System Simulation

  • Peter Schwarz


System simulation means the simulation of very complex and often also heterogeneous systems.

To emphasize these aspects, sometimes it is called overall system simulation. In system simulation models at the higher abstraction levels are generally used. Of course, there are many modeling and simulation aspects in common with those described in the foregoing chapters 10 (Analog Simulation), 11 (Digital Simulation) and, most of all, 12 (Mixed-Signal Simulation). But there are also typical specialties, which led to the development of specialized system simulators.


Modeling Language System Simulation Analog Circuit Ordinary Differential Equation Partial Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [13.1]
  2. [13.2]
  3. [13.3]
    Antao, B.; Brodersen, A.: ‘Behavioral simulation for analog system design verification’. IEEE Trans. VLSI 3(1995)3, 417–429Google Scholar
  4. [13.4]
    http://www.ansys.comGoogle Scholar
  5. [13.5]
    Antao, B. (Ed.): ‘Modeling and Simulation of Mixed Analog-Digital Systems’. Dordrecht: Kluwer 1996Google Scholar
  6. [13.6]
    Atherton, D. P.; Borne, P.: ‘Concise Encyclopedia of Modeling and Simulation’. Pergamon Press,Oxford 1992. A global overview for continuous-value simulation (solution of differential equations, Z-transform, identification)Google Scholar
  7. [13.7]
    http://www.ilogix.comGoogle Scholar
  8. [13.8]
    Banks, J. (Ed.): ‘Handbook of Simulation’. Wiley, New York 1998. A comprehensive overview of discrete simulators (simulation methods and a short description of simulators such as GPSS/H, SIMSCRIPT and SIMPLE++)Google Scholar
  9. [13.9]
    Boyle, G. R.; Cohn, B. M.; Pederson, D. O.; Solomon, J. E.: ‘Macromodeling of integrated circuit operational amplifiers’. IEEE J. Solid-State Circuits SC-9(1974)6, 353–363Google Scholar
  10. [13.10]
    Breitenecker, F.; Ecker, H.; Bausch-Gall, I.: ‘Simulieren mit ACSL’. Vieweg, Braunschweig 1993. See also: http://acslsim.comGoogle Scholar
  11. [13.11]
    Bacher, T.; Engelmann, F.; Knoechel, U.; Schwarz, P.: ‘Multi-Level-Simulation beim Entwurf eines ASTRA Digital Empfaengers’. 4. GMM/ITG-Fachtagung ‘Analog ‘96’, Berlin 1996, 181–188Google Scholar
  12. [13.12]
    Buck, J.; Ha, S.; Lee, E. A.; Messerschmitt, D. G.: ‘Ptolemy: A framework for simulating and prototyping heterogeneous systems’. Intern. J. Computer Simulation. 4 (1994) 155–182Google Scholar
  13. [13.13]
    Berge, J.-M.; Levia, Oz; Rouillard, J. (Hrg.): ‘Current Issues in Electronic Modeling’. Kluwer, Dordrecht, since 1995. Many volumes comprising current developments in the area of the modeling at all abstraction levels (10 volumes so far):Google Scholar
  14. 1.
    Model Generation in Electronic Modeling. 1995Google Scholar
  15. 2.
    Modeling in Analog Design. 1995 (also the roots of VHDL-AMS are presented)Google Scholar
  16. 3.
    High-Level System Modeling: Specification Languages. 1995Google Scholar
  17. 4.
    High-Level System Modeling: Specification and Design Methodologies. 1996Google Scholar
  18. 5.
    Hardware Component Modeling. 1996Google Scholar
  19. 6.
    Meta-Modeling: Performance and Information Modeling. 1996Google Scholar
  20. 7.
    Object-Oriented Modeling. 1996Google Scholar
  21. 8.
    HW/SW Co-Design and Co-Verification. 1997Google Scholar
  22. 9.
    Models in System Design. 1997Google Scholar
  23. 10.
    Analog and Mixed-Signal Hardware Description Languages. 1997Google Scholar
  24. [13.14]
    Bathe, K. J.: ‘Finite Element Procedures’. Prentice-Hall, New Jersey 1996Google Scholar
  25. [13.15]
    http://www.cadence.comGoogle Scholar
  26. [13.16]
    Cellier, F. E.: ‘Continuous System Modeling’. Springer, New York/Berlin 1991.MATHCrossRefGoogle Scholar
  27. [13.17]
    Clauss, C.; Gruschwitz, R.; Schwarz, P.; Wuensche, S.: Simulation mikrosystemtechnischer Aufgaben mit gekoppelten Simulatoren. 2. Chemnitzer Fachtagung ‘Mikrosystemtechnik–Mikromechanik Mikroelektronik’, TU Chemnitz-Zwickau 1995, 92–101Google Scholar
  28. [13.18]
    Chen, J. X.; Frieder, O.: ‘Applications of computer graphics software tools’. IEEE Trans. Computing in Science Engineering 1(1999)6, 82–87Google Scholar
  29. [13.19]
    Christen, E.; Bakalar, K.: ‘VHDL-AMS–A Hardware Description Language for analog and mixed-signal applications’. IEEE Trans. CAS-II, 46(1999)10, 1263–1272Google Scholar
  30. [13.20]
    Connelly, J. A.; Choi, P.: Macromodeling with SPICE. Prentice Hall, New Jersey, 1992Google Scholar
  31. [13.21]
    Duran, P. A.: ‘A Practical Guide to Analog Behavioral Modeling for IC System Design’. Kluwer, Dordrecht 1998MATHCrossRefGoogle Scholar
  32. [13.22]
    http://www.Dynasim.seGoogle Scholar
  33. [13.23]
    Eccardt, P. C. et al.: ‘Coupled finite element and network simulation for microsystem components’. Proc. MICROSYSTEM Technologies’96, Potsdam, Sept. 1996, 145–150Google Scholar
  34. [13.24]
    Schwarz, P.; Einwich, K.; Haase, J.; Prescher, R.: ‘Mixed-mode design: experiences with multi-level macromodeling’. Published in: Huijsing, J.H. et al.(Eds.): Analog Circuit Design. Proc. Workshop Advances in Analog Circuit Design, Villach 1995. Kluwer, Boston 1995, 181–203Google Scholar
  35. [13.25]
    Engelmann, F.; Jentschel, H.-J.; Schwarz, P. (Hrg.): Proc. Workshop ‘Modellierung und Simulation in der Nachrichtentechnik’. Dresden, November 1995Google Scholar
  36. [13.26]
    Einwich, K.; Schwarz, P.; Trappe, P.; Zojer, H.: ‘Simulatorkopplung fuer den Entwurf komplexer Schaltkreise der Nachrichtentechnik’. 7. ITG-Fachtagung “Mikroelektronik fuer die Informationstechnik”, Chemnitz, 18./19. Maerz 1996, 139–144Google Scholar
  37. [13.27]
    Fischer, W.-J. (Hrg.): ‘Mikrosystemtechnik’. Vogel, Wuerzburg 2000Google Scholar
  38. [13.28]
    Gerlach, G.; Doetzel, W.: ‘Grundlagen der Mikrosystemtechnik’. Hanser, Muenchen 1997Google Scholar
  39. [13.29]
    Goedecke, M.; Hamad, H.; Huss, S. A.: ‘A methodology for the development of system-level simulation models for analog functional blocks’. AEÜ 49(1995)2, 72–80Google Scholar
  40. [13.30] Scholar
  41. [13.31]
    Hartung, J.; Knoechel, U.: ‘Approaches to consider analog RF components in system level simulation of mobile communications’. Proc. ANALOG’02, Bremen 2002, 219–224. See also: Scholar
  42. [13.32]
    Haase, J.; Reitz, S.; Schwarz, P.: ‘Behavioral modeling for heterogeneous systems based on FEM descriptions’. Proc. IEEE Intern. Workshop Behavioral Modeling and Simulation BMAS99, Orlando, FL, October 1999Google Scholar
  43. [13.33]
    Huss, S. A.: Model Engineering in Mixed-Signal Circuit Design. Kluwer, Boston 2001MATHGoogle Scholar
  44. [13.34]
    http://www.rsinc.comGoogle Scholar
  45. [13.35]
    http://vni/products/imslGoogle Scholar
  46. [13.36]
    http://www.iti.deGoogle Scholar
  47. [13.37] Scholar
  48. [13.38]
    Jeruchim, M. C.; Balaban, P.; Shanmugan, K. S.: ‘Simulation of Communication Systems’. Plenum Press, New York 1992CrossRefGoogle Scholar
  49. [13.39]
    Karnopp, D. C.; Margolis, D. L.; Rosenberg, R. C.: ‘System Dynamics: A Unified Approach’. Wiley, New York 1990Google Scholar
  50. [13.40]
    Koenig, H. E.; Blackwell, W. A.: ‘Electromechanical System Theory’. McGraw-Hill, New York 1961MATHGoogle Scholar
  51. [13.41]
    Korn, G. A.: ‘Interactive Dynamic System Simulation’. McGraw-Hill, New York 1989MATHGoogle Scholar
  52. [13.42]
    Knoechel, U.; Tannert, U.; Haufe, J.; Schwarz, P.: ‘Verifikation nachrichtentechnischer Systeme mit Systemsimulation und HW/SW-Cosimulation’. GI/ITG/GME Workshop, Paderborn 1998, 175–184.Google Scholar
  53. [13.43]
    Kundert, K. S.; White, J. K.; Sangiovanni-Vincentelli, A.: ‘Steady-State Methods for Simulating Analog and Microwave Circuits’. Kluwer, Dordrecht 1990MATHCrossRefGoogle Scholar
  54. [13.44]
    Leszak, M.; Eggert, H.: ‘Petri-Netz-Methoden und Werkzeuge’. Informatik-Fachberichte 197, Springer-Verlag, Berlin, 1989Google Scholar
  55. [13.45]
    Lee, E. A.; Messerschmitt, D. G.: ‘Digital Communication’. Kluwer, Dordrecht 1994CrossRefGoogle Scholar
  56. [13.46]
    Lenk, A.: ‘Elektromechanische Systeme’ (3 vol.). Verlag Technik, Berlin 1971–1973Google Scholar
  57. [13.47]
    Lorenz, G.; Neul, R.: ‘Network-type modeling of micromachined sensor systems’. Proc. MSM98Google Scholar
  58. [13.48]
    Mantooth, H. A.; Fiegenbaum, M. F.: ‘Modeling with an Analog Hardware Description Language’. Kluwer, Dordrecht 1994MATHGoogle Scholar
  59. [13.49]
  60. [13.50]
  61. [13.51]
  62. [13.52]
    Modelica: see; many links to Modelica-related publicationsGoogle Scholar
  63. [13.53]
    Neul, R. et al.: ‘A modeling approach to include mechanical microsystem components into system simulation’. Proc. Design, Automation Test Conf. (DATE’98), Paris, 1998, 510–517Google Scholar
  64. [13.54]
    Pelz, G. et al.: ‘MEXEL: Simulation of microsystems in a circuit simulator using automatic electro-mechanical modeling’. Proc. Microsystem Technologies, VDE-Verlag, Berlin 1994, 651–657.Google Scholar
  65. [13.55]
    Rammig, F. J.: ‘Systematischer Entwurfdigitaler Systeme’. Teubner, Stuttgart 1989CrossRefGoogle Scholar
  66. [13.56]
    Rammig, F. J.: ‘System Level Design’. In: Mermet, J. (ed.): Fundamentals and Standards in Hardware Description Languages. Kluwer, Dordrecht 1993, 109–151CrossRefGoogle Scholar
  67. [13.57]
    Reichl, H.; Obermeier, E. (Eds.): ‘MICROSYSTEM Technology 98’. Proc. 6. Intern. Conference Potsdam VDE-Verlag, Berlin 1998Google Scholar
  68. [13.58]
    Reinschke, K.; Schwarz, P.: ‘Verfahren zur rechnergestuetzten Analyse linearer Netzwerke’. Akademie-Verlag, Berlin 1976.MATHGoogle Scholar
  69. [13.59]
    Romanowicz, B. F.: ‘Methodology for the Modeling and Simulation of Microsystems’. Kluwer, Dordrecht 1998CrossRefGoogle Scholar
  70. [13.60]
    Senturia, S.; Aluru, N. R.; White, J.: ‘Simulating the behavior of MEMS devices: computational methods and needs’. IEEE Trans. Computational Science Engineering, January 1997, 30–54Google Scholar
  71. [13.61]
    Schwarz, P.; Clauß, C.; Einwich, K.;Knoechel, U.; Matz, K.: ‘Hybride Simulation nachrichtentechnischer Systeme’. 12. Symposium Simulationstechnik Zuerich, 15.-18. 9. 1998, 67–74Google Scholar
  72. [13.62]
    Schwarz, P.; Haase, J.: ‘Behavioral modeling of complex heterogeneous microsystems’. Proc. 1st Intern. Forum on Design Languages (FDL’98), Lausanne, Sept. 1998, 53–62Google Scholar
  73. [13.63]
    Senturia, S. D.: ‘CAD challenges for microsensors, microactuators, and microsystems’. Proc. IEEE 86(1998)8,1611–1626Google Scholar
  74. [13.64] Scholar
  75. [13.65]
    Senturia, S. D.: ‘Microsystem Design’. Kluwer, Boston 2001Google Scholar
  76. [13.66]
    Saleh, R.; Jou, S.-J.; Newton, A. R.: ‘Mixed-Mode Simulation and Analog Multilevel Simulation’. Kluwer, Dordrecht 1994MATHCrossRefGoogle Scholar
  77. [13.67]
    http.//www.dolphin.frGoogle Scholar
  78. [13.68]
    Schneider, P.; Parodat, S.; Schneider, A., Schwarz, P.: ‘A modular approach for simulation-based optimization of MEMS’. Proc. SPIE Conf. Design, Modeling, and Simulation in Microelectronics, Singapore 2000, pp. 71–82.Google Scholar
  79. [13.69]
    http//:www.synopsys.comGoogle Scholar
  80. [13.70]
    Teegarden, D.; Lorenz, G.; Neul, R.: ‘How to model and simulate microgyroscopic systems’. IEEE Spectrum 35(1998)7, 67–75Google Scholar
  81. [13.71]
  82. [13.72]
    Information about VHDL-AMS (VHDL –- Analog and Mixed Signal Extensions): Scholar
  83. [13.73]
    Wachutka, G.: ‘Tailored modeling: a way to the ‘virtual microtransducer fab’ ?’ Sensor and Actuators A 46–47 (1995), 603–612CrossRefGoogle Scholar
  84. [13.74]
    Wuensche, S.; Clauss, C.; Schwarz, P.; Winkler, F.: ‘Electro-thermal simulation using simulator coupling’. IEEE Trans. VLSI 5(1997)3, 277–282Google Scholar
  85. [13.75]
    Zienkiewicz, O. C.; Taylor, R. L.: ‘The Finite Element Method’ (2 vol.). McGraw-Hill, New York 1994MATHGoogle Scholar
  86. [13.76]
    Schwarz, P.: ‘Physically oriented modeling of heterogeneous systems’. Mathematics and Computers in Simulation 53 (2000), 333–344CrossRefGoogle Scholar
  87. [13.77]
    Haase, J.: ‘Rules for analog and mixed-signal VHDL-AMS modeling’. Proc. FDL’03, Frankfurt 2003Google Scholar
  88. [13.78]
    Haase, J.; Bastian, Reitz, S.: ‘VHDL-AMS in MEMS design flow’. Proc. FDL’02, Marseille, France, September 24–27, 2002Google Scholar
  89. [13.79]
    Cooper, R. S.: ‘The Designer’s Guide to Analog Mixed-Signal Modeling’. Avant! Corp., Beaverton 2001Google Scholar
  90. [13.80]
    Ashenden, P. J.; Peterson, G. D.; Teegarden, D. A.: ‘The System Designer’s Guide to VHDL-AMS’. Morgan Kaufmann Publishers, 2002Google Scholar
  91. [13.81]
    Schwarz, P.; Schneider, P.: ‘Model library and tool support for MEMS simulation’. SPIE’s conference MICROELECTRONIC AND MEMS TECHNOLOGY, Edinburgh, Scotland 2001, 10–23Google Scholar
  92. [13.82]
    Reitz, S., Bastian, J.; Haase, J.; Schneider, P.; Schwarz, P.: ‘System level modeling of microsystems using order reduction methods’. Symp. Design, Test, Integration and Packaging of MEMS/MOEMS, Cannes, France, 2002, 365–373Google Scholar
  93. [13.83]
    Mann, H.: Multipole and multiport approach to mixed energy-domain systems. Proc. 1995 IEEE Int.Symp. on Circuits and Systems, Seattle 1995, 676–679. See also Scholar
  94. [13.84]
    Groetker, T.; Liao, S.; Martin, G.; Swan, S.: ‘System Design with SystemC’. Kluwer, Boston2002. See also: Scholar
  95. [13.85]
    Mueller, W.; Rosenstiel, W.; Ruf, W.: ‘SystemC: Methodologies and Applications’. Kluwer, Boston 2003MATHGoogle Scholar
  96. [13.86]
    Einwich, K.; Schwarz, P.; Grimm, C.; Waldschmidt, K.: ‘Mixed-signal extensions for SystemC’. Proc. FDL’02, Marseille, France 2002Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Peter Schwarz

There are no affiliations available

Personalised recommendations