Skip to main content

Formal Verification

  • Chapter

Abstract

As described in chapter 9 the aim of formal verification is to prove the correctness of a circuit implementation with respect to its specification. In theory the proof of correctness can be carried out by simulating the circuit for all possible input samples and comparing the results with the specification. However, in practice such a verification by exhaustive simulation is too time consuming. Using formal verification the same information can be obtained in less time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bryant, R. E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers, Vol. C-35, No. 8, 1986

    Google Scholar 

  2. Eveking, H.: Applied Formal Hardware Verification Methods. Tutorial, DATE’99, 1999

    Google Scholar 

  3. Gordon, M. J. C.; Melham, T. F.: Introduction to HOL. Cambridge University Press, 1993

    Google Scholar 

  4. Hsieh, Y.-W.; Levitan, S. P.: Model Abstraction for Formal Verification. DATE’98, 1998

    Google Scholar 

  5. Meinel, C.; Stangier, C.: Increasing Efficiency of Symbolic Model Checking by Accelerating Dynamic Variable Reordering. DATE’99,1999

    Google Scholar 

  6. Melham, T. F.: Abstraction Mechanisms for Hardware Verification. Technical Report No. 106, University of Cambridge Computer Laboratory, 1987

    Google Scholar 

  7. Mohnke, J.: A Signature-Based Approach to Formal Logic Verification. Dissertation, University of Halle, 1999

    Google Scholar 

  8. Payer, M.; Voges, J.: How We Cracked the PENTIUM Bug within 5 Minutes with CVE. Technical Report, Siemens AG, HL CAD SV, Mch B, München, 1997

    Google Scholar 

  9. Reetz, R.; Schneider, K.; Kropf, T.: Formal Specification in VHDL for Hardware Verification. DATE’98, 1998

    Google Scholar 

  10. Thornton, M. A.; Williams, J. P.; Drechsler, R.; Drechsler, N.: Variable Reordering for Shared Binary Decision Diagrams Using Output Probabilities. DATE’99, 1999

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rülling, W. (2003). Formal Verification. In: Jansen, D. (eds) The Electronic Design Automation Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73543-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73543-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5369-8

  • Online ISBN: 978-0-387-73543-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics