Quantitative Approaches to Characterizing Natural Chemical Weathering Rates

  • Art F. White

Silicate minerals, constituting more than 90% of the rocks exposed at the earth’s surface, are commonly formed under temperature and pressure conditions that make them inherently unstable in surficial environments. Undoubtedly, the most significant aspect of chemical weathering resulting from this instability is the formation of soils which makes life possible on the surface of the earth. Many soil macronutrients in this “critical zone” are directly related to the rate at which primary minerals weather (Huntington, 1995; Chadwick et al., 2003). Chemical weathering also creates economically significant ore deposits, such as those for Al and U (Samma, 1986; Misra, 2000), as well as potentially releasing high concentrations of toxic trace elements such as Se and As (Frankenberger and Benson, 1994). Silicate weathering is a significant buffer to acidification caused by atmospheric deposition (Driscoll et al., 1989) and from land use practices (Farley and Werritty, 1989). Atmospheric CO2 levels have been primarily controlled by the balance between silicate weathering and the rate of volcanic inputs from the Earth’s interior, a relationship which may explain long-term climate stability (Ruddiman, 1997)


Pore Water Silicate Mineral Chemical Weathering Congo Basin Natural Weathering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandre A., Meunier J. D., Colin F., and Koud J. M. (1997) Plant impact on the biogeochemical cycle of silcon and related weathering processes. Geochim. Cosmochim. Acta 61, 677-682.Google Scholar
  2. Allegre C. J., Hart S. R., and Minster J. F. (1983) Chemical structure and evolution of the mantle continents determined by inversion of Nd and Sr isotopes 1. Theoretical methods. Earth Planet. Sci. Lett. 66, 177-190.Google Scholar
  3. Anderson S. P., Drever J. I., and Humphrey N. F. (1997) Chemical weathering in glacial enviroments. Geology 25, 399-402.Google Scholar
  4. April R., Newton R., and Coles L. T. (1986) Chemical weathering in two Adiron-dack watersheds: past and present-day rates. Geol. Soc. Amer. Bult. 97, 1232-1238.Google Scholar
  5. April R. and Keller D. (1993) Mineralogy of the rhizosphere in forest soils of the eastern United States. Biogeochemistry 9, 1-18.Google Scholar
  6. Bandstra J., Buss H., Moore J., Hausrath E., Liermann L., Navarre A., Jang J., and Brantley S. (2007) Fitting kinetic data for geochemical reactions. In Kinetics of Geochemical Systems (ed. S. F. Brantley, J. Kubiciki, and A. F. White). Springer Publishing, New York.Google Scholar
  7. Banfield J. F. and Barker W. W. (1994) Direct observation of reactant-product inter-faces formed in natural weathering of exsolved, defective amphibole to smectite: evidence for episodic, isovolumetric reactions involving structural inheritance. Geochim. Cosmochim. Acta 58, 1419-1429.Google Scholar
  8. Banfield J. F. and Nealson K. H. (1997) Geomicrobiology: interactions between microbes and minerals. In Reviews in Mineralogy, Vol. 35. Mineralogical Society of America, Washington, DC.Google Scholar
  9. Barker W. W. and Banfield J. F. (1995) Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in litho-biontic communities. Chem. Geol. 132, 55-69.Google Scholar
  10. Barth T. F. (1961) Abundance of the elements, aerial averages and geochemical cycles. Geochim. Cosmochim. Acta 23, 1-8.Google Scholar
  11. Beauvais A. (1999) Geochemical balance of lateritization processes and climatic signatures in weathering profiles overlain by ferricretes in Central Africa. Geochim. Cosmochim. Acta 63, 3939-3957.Google Scholar
  12. Bennett P. C. (1991) Fate of silicate minerals in a peat bog. Geology 19, 328-331.Google Scholar
  13. Bennett P. C., Hiebert F. K., and Choi W. J. (1996) Microbial colonization and weathering of silicates in a petroleum-contaminated groundwater. Chem. Geol. 132,45-53.Google Scholar
  14. Berner E. K. and Berner R. A. (1996) Global Environment: Water, Air and Geochemical Cycles. Prentice-Hall, New York.Google Scholar
  15. Berner R. A. and Cochran M. F. (1998) Plant-induced weathering of Hawaiian basalts. J. Sediment. Res. 68, 723-726.Google Scholar
  16. Berner E. K., Berner R. A., and Molton K. L. (2004) Plants and mineral weathering: past and present. In Surface and Groundwater, Weathering, Erosion and Soils (ed. J. I. Drever) Elsevier, Amsterdam, pp. 69-188.Google Scholar
  17. Blum A. E. and Lasaga A. C. (1987) Monte Carlo simulations of surface reaction rate laws (ed. W. Stumm), Wiley & Sons, New York, pp. 255-291.Google Scholar
  18. Blum A. E. and Stillings L. L. (1995) Feldspar dissolution kinetics. In Chemical Weathering Rates of Silicate Minerals (ed. A. F. White and S. L. Brantley) Re-views in Mineralogy, Vol. 31, Mineralogical Society of America, Washington, DC, pp. 291-346.Google Scholar
  19. Blum J. D. and Erel Y. (1997) Rb-Sr isotope systematics of a granitic soil chronosequence: the importance of biotite weathering. Geochim. Cosmochim. Acta 61, 3193-3204.Google Scholar
  20. Bluth G. S. and Kump L. R. (1994) Lithologic and climatic controls of river chemistry. Geochim. Cosmochim. Acta 58, 2341-2359.Google Scholar
  21. Borman F. H., Wang D., Bormann F. H., Benoit G., April R., and Snyder M. C. (1998) Rapid plant-induced weathering in an aggrading experimental ecosystem. Biogeochemistry 43, 129-155.Google Scholar
  22. Bowser C. J. and Jones B. J. (2002) Mineralogical controls on the composition of natural waters dominated by silicate hydrolysis. Am. J. Sci. 302, 582-662.Google Scholar
  23. Brady P. V. (1991) The effect of silicate weathering on global temperature and atmospheric CO2 . J. Geophys. Res. 96, 18101-18106.Google Scholar
  24. Brady P. V. and Carroll S. A. (1994) Direct effects of CO2 and temperature on silicate weathering: possible implications for climate control. Geochim. Cosmochim. Acta 58, 1853-1863.Google Scholar
  25. Brady P. V., Dorn R. I., Brazel A. J., Clark J., Moore R. B., and Glidewell T. (1999) Direct measurement of the combined effects of lichen, rainfall and temperature on silicate weathering. Geochim. Cosmochim. Acta 63, 3293-3305.Google Scholar
  26. Brantley S. L., Crane S. R., Creear D., Hellmann R., and Stallard R. (1986) Dissolu-tion at dislocation etch pits in quartz. Geochim. Cosmochim. Acta 50, 2349-2361.Google Scholar
  27. Brantley S. L., Blai A. C., Cremens D. L., MacInnis I., and Darmody R. G. (1993) Natural etching rates of feldspar and hornblende. Aquat. Sci. 55, 262-272.Google Scholar
  28. Brantley S. L., White A. F., and Hodson M. E. (1999) Surface area of primary sili-cate minerals. In Growth, Dissolution and Pattern Formation in Geosystems (ed. B. Jamtveit and P. Meakin), Kluwer Academic Publishers, Amsterdam, pp. 291-326.Google Scholar
  29. Brantley S. L., Bau M., Yau, S., and Alexander B. (2001) Interpreting kinetics of groundwater-mineral interaction using major element, trace element and isotopic tracers. In Water-Rock Interaction 10 (ed. R. Cidu), Balkema, Rotterdam, pp. 13-18.Google Scholar
  30. Brantley S. L. and Conrad C. F. (2007) Analysis of rates of chemical reactions. In Kinetics of Geochemical Systems (ed. S. L. Brantley, J. Kubiciki, and A. F. White). Springer Publications, New York.Google Scholar
  31. Brenner D. L., Amundson R., Baisden W. T., Kendall C., and Harden J. (2001) Soil N and 15 N variations with time in a California grassland ecosystem. Geochim. Cosmochim. Acta 65, 4171-4186.Google Scholar
  32. Brimhall G. H., Lewis C. J., Ford C., Bratt J., Taylor G., and Warin O. (1991) Quan-titative geochemical approach to pedogenesis: importance of parent material re-duction, volumetric expansion, and eolian influx in lateritization. Geoderma 51, 51-91.Google Scholar
  33. Brown D. J., Helme P. A., and Clayton M. K. (2003) Robust geochemical indices for redox and weathering on a granitic laterite landscape in Central Uganda. Geochim. Cosmochim. Acta 67, 2711-2723.Google Scholar
  34. Brown E. T., Stallard R. F., Larsen M. C., Raisbeck G. M., and Yiou F. (1995) Denudation rates determined from the accumulation of in situ produced 10 Be in the Luquillo Experimental Forest, Puerto Rico. Earth Planet. Sci. Lett. 129, 193-202.Google Scholar
  35. Bullen T. D. (1997) Chemical weathering of a soil chronosequence on granitic alluvium: II Mineralogic and isotopic constraints on the behavior of strontium. Geochim. Cosmochim. Acta 61, 291-306.Google Scholar
  36. Bullen T. D., Krabbenhoft D. P., and Kendal, C. (1996) Kinetic and mineralogic con-trols on the evolution of groundwater chemistry and 87 Sr/86 Sr in a sandy silicate aquifer, northern Wisconsin, USA. Geochim. Cosmochim. Acta 60, 1807-1821.Google Scholar
  37. Burch T. E., Nagy K. L., and Lasaga A. C. (1993) Free energy dependence of albite dissolution kinetics at 80 C, and pH 8.8. Chem. Geol. 105, 137-162.Google Scholar
  38. Burns D. A., Plummer L. N., McDonnell J. J., Busenberg E., Casile G. C., Kendall C., Hooper R. P., Freer J. E., Peters N. E., Beven K. J., and Schlosser P. (2003) The geochemical evolution of riparian groundwater in a forested Piedmont catchment. Groundwater 41, 913-925.Google Scholar
  39. Carson M. A. and Kirby K. T. (1972) Hillslope, Form and Processes. Cambridge University Press, New York.Google Scholar
  40. Casey W. H. and Sposito G. (1992) On the temperature dependence of mineral dissolution rates. Geochim. Cosmochim. Acta 56, 3825-3830.Google Scholar
  41. Casey W. H. and Westrich H. R. (1992) Control of dissolution rates of orthosilicate minerals by divalent metal-oxygen bonds. Nature 355, 157-159.Google Scholar
  42. Chadwick O. A., Brimhall G. H., and Hendricks D. M. (1990) From black box to a grey box: a mass balance interpretation of pedogenesis. Geomorphology 3, 369-390.Google Scholar
  43. Chadwick O. A., Gavenda R. T., Kelly E. F., Ziegler K., Olson C. G., Elliot W. C., and Hendricks D. M. (2003) The impact of climate on the biogeochemical functioning of volcanic soils. Chem. Geol. 202, 195-223.Google Scholar
  44. Clayton J. L. (1986) An estimate of plagioclase weathering rate in the Idaho batholith based upon geochemical transport rates. In Rates of Chemical Weath-ering of Rocks and Minerals (S. Colman and D. Dethier eds.) Academic Press, Orlando, pp. 453-466.Google Scholar
  45. Cleaves E. T. (1993) Climatic impact on isovolumetric weathering of a coarsegrained schist in the northern Piedmont Province of the central Atlantic states. Geomorphology 8, 191-198.Google Scholar
  46. Clow D. W. and Drever J. I. (1996) Weathering rates as a function of flow through an alpine soil. Chem. Geol. 132, 131-141.Google Scholar
  47. Delvaux B., Herbillion A. J., and Vielvoye L. (1989) Characterization of a weathering sequence of soils derived from volcanic ash in Cameroon, taxonomic, mineralogical and agronomic implications. Geoderma 45, 375-388.Google Scholar
  48. Desert C., Dupre B., Francois L., Schott J., Gaillard J., Chakrapani G., and Bajpai S. (2001) Erosion of Deccan Traps determined by river geochemistry: impact on global climate and the 87 Sr/86 Sr ratio of seawater. Earth and Planetary Science Letters 188, 459-474.Google Scholar
  49. Dethier D. P. (1986) Weathering rates and the chemical flux from catchment in the Pacific Northwest, U.S.A. In Rates of Chemical Weathering of Rocks and Minerals (eds. S. Colman and D. Dethier) Academic Press, Orlando, pp. 503-530.Google Scholar
  50. Dorn R. I. and Brady P. V. (1995) Rock-based measurement of temperature-dependent plagioclase weathering. Geochim. Cosmochim. Acta 59, 2847-2852.Google Scholar
  51. Drever J. I. (1994) The effect of land plants on weathering rates of silicate minerals. Geochim. Cosmochim. Acta 58, 2325-2332.Google Scholar
  52. Drever J. I. and Clow D. W. (1995) Weathering rates in catchments. In Chemical Weathering Rates of Silicate Minerals (ed. A. F. White and S. L. Brantley), Reviews in Mineralogy 31 Mineral. Soc. Amer., Washington, DC, pp 463-481.Google Scholar
  53. Driscoll C. T., Likens G. E., Hedlin L. O., Eaton J. S., and Bormann F. H. (1989) Changes in the chemistry of surface waters. Environmental Sci. Technol. 23, 137-142.Google Scholar
  54. Driscoll C. T., van Breemen N., and Mulder J. (1985) Aluminum chemistry in a forested spodosol. Soil Sci. Soc. Am. J. 49, 437-444.Google Scholar
  55. Dunne T. (1978) Rates of chemical denudation of silicate rocks in tropical catchments. Nature 274, 244-246.Google Scholar
  56. Dupre B., Gaillardet J., Rousseau J., and Allegre C. J. (1996) Major and trace elements of river-borne material: the Congo basin. Geochim. Cosmochim. Acta 60, 1301-1321.Google Scholar
  57. Duzgoren-Aydin N. S., Aydin A., and Malpas J. (2002) Re-assessment of chemical weathering indices: case study on pyroclastic rocks of Hong Kong. Eng. Geol. 63,99-109.Google Scholar
  58. Edmond J. M., Palmer M. R., Measures C. I., Grant B., and Stallard R. F. (1995) The fluvial geochemistry and denudation rate of the Guyana Shield in Venezuela, Colombia, and Brazil. Geochim. Cosmochim. Acta 59, 3301-3325.Google Scholar
  59. Farley D. A. and Werritty A. (1989) Hydrochemical budgets for the Loch Dee exper-imental catchments, southwest Scotland (1981-1985). J. Hydrol. 109, 351-368.Google Scholar
  60. Fedo C. M., Nesbitt H., W., and Yong G. M. (1995) Unraveling the effects of potas-sium metasomatism in sedimentary rocks and paleosols, implications for pale-oweatherng conditions and provenance. Geology 23, 921-924.Google Scholar
  61. Flury M. and Fluhler H. (1994) Susceptibility of soils to preferential flow of water: a field study. Water Resour. Res. 30, 1945-1954.Google Scholar
  62. Frankenberger W. T. and Benson S. (1994) Selenium in the Environment, Marcel Dekker, New York.Google Scholar
  63. Fry E. J. (1927) The mechanical action of crustaceous lichens on substrata of shale, schist, gneiss and obsidian. Ann. Botany 41, 437-460.Google Scholar
  64. Gaillardet J., Dupre E. B., and Allegre C. J. (1995) A global geochemical mass budget applied to the Congo basin rivers: erosion rates and continental crust composition. Geochimica Cosmochimica. Acta 59, 3469-3485.Google Scholar
  65. Gaillardet J., Dupre E. B., and Allegre C. J. (1999) Geochemistry of large river sediments: silicate weathering or recycling tracer? Geochimica. Cosmochimica. Acta 63, 4035-4051.Google Scholar
  66. Gaillardet J. (2007) Isotope geochemistry as a tool for deciphering kinetics of waterrock interaction. In Kinetics of Geochemical Systems (ed. S. L. Brantley, J. Kubiciki, and A. F. White). Springer Publications, New York.Google Scholar
  67. Gardner L. R. (1980) Mobilization of Al and Ti during weathering-isovolumetric geochemical evidence. Chem. Geol. 30, 151-165.Google Scholar
  68. Garrels R. M. and Mackenzie F. T. (1967) Origin of the chemical composition of some springs and lakes. In Equilibrium concepts in natural water systems, Adv. Chem Ser, Vol. 67 (ed. W. Stumm), Amer. Chem. Soc., Washington, DC, pp. 222-242Google Scholar
  69. Gislason R. S. and Eugster H. P. (1987) Meteoric water-basalt interactions. I: A laboratory study. Geochim. Cosmochim. Acta 51, 2827-2840.Google Scholar
  70. Goldlich S. S. (1938) A study of Rock Weathering. J. Geol. 46, 17-58.Google Scholar
  71. Griffiths R. P., Baham J. E., and Caldwell B. A. (1994) Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biology and Biochemistry 26, 331-337.Google Scholar
  72. Harden, J. W. (1987) Soils developed in granitic alluvium near Merced California. U. S. Geologic Survey Bult. 1590A 104p.Google Scholar
  73. Harrois L. and Moore J. M. (1988) The C. I. W. indices: a new chemical index of weathering. Sediment. Geol. 55, 319-322.Google Scholar
  74. Heimsath A. M., Chappell, J. Dietrich W. E., Nishiizumi K., and Finkel R. C. (2000) Soil production on a retreating escarpment in southeastern Australia. Geology 28, 787-790.Google Scholar
  75. Helgeson H. C. (1971) Kinetics of mass transfer among silicates and aqueous solutions. Geochim. Cosmochim. Acta 35, 421-469.Google Scholar
  76. Hillel D. (1982) Introduction to Soil Physics. Academic Press, Orlando.Google Scholar
  77. Hodson M. E. (2002) Experimental evidence for the mobility of Zr and other trace elements in soils. Geochim. Cosmochim. Acta 66, 819-828.Google Scholar
  78. Hooper R. P., Christophersen N., and Peters N. E. (1990) Modeling stream water chemistry as a mixture of soil water end-members: an application to the Panola Mountain Catchment, Georgia, U.S.A. J. of Hydrol. 116, 321-343.Google Scholar
  79. Huh Y., Panteleyev G., Babich D., Zaitsev A., and Edmond J. (1998) The fluvial geochemistry of the rivers of Eastern Siberia: II. Tributaries of the Lena, Omloy, Yana, Indigirka, Kolyma, and Anadyr draining the collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges. Geochim. Cosmochim. Acta 62, 2053-2075.Google Scholar
  80. Huntington T. G. (1995) Carbon sequestration in an aggrading forest ecosystem in the southern USA. Soil Sci. Soc. Amer. J. 59, 1459-1467.Google Scholar
  81. Jenny H. (1941) Factors of soil formation. McGraw-Hill, New York.Google Scholar
  82. Johnsson M. J., Ellen S. D., and McKittrick M. A. (1993) Intensity and duration of chemical weathering: an example from soil clays of the southeastern Koolau Mountains, Oahu, Hawaii. Geol. Soc. Am. Spec. Pub. 284, 147-170.Google Scholar
  83. Jongmans A. G., Van Breeman N., Lundstrom U., van Hess P. A. W., Srinivason M., Unestam T., Giesle R., Melkerud P. A., and Olsson M. (1997) Rock-eating fungi. Nature 389, 682-683.Google Scholar
  84. Katz B. G., Bricker O. P., and Kennedy M. M. (1985) Geochemical mass-balance relationships for selected ions in precipitation and stream water, Catoctin Mountains, Maryland. Am. J. Sci. 285, 931-962.Google Scholar
  85. Katz B. G. (1989) Influence of mineral weathering reactions on the chemical composition of soil water, springs, and groundwater, Catoctin Mountains, Maryland. Hydrol. Process. 3, 185-202.Google Scholar
  86. Keating, E. H. and Bahr, J. M. (1998) Using reactive solutes to constrain ground-water flow models at a site in northern Wisconsin. Water Resour. Res. 34, 3561-3571.Google Scholar
  87. Kelly E. F., Chadwick O. A., and Hilinski T. E. (1998) The effect of plants on mineral weathering. Biogeochemistry 42, 21-53.Google Scholar
  88. Kenoyer G. J. and Bowser C. J. (1992a) Groundwater evolution in a sandy silicate aquifer in Northern Wisconsin 1. Patterns and rates of change. Water Resour. Res. 28,579-589.Google Scholar
  89. Kenoyer G. J. and Bowser C. J. (1992b) Groundwater chemical evolution in a sandy silicate aquifer in Northern Wisconsin 2. Reaction modeling. Water Resour. Res. 28,591-600.Google Scholar
  90. Kieffer B., Jove C. F., Oelkers E. H. and Schott J. (1999) An experimental study for the reactive surface area of the Fontainebleau sandstone as a function of porosity, permeability, and fluid flow rate. Geochim. Cosmochim. Acta 63, 3525-3534.Google Scholar
  91. Kim K. (2002) Plagioclase weathering in the groundwater system of a sandy silicate aquifer. Hydro. Process 16, 1793-1806.Google Scholar
  92. Kirkwood S. E. and Nesbitt H. W. (1991) Formation and evolution of soils from an acidified watershed: Plastic Lake, Ontario, Canada. Geochim. Cosmochim. Acta 55,1295-1308.Google Scholar
  93. Kubicki J. (2007) Transiiton state theory and molecular orbital calculations applied to rates and reaction mechanisms in geochemical kineitics. In Kinetics of Geo-chemical Systems (ed. S. F. Brantley, J. Kubiciki, and A. F. White).Springer Publishing, New York.Google Scholar
  94. Kurtz A. C., Derry L. A., and Chadwick O. A. (2002) Germanium-silicon fractiona-tion in the weathering environment. Geochim. Cosmochim. Acta 66, 1525-1537.Google Scholar
  95. Lasaga A. C. (1984) Chemical kinetics of water-rock interaction. J. Geophys. Res. 89,4009-4025.Google Scholar
  96. Land M., Ingri J., and Ohlander B. (1999) Past and present weathering rates in northern Sweden. Appl. Geochem. 14, 761-774.Google Scholar
  97. Lee M. R., Hodson M. E., and Parsons I. (1998) The role of intragranular micro-textures and microstructures in chemical and mechanical weathering: direct com-parisons of experimentally and naturally weathered alkali feldspars. Geochim. Cosmochim. Acta, 62, 2771-2788.Google Scholar
  98. Lerman A. and Wu L. (2007) Kinetics of global geochemical cycles. In Kinetics of Geochemical Systems (ed. S. L. Brantley, J. Kubicki, and A. F. White), Springer Publications, New York.Google Scholar
  99. Likens G. E., Bormann F. H., Pierce R. S., Eaton J. S., and Johnson N. M. (1977) Biogeochemistry of a Forested Ecosystem. Springer-Verlag, Heidelberg.Google Scholar
  100. Louvat P. and Allegre C. J. (1998) Factors controlling present weathering rates: new contributions from basalt erosion studies. Mineral. Magazine 62A, 907-908.Google Scholar
  101. Lucas Y. (2001) The role of plants in weathering. Ann. Rev. Earth Planet. Sci. 29, 135-163.Google Scholar
  102. Luttge A. B. and Lasaga, A.C. (1999) An interferometric study of the dissolution kinetics of anorthite: the role of reactive surface area. Am. J. Sci. 299, 652-678.Google Scholar
  103. Luttge A. and Arvidson R. S. (2007) The mineral-water interface. In Kinetics of Geochemical Systems (ed. S. L. Brantley, J. Kubicki, and A. F. White), Springer Publications, New York.Google Scholar
  104. Maher K., DePaolo D. J. and Lin J. C. (2004) Rates of silicate dissolution in deep sea sediment: in situ measurment using 234 U/238 U of pore fluids. Geochim. Cosmochim. Acta 68, 4629-4648.Google Scholar
  105. Mast M. A., Drever J. I., and Barron J. (1990) Chemical weathering in the Loch Vale watershed, Rocky Mountain National Park, Colorado. Water Resour. Res. 26,2971-2978.Google Scholar
  106. Maurice P., Forsythe J., Hersman L., and Sposito G. (1996) Application of atomicforce microscopy to studies of microbial interactions with hydrous Fe(III)-oxides. Chem. Geol. 132, 33-43.Google Scholar
  107. McDowell W. H. and Asbury C. E. (1994) Export of carbon, nitrogen, and major ions from three tropical montane watersheds. Limnol. Oceanogr. 39, 111-125.Google Scholar
  108. Merrill G. P. (1906) A Treatise on Rocks, Rock Weathering and Soils. MacMillian, New York.Google Scholar
  109. Meyback M. (1994) Material Fluxes on the Surface of the Earth. National Academy of Sciences, Academy Press, New York.Google Scholar
  110. Millot R., Gaillardet J., Dupre B., and Allegre C. J. (2002) The global control of silicate weathering rates and the coupling of physical erosion: new insights from rivers of the Canadian Shield. Earth Planet. Lett. 196, 83-98.Google Scholar
  111. Misra K. C. (2000) Understanding Mineral Deposits. Kluwer Academic Publishers, New York.Google Scholar
  112. Mogk D. W. and Locke W. W. I. (1988) Application of auger electron spectroscopy (AES) to naturally weathered hornblende. Geochim. Cosmochim. Acta 52, 2537-2542.Google Scholar
  113. Murphy S. F., Brantley S. L., Blum A. E., White A. F., and Dong H. (1998) Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico. II Rate and mechanism of biotite weathering. Geochim. Cosmochim. Acta 62, 227-243.Google Scholar
  114. Nagy K. L., Blum A. E., and Lasaga A. C. (1991) Dissolution and precipitation kinetics of kaolinite at 80 C and pH 3. The dependence on the saturation state. Am. J. Sci. 291, 649-686.Google Scholar
  115. Negrel P., Allegre C. J., Dupre B., and Lewin E. (1993) Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: the Congo basin case. Earth Planet. Sci. Lett. 120, 59-76.Google Scholar
  116. Nesbitt H. W., Young G. M., McLennan S. M., and Keys R. R. (1996) Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J. Geol. 104, 525-542.Google Scholar
  117. Nesbitt H. W., Fedo C. M., and Young G. M. (1997) Quartz and feldspar stability, steady and non-steady state weathering and petrogenesis of siliciclastic sands and muds. J. Geol. 105, 173-191.Google Scholar
  118. Nugent M. A., Brantley S. L., Pantano C. G., and Maurice P. A. (1998) The influence of natural mineral coatings on feldspar weathering. Nature 396, 527-622.Google Scholar
  119. O’Brien A. K., Rice K. C., Bricker O. P., Kennedy M. M., and Anderson R. T. (1997) Use of geochemical mass balance modeling to evaluate the role of weathering in determining stream chemistry in five mid-Atlantic watersheds of different lithologies. Hydrol. Process. 11, 719-744.Google Scholar
  120. Oelkers E. H. and Schott J. (1995) Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysis. Geochim. Cosmochim. Acta 59, 5039-5053.Google Scholar
  121. Oelkers E. H. (2001) General kinetic description of multioxide silicate mineral and glass dissolution. Geochim. Cosmochim. Acta 65, 3703-3719.Google Scholar
  122. Oliva P., Viers J., and Dupre B. (2003) Chemical weathering in a granitic environment. Chem. Geol. 202, 225-256.Google Scholar
  123. Paces T. (1973) Steady-state kinetics and equilibrium between groundwater and granitic rock. Geochim. Cosmochim. Acta 37, 2641-2663.Google Scholar
  124. Paces T. (1986) Rates of weathering and erosion derived from mass balance in small drainage basins. In Rates of Chemical Weathering of Rocks and Minerals (ed. D. Dethier and S. Coleman) Academic Press, Orlando, pp. 531-550.Google Scholar
  125. Parker A. (1970) An index of weathering for silicate rocks. Geol. Magazine 107, 501-505.Google Scholar
  126. Parkhurst D. L. and Plummer L. N. (1993) Geochemical models. In Regional Ground-Water Quality (ed. W. M. Alley), Van Nostrand Reinhold, New York, pp. 199-225.Google Scholar
  127. Pavich M. J. (1986) Processes and rates of saprolite production and erosion on a foliated granitic rock of the Virginia Piedmont. In Rates of Chemical Weathering of Rocks and Minerals (ed. S. M. Dethier and D. P. Coleman), Academic Press. Orlando, pp. 551-590.Google Scholar
  128. Perg L. A., Anderson R. S., and Finkel R. C. (2001) Use of a new 10 Be and 26 Al inventory method to date marine terraces, Santa Cruz, California, USA. Geology 29,879-882.Google Scholar
  129. Plummer L., Prestemon E. C., and Parkhurst D. L. (1991) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow path. Water Resoures Investigation Report 91-4078, 227p.Google Scholar
  130. Plummer L. N., Prestemom E. C., and Parkhurst D. L. (1994) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow path. U. S. Geological Survey Open File Report 94-4169, 191p.Google Scholar
  131. Plummer L. N., Michel R. L., Turman, M. and Gyynn P. D. (1996) Environmental traces for age dating young ground water. In Regional Ground-Water Quality (ed. W. M. Alley), Van Nostrand Reinhold, New York, pp. 255-296.Google Scholar
  132. Price J. and Velbel M. A. (2003) Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chem. Geol. 196, 397-416.Google Scholar
  133. Rademacher L. K., Clark J. F., Hudson G. B., Erman D. C., and Erman N. A. (2001) Chemical evolution of shallow groundwater as recorded by springs, Sagehen basin, Nevada County, California. Chem. Geol. 179, 37-51.Google Scholar
  134. Rice K. C. and Bricker O. P. (1995) Seasonal cycles of dissolved constituents in the streamwater in two forested catchments in the mid-Atlantic region of the eastern USA. J. Hydrol. 170, 137-158.Google Scholar
  135. Rice K. C. and Hornberger G. M. (1998) Comparison of hydrochemical tracers to estimate source contributions to peak flow in a small forested headwater catchment. Water Resour. Res. 34, 1755-1766.Google Scholar
  136. Riebe C. S., Kirchner J. K., Granger D. E., and Finkel R. C. (2001) Strong tectonic and weak climate control of long-term weathering rates. Geology 29, 511-514.Google Scholar
  137. Riebe C. S., Kirchner J. K., and Finkel R. C. (2003) Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance. Geochim. Cosmochim. Acta 67, 441-4427.Google Scholar
  138. Ruddiman W. F. (1997) Tectonic Uplift and Climate Change. Plenum Press, New York.Google Scholar
  139. Rodden E. (2007) Microbial controls of geokinetics. In Kinetics of Geochemical Systems (ed. S. F. Brantley, J. Kubiciki, and A. F. White).Springer Publishing, New York.Google Scholar
  140. Ruxton B. P. (1968) Measures of the degree of chemical weathering of rocks. J. Geol. 76, 518-527.Google Scholar
  141. Samma J. C. (1986) Ore Fields and Continental Weathering. Van Nostrand, New York.Google Scholar
  142. Schnoor J. L. (1990) Kinetics of chemical weathering: a comparsion of laboratory and field rates. In Aquatic Chemical Kinetics (ed. W. Stumm), John Wiley & Sons, New York, pp. 475-504.Google Scholar
  143. Schulz M. S. and White A. F. (1999) Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico III: quartz dissolution rates. Geochim. Cosmochim. Acta 63, 337-350.Google Scholar
  144. Siegal D. and Pfannkuch H. O. (1984) Silicate dissolution influence on Filson Creek chemistry, northeastern Minnesota. Geol. Soc Am. Bult. 95, 1444-1453.Google Scholar
  145. Stallard R. F. (1995) Tectonic, environmental, and human aspects of weathering and erosion: a global review using a steady-state perspective. Ann. Rev. Earth Planet. Sci. 23, 11-39.Google Scholar
  146. Stallard R. F. and Edmond J. M. (1983) Geochemistry of the Amazon,: 2. The influence of geology and weathering environment on dissolved load. J. Geophys. Res. 88,9671-9688.Google Scholar
  147. Stewart B. W., Capo R. C., and Chadwick O. A. (2001) Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils. Geochim. Cosmochim. Acta 65, 1087-1099.Google Scholar
  148. Steefel C. (2007) Geochemical kinetics and transport. In Kinetics of Geochemical Systems (ed. S. F. Brantley, J. Kubiciki, and A. F. White). Springer Publishing, New York.Google Scholar
  149. Stillings S. L., Drever J. I., Brantley S., Sun Y., and Oxburgh R. (1996) Rates of feldspar dissolution at pH 3-7 with 0-8 M oxalic acid. Chem. Geol. 132, 79-89.Google Scholar
  150. Stonestrom D. A., White A. F., and Akstin K. C. (1998) Determining rates of chemical weathering in soils-solute transport versus profile evolution. J. Hydrol. 209, 331-345.Google Scholar
  151. Sverdrup H. and Warfvinge P. (1995) Estimating field weathering rates using lab-oratory kinetics. In Chemical Weathering Rates of Silicate Minerals (ed. A. F. White and S. L. Brantley) Reviews in Mineralogy, Vol. 31, Mineralogical Society of. America, Washington, DC, pp. 485-539.Google Scholar
  152. Swoboda-Colberg N. G. and Drever J. I. (1992) Mineral dissolution rates: a comparison of laboratory and field studies. In Proceedings of the 7th International Sym-posium. Water-Rock Interaction (ed. Y. K. Kharaka and A. S. Maest). Balkema, Leiden, pp. 115-117.Google Scholar
  153. Taylor A. S., Blum J. D., and Lasaga A. C. (2000) The dependence of labradorite dissolution and Sr isotope release rates on solution saturation state. Geochim. Cosmochim. Acta 64, 2389-2400.Google Scholar
  154. Tisdall J. M. (1982) Organic matter and water-stable aggregates in soils. J. Soil Sci. 33,141-163.Google Scholar
  155. Trudgill S. T. (1995) Solute Modelling in Catchment Systems. John Wiley & Sons, New York.Google Scholar
  156. Turner B. F., Stallard R. F., and Brantley S. L. (2003) Investigation of in situ weathering of quartz diorite in the Rio Icacos basin, Luquillo Experimental Forest, Puerto Rico. Chem. Geol. 202, 313-341.Google Scholar
  157. Van Breemen N., Lundstrom U., Jongmans A. G., Gieler R., and Olsson M. (2000) Mycorrrhizal weathering: a true case of mineral plant nutrition? Biogeochemistry 49,53-67.Google Scholar
  158. Velbel M. A. (1985) Geochemical mass balances and weathering rates in forested watersheds of the southern Blue Ridge. Am. J. Sci. 285, 904-930.Google Scholar
  159. Velbel M. A. (1986) The mathematical basis for determining rates of geochemical and geomorphic processes in small forested watersheds by mass balance: examples and impilications. In Rates of Chemical Weathering of Rocks and Minerals (ed. S. M. Colman and D. P. Dethier), Academic Press, Orlando, pp. 439-449.Google Scholar
  160. Velbel M. C. (1993) Temperature dependence of silicate weathering in nature: how strong a feedback on long-term accumulation of atmospheric CO2 and global greenhouse warming. Geology 21, 1059-1062.Google Scholar
  161. Velbel M. C. (1996) Interaction of ecosystem processes and weathering processes. In Solute Modeling in Catchment Systems (ed. S. T. Trudgill) John Wiley & Sons, New York, pp. 193-209.Google Scholar
  162. Von Blanckenburg, F. (2006) The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet. Sci. 242, 224-239.Google Scholar
  163. Walker J. F., Hunt R. L., Bullen T. D., Krabbenhoft D. P., and Kendall C. (2003) Variability of isotope and major ion chemistry in the Allequash Basin, Wisconsin. Groundwater 41, 883-894.Google Scholar
  164. White A. F. (1995) Chemical weathering rates in soils. In Chemical Weathering Rates of Silicate Minerals, Vol. 31 (ed. A. F. White and S. L. Brantley), Reviews in Mineralogy, Vol. 31, Mineralogical Society of America, Washington, DC, pp. 407-458.Google Scholar
  165. White A. F. and Peterson M. L. (1990) Role of reactive surface area characterization in geochemical models. In Chemical Modeling of Aqueous Systems II, Vol. 416 (ed. R. D. Basset and R. L. Melchior). American Chemical Society. Advances in Chemistry Series 213, pp. 461-475.Google Scholar
  166. White A. F. and Blum A. E. (1995) Effects of climate on chemical weathering rates in watersheds. Geochim. Cosmochim. Acta 59, 1729-1747.Google Scholar
  167. White A. F. and Brantley S. L. (2003) The effect of time on the weathering of silicate minerals: why to weathering rates differ in the laboratory and field? Chem. Geol. 190,69-89.Google Scholar
  168. White A. F., Blum A. E., Schulz M. S., Bullen T. D., Harden J. W., and Peterson M. L. (1996) Chemical weathering of a soil chronosequence on granitic alluvium 1. Reaction rates based on changes in soil mineralogy. Geochim. Cosmochim. Acta 60, 2533-2550.Google Scholar
  169. White A. F., Blum A. E., Schulz M. S., Vivit D. V., Larsen M., and Murphy S. F. (1998) Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term chemical fluxes. Geochem. Cosmochim. Acta 62, 209-226.Google Scholar
  170. White A. F., Blum A. E., Bullen T. D., Vivit D. V., Schulz M., and Fitzpatrick J. (1999a) The effect of temperature on experimental and natural weathering rates of granitoid rocks. Geochim. Cosmochim. Acta 63, 3277-3291.Google Scholar
  171. White A. F., Bullen T. D., Vivit D. V., and Schulz M. S. (1999b) The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochim. Cosmochim. Acta 63, 1939-1953.Google Scholar
  172. White A. F., Blum A. E., Stonestrom D. A., Bullen T. D., Schulz M. S., Huntington T. G., and Peters N. E. (2001) Differential rates of feldspar weathering in granitic regoliths. Geochim. Cosmochim. Acta 65, 847-869.Google Scholar
  173. White A. F., Blum A. E., Schulz M. S., Huntington T. G., Peters N. E., and Stonestrom D. A. (2002) Chemical weathering of the Panola Granite: solute and regolith elemental fluxes and the dissolution rate of biotite. In Water-rock Inter-action, Ore Deposits, and Environmental Geochemistry: A tribute to David A. Crerar (ed. R. Hellmann and S. A. Wood) The Geochemical Society. Special Publ. no. 7, pp. 37-59.Google Scholar
  174. White A. F, Schulz M. S., Lowenstern J. B., Vivit D. V., and Bullen T. D. (2005) The ubiquitous nature of accessory calcite in granitoid rocks: implications for weath-ering, solute evolution and petrogensis. Geochim. Cosmochim. Acta 69, 1455-1471Google Scholar
  175. White A. F., Schulz M. S., Vivit D. V., Blum A. E., Stonestrom D. A., and Anderson S. P. (2007) Chemical weathering of a marine terrace chronosequence, Santa Cruz, California: what does element and mineral soil profiles tell us about weath-ering environments and reaction rates? Geochim. Cosmochim. Acta (in press).Google Scholar
  176. Zeman L. J. and Slaymaker O. (1978) Mass balance model for calculation of ionic input loads in atmospheric fallout and discharge from a mountainous basin. Hydrol. Sci. 23, 103-117.Google Scholar
  177. Zhu C. (2005) In situ feldspar dissolution in an aquifer. Geochim. Cosmochim. Acta 69,847-869.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Art F. White
    • 1
  1. 1.U.S. Geological SurveyMenlo Park

Personalised recommendations