ34 Ssulfate , and dissolved 87 Sr/86 Sr. Geochim. Cosmochim. Acta 60(5), 851-866.Google Scholar
  232. Yang D. W., Kanae S., Oki T., Koike T., and Musiake K. (2003) Global potential soil erosion with reference to land use and climate changes. Hydrol. Process. 17(4), 2913-2928.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Abraham Lerman
    • 1
  • Lingling Wu
    • 1
  1. 1.Department of Earth and Planetary SciencesNorthwestern UniversityUSA

Personalised recommendations