Blend Concepts for Fuel Cell Membranes

  • Jochen Kerres


Differently cross-linked blend membranes were prepared from commercial arylene main-chain polymers from the classes of poly(ether-ketones) and poly(ethersulfones) modified with sulfonate groups, sulfinate cross-linking groups and basic N-groups. The following membrane types have been prepared: (a) van-der Waals/dipole-dipole blends by mixing a polysulfonate with unmodified PSU. This membrane type showed a heterogeneous morphology, leading to extreme swelling and even dissolution of the sulfonated component at elevated temperatures. (b) Hydrogen bridge blends by mixing a polysulfonate with a polyamide or polyetherimide. This membrane type showed a partially heterogeneous morphology, also leading to extreme swelling/dissolution of the sulfonated blend component at elevated temperatures. (c) Acid-base blends by mixing a polysulfonate with a polymeric N-base (self-developed/commercial). With this membrane type, we could reach a wide variability of properties by variation of different parameters. Membranes showing excellent stability and good fuel cell performance up to 100°C (PEFC) and 130°C (DMFC) were obtained. (d) Covalently cross-linked (blend) membranes by either mixing of a polysulfonate with a polysulfinate or by preparation of a polysulfinatesulfonate, followed by reaction of the sulfinate groups in solution with a dihalogeno compound under S-alkylation. Membranes were prepared that showed effective suppression of swelling without H+-conductivity loss. The membranes showed good PEFC (up to 100°C) and DMFC (up to 130°C) performance. (e) Covalent-ionically cross-linked blend membranes by mixing polysulfonates with polysulfinates and polybases or by mixing a polysulfonate with a polymer carrying both sulfinate and basic N-groups. The covalent-ionically cross-linked membranes were tested in DMFC up to 110°C and showed a good performance. (f) Differently cross-linked organic-inorganic blend composite membranes via different procedures. The best results were obtained with blend membranes having a layered zirconium phosphate “ZrP” phase: They were transparent, and showed good H+;-conductivity and stability. Application of one of these composite membranes to a PEFC yielded good performance up to T=115°C.


Fuel Cell Proton Conductivity Composite Membrane Direct Methanol Fuel Cell Membrane Type 


  1. 1.
    J. Kerres, Development of ionomer membranes for fuel cells, J. Membr. Sci. 185, 3–27 (2001)CrossRefGoogle Scholar
  2. 2.
    J. Wei, C. Stone, A. E. Steck, US 5,773,480; June 30, 1998Google Scholar
  3. 3.
    C. Stone, C. L. Q. Hu, T. Daynard, C. Mah, Lecture, 3rd International Symposium on New Materials for Electrochemical Systems, 4th to 8th July 1999, Montreal, CanadaGoogle Scholar
  4. 4.
    A. E. Steck, C. Stone, in: “?Proceedings of the Second International Symposium on New Materials for Fuel Cell and Modern Battery Systems”, Eds. O. Savadogo, P. R. Roberge, Montreal, Canada, July 6–10, 1997, p. 792Google Scholar
  5. 5.
    H. P. Brack, D. Ruegg, H. Bührer, M. Slaski, S. Alkan, G. G. Scherer, Differential scanning calorimetry and thermogravimetric analysis investigation of the thermal properties and degradation of some radiation-grafted films and membranes, J. Polym. Sci. Part B: Polym. Phys. 42, 2612–2624 (2004)CrossRefGoogle Scholar
  6. 6.
    P. Gode, J. Ihonen, A. Strandroth, H. Ericson, G. Lindbergh, M. Paronen, F. Sundholm, G. Sundholm, N. Walsby, Membrane durability in a PEM fuel cell studied using PVDF based radiation grafted membranes, Fuel Cells 3, 21–27 (2004)CrossRefGoogle Scholar
  7. 7.
    G. D. Alelio, US 2,366,007; December 12,1944Google Scholar
  8. 8.
    N. Ogato, M. Rikukawa, US 5,403,675; April 4, 1995Google Scholar
  9. 9.
    A. Noshay, L. M. Robeson, Sulfonated polysulfone, J. Appl. Polym. Sci. 20, 1885–1903 (1976)CrossRefGoogle Scholar
  10. 10.
    B. C. Johnson, I. Yilgör, C. Tran, M. Iqbal, J. P. Wightman, D. R. Lloyd, J. E. McGrath, Synthesis and characterization of sulfonated poly(acrylene ether sulfones), J. Polym. Sci. Polym. Chem. Ed. 22, 721–737 (1984)CrossRefGoogle Scholar
  11. 11.
    J. Kerres, W. Cui, S. Reichle, New sulfonated engineering polymers via the metalation route. I. Sulfonated poly(ethersulfone) PSU Udel??x????? via metalation-sulfination-oxidation, J. Polym. Sci. Part A: Polym. Chem. 34, 2421–2438 (1996)CrossRefGoogle Scholar
  12. 12.
    F. Helmer-Metzmann, F. Osan, A. Schneller, H. Ritter, K. Ledjeff, R. Nolte, R. Thorwirth, EP 0574 791 B1, 22.12.1999Google Scholar
  13. 13.
    J. Rozière, D. J. Jones, Non-fluorinated polymer materials for proton exchange membrane fuel cells, Annu. Rev. Mater. Res. 33, 503–555 (2003)CrossRefGoogle Scholar
  14. 14.
    H. H. Ulrich, G. Rafler, Sulfonated Poly(aryl ether ketone)s, Angew. Makromol. Chem. 263, 71–78 (1998)CrossRefGoogle Scholar
  15. 15.
    P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, K. Wang, S. Kaliaguine, Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes, J. Membr. Sci. 229, 95–106 (2004)CrossRefGoogle Scholar
  16. 16.
    J. Schauer, P. Lopour, J. Vacik, The preparation of ultrafiltration membranes from a moderately sulfonated poly(oxy(2,6-Dimethyl-1,4-Phenylene), J. Membr. Sci. 29, 169–175 (1992)CrossRefGoogle Scholar
  17. 17.
    S. Percec, G. Li, Chemical modification of poly(2,6-Dimethyl 1,4-Phenylene Oxide) and properties of the resulting copolymers, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 27(2), 19–20 (1986)Google Scholar
  18. 18.
    K. Miyatake, H. Iyotani, K. Yamamoto, E. Tsuchida, Synthesis of poly(phenylene sulfide sulfonic acid) via poly(sulfonium cation) as a thermostable proton-conducting polymer, Macromolecules. 29, 6969–6971 (1996)CrossRefGoogle Scholar
  19. 19.
    Q. Guo, P. N. Pintauro, H. Tang, S. O Connor, Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes, J. Membr. Sci. 154, 175–181 (1999)CrossRefGoogle Scholar
  20. 20.
    H. R. Allcock, M. A. Hofmann, C. M. Ambler, S. N. Lvov, X. Y. Zhou, E. Chalkova, J. Weston, Phenyl phosphonic acid functionalized poly[aryloxyphosphazenes] as proton-conducting membranes for direct methanol fuel cells, J. Membr. Sci. 201, 47–54 (2002)CrossRefGoogle Scholar
  21. 21.
    I. Gautier-Luneau, A. Denoyelle, J. Y. Sanchez, C. Poinsignon, Organicinorganic protonic polymer electrolytes as membrane for low-temperature fuel cell, Electrochim. Acta 37, 1615–1618 (1992)CrossRefGoogle Scholar
  22. 22.
    K. Tabata, F. Fujibayashi, M. Aimu, US 6,723,464; April 20, 2004Google Scholar
  23. 23.
    M. Murthy, M. Esayian, A. Hobson, S. MacKenzie, W. Lee, J. W. van Zee, Performance of a polymer electrolyte membrane fuel cell exposed to transient CO concentrations, J. Electrochem. Soc. 148, A1141–A1147 (2001)CrossRefGoogle Scholar
  24. 24.
    R. F. Savinell, M. H. Litt, US 5,525,436; June 11, 1996Google Scholar
  25. 25.
    J. S. Wainright, J.-T. Wang, D. Weng, R. F. Savinell, M. H. Litt, Acid-doped polybenzimidazoles: a new polymer electrolyte, J. Electrochem. Soc. 142, L121–L123 (1995)CrossRefGoogle Scholar
  26. 26.
    G. Calundann, M. Sansone, B. Benicewicz, E. W. Choe, Oe. Uensal, J. Kiefer, DE 10246459 A1, 2004Google Scholar
  27. 27.
    Y. L. Ma, J. S. Wainright, M. H. Litt, R. F. Savinell, Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells, J. Electrochem. Soc. 151(1) A8–A16 (2004)CrossRefGoogle Scholar
  28. 28.
    K. D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J. Membr. Science 185, 29–39 (2001)CrossRefGoogle Scholar
  29. 29.
    M. Schuster, Protonenleitung in imidazolhaltigen Materialien als Modellsysteme für wasserfreie Brennstoffzellenmembranen, Ph.D. Dissertation, University of Mainz 2002; available via Internet:
  30. 30.
    S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, S. Kaliaguine, Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications, J. Membr. Sci. 173, 17–34 (2000)CrossRefGoogle Scholar
  31. 31.
    M. L. Ponce, L. Prado, B. Ruffmann, K. Richau, R. Mohr, S. P. Nunes, Reduction of methanol permeability in polyetherketone-heteropolyacid membranes, J. Membr. Sci. 217, 5–15 (2003)CrossRefGoogle Scholar
  32. 32.
    Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, T. A. J. E. McGrath, Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications, J. Membr. Sci. 212, 263–282 (2002)CrossRefGoogle Scholar
  33. 33.
    A. S. Aricò, P. Cretì, P. L. Antonucci, V. Antonucci, Comparison of ethanol and methanol oxidation in a liquid-feed solid polymer electrolyte fuel cell at high temperature, Electrochem. Solid-State Lett. 1(2), 66–68 (1998)CrossRefGoogle Scholar
  34. 34.
    K. T. Adjemian, S. J. Lee, S. Srinivasan, J. Benziger, A. B. Bocarsly, Silicon oxide Nafion® composite membranes for proton-exchange membrane fuel cell operation at 80–140°C, J. Electrochem. Soc. 149(3), A256–A261 (2002)CrossRefGoogle Scholar
  35. 35.
    I. Honma, H. Nakajima, O. Nishikawa, T. Sugimoto, S. Nomura, Amphiphilic organic/inorganic nanohybrid macromolecules for intermediate-temperature proton conducting electrolyte membranes, J. Electrochem. Soc. 149(10), A1389–A1392 (2002)CrossRefGoogle Scholar
  36. 36.
    K. A. Mauritz, Organic-inorganic hybrid materials: perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides, Mat. Sci. Eng. C6, 121–133 (1998)Google Scholar
  37. 37.
    C. Yang, S. Srinivasan, A. S. Aricò, P. Creti, V. Baglio, V. Antonucci, Composite Nafion°/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature, Electrochem. Solid-State Lett. 4(4), A31–A34 (2001)CrossRefGoogle Scholar
  38. 38.
    G. Alberti, M. Casciola, Composite membranes for medium-temperature PEM fuel cells, Annu. Rev. Mater. Res. 33(1), 129–154 (2003)CrossRefGoogle Scholar
  39. 39.
    K. T. Adjemian, S. Srinivasan, J. Benziger, A. B. Bocarsly, Investigation of PEMFC operation above 100°C employing perfluorosulfonic acid silicon oxide composite membranes, J. Power Sources 109(2), 356–364 (2002)CrossRefGoogle Scholar
  40. 40.
    S. C. Yeo, A. Eisenberg, Physical properties and supermolecular structure of perfluorinated ion-containing (Nafion®) polymers, J. Appl. Polym. Sci. 21, 875–898 (1977)CrossRefGoogle Scholar
  41. 41.
    X. Ren, T. E. Springer, S. Gottesfeld, Water and methanol uptakes in Nafion® membranes and membrane effects on direct methanol cell performance, J. Electrochem. Soc. 147, 92–98 (2000)CrossRefGoogle Scholar
  42. 42.
    V. M. Barragán, C. Ruiz-Bauzá, J. P. G. Villaluenga, B. Seoane, Transport of methanol and water through Nafion® membranes, J. Power Sources 130(1–2), 22–29 (2004)CrossRefGoogle Scholar
  43. 43.
    W. Zhang, C. -M. Tang, J. Kerres, Development and characterization of sulfonated-unmodified and sulfonated-aminated PSU Udel® blend membranes, Sep. Purif. Technol. 22, 209–221 (2001)CrossRefGoogle Scholar
  44. 44.
    W. Cui, J. Kerres, G. Eigenberger, Development and characterization of ion-exchange polymer blend membranes, Sep. Purif. Technol. 14, 145–154 (1998)CrossRefGoogle Scholar
  45. 45.
    J. Kerres, W. Cui, US 6,194,474; 27 Feb 2001 J. Kerres, W. Cui, US 6,300,381; 9 October, 2001 J. Kerres, W. Cui, EP 1,073,690, 14 January, 2004Google Scholar
  46. 46.
    J. Kerres, A. Ullrich, T. Häring, EP 1,076,676, 28 January, 2004 J. Kerres, A. Ullrich, T. Häring, US 6,723,757, 20 April, 2004Google Scholar
  47. 47.
    J. Kerres, A. Ullrich, T. Häring, US 6,590,067, 8 July, 2003Google Scholar
  48. 48.
    W. Cui, J. Kerres, DE Appl. 198 13 613.7; 27 March, 1998Google Scholar
  49. 49.
    C. Manea, M. Mulder, New polymeric electrolyte membranes based on proton donor-proton acceptor properties for direct methanol fuel cells, Desalination 147, 179–182 (2002)CrossRefGoogle Scholar
  50. 50.
    M. Walker, K.-M. Baumgärtner, M. Kaiser, J. Kerres, A. Ullrich, E. Räuchle, Proton conducting polymers with reduced methanol permeation, J. Appl. Polym. Sci. 74, 67–73 (1999)CrossRefGoogle Scholar
  51. 51.
    L. Jörissen, V. Gogel, J. Kerres, J. Garche, New membranes for direct methanol fuel cells, J. Power Sources 105, 267–273 (2002)CrossRefGoogle Scholar
  52. 52.
    B. Kosmala, J. Schauer, Ion-exchange membranes prepared by blending sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) with polybenzimidazole, J. Appl. Polym. Sci. 85, 1118–1127 (2002)CrossRefGoogle Scholar
  53. 53.
    K. Bouzek, S. Moravcova, Z. Samec, J. Schauer, H and Na Ion transport properties of sulfonated poly(2,6-dimethyl-1,4-phenyleneoxide) membranes, J. Electrochem. Soc. 150(6) E329–E336 (2003)CrossRefGoogle Scholar
  54. 54.
    J. Kerres, A. Ullrich, T. H. Häring, M. Baldauf, U. Gebhardt, W. Preidel, Preparation, characerization, and fuel cell application of new acid-base blend membranes, J. New Mater. Electrochem. Syst. 3, 229–239 (2000)Google Scholar
  55. 55.
    S. Motupally, V. Lightner, U. S. Department of Energy, Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program, FY 2003 Progress Report, p. 7Google Scholar
  56. 56.
    C. Hasiotis, Q. Li, V. Deimede, J. K. Kallitsis, C. G. Kontoyannis, N. J. Bjerrum, Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells, J. Electrochem. Soc. 148(5) A513–A519 (2001)CrossRefGoogle Scholar
  57. 57.
    R. Nolte, K. Ledjeff, M. Bauer, R. Mülhaupt, Partially sulfonated poly(arylene ether sulfone) - a versatile proton conducting membrane material for modern energy conversion technologies, J. Membr. Sci. 83, 211–220 (1993)CrossRefGoogle Scholar
  58. 58.
    S. D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G. P. Robertson, M. D. Guiver, Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK), J. Membr. Sci. 233, 93–99 (2004)CrossRefGoogle Scholar
  59. 59.
    J. Kerres, W. Cui, W. Schnurnberger, DE 196 22 237.7; 12 March, 1998, US 6,221,923; 24 April, 2001, US 6,552,135; 22 April, 2003Google Scholar
  60. 60.
    J. Kerres, W. Zhang, C.-M. Tang, DE Appl. 10024576;19 May, 2000, Int. Appl. PCT/EP200105644 from 17th May, 2001Google Scholar
  61. 61.
    D. J. Jones, M. El Haddad, B. Mula, J. Rozière, New proton conductors for fuel cell applications, Environmental Research Forum “Chemistry and Energy”, C. A. C. Sequeira, Ed., Transtec, 1–2, pp. 115–126 (1996)Google Scholar
  62. 62.
    J. Rozière, D. J. Jones, Inorganic-organic Composite Membranes for PEM Fuel Cells, Handbook of Fuel Cell Technology, W. Vielstich, A. Lamm, H. Gasteiger, Eds., Wiley, Vol. 3, pp. 447–455 (2003)Google Scholar
  63. 63.
    B. Bauer, D. J. Jones, J. Rozière, L. Tchicaya, G. Alberti, L. Massinelli, M. Casciola, A. Peraio, and E. Ramunni, Hybrid organic-inorganic membranes for a medium temperature fuel cell, J. New Mater. Electrochem. Appl. 3, 87–92 (2000)Google Scholar
  64. 64.
    D. J. Jones, J. Roziere, Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications, J. Membr. Sci. 185, 41–58 (2001)CrossRefGoogle Scholar
  65. 65.
    L. Tchicaya-Bouckary, D. J. Jones, J. Rozière, Hybrid polyaryletherketone membranes for fuel cell applications, Fuel Cells 2, 40–45 (2002)CrossRefGoogle Scholar
  66. 66.
    K. D. Kreuer, Proton conductivity: materials and applications, Chem. Materials 8, 610–641 (1996)CrossRefGoogle Scholar
  67. 67.
    S. Kaliuguine, S. D. Mikhailenko, K. P. Wang, P. Xing, G. P. Robertson, M. D. Guiver, Properties of SPEEK based PEMs for fuel cell application, Catalysis Today 82, 213–222 (2003)CrossRefGoogle Scholar
  68. 68.
    J. Kerres, C.-M. Tang, C. Graf, Improvement of properties of poly(ether ketone) ionomer membranes by blending and cross-linking, Ind. Eng. Chem. Res. 43(16), 4571–4579 (2004)CrossRefGoogle Scholar
  69. 69.
    M. D. Guiver, Aromatic Polysulfones Containing Functional Groups by Synthesis and Chemical Modification, Ph.D. Dissertation, Carletown University 1987Google Scholar
  70. 70.
    J. A. Kerres, A. J. van Zyl, Development of new ionomer blend membranes, their characterization and their application in the perstractive separation of alkenes from alkene-alkane mixtures. 1. Polymer modification, ionomer blend membrane preparation and characterization, J. Appl. Polym. Sci. 74, 428–438 (1999)CrossRefGoogle Scholar
  71. 71.
    J. Kerres, W. Zhang, W. Cui, New sulfonated engineering polymers via the metalation route. 2. Sulfinated-Sulfonated Poly(ethersulfone) PSU Udel® and its crosslinking, J. Polym. Sci.: Part A: Polym. Chem. 36, 1441–1448 (1998)CrossRefGoogle Scholar
  72. 72.
    J. Kerres, W. Zhang, T. Häring, DE Appl. 102 09 784.4 from 28th Febr., 2002, Int. Appl. PCT/DE02/03260 from 2nd Sept., 2002 W. Zhang, V. Gogel, K. A. Friedrich, J. Kerres, Novel covalently cross-linked poly(etheretherketone) ionomer membranes, J. Power Sources 155(1), 3–12 (2006)CrossRefGoogle Scholar
  73. 73.
    M. D. Guiver, G. P. Robertson, Chemical modification of polysulfones: a facile method of preparing azide derivatives from lithiated polysulfone intermediates, Macromolecules. 28, 294–301 (1995)CrossRefGoogle Scholar
  74. 74.
    M. D. Guiver, G. P. Robertson, S. Foley, Chemical modification of Polysulfones II: an efficient method for introducing primary amine groups onto the aromatic chain, Macromolecules 28, 7612–7621 (1995)CrossRefGoogle Scholar
  75. 75.
    C. M. Tang, W. Zhang, J. Kerres, Preparation and characterization of ionically cross-linked proton-conducting membranes, J. New Mat. Electrochem. Syst. 7, 287–298 (2004)Google Scholar
  76. 76.
    H. A. Naik, I. W. Parsons, P. T. McGrail, P. D. MacKenzie, Chemical modification of polyarylene ether/sulphone polymers: preparation and properties of materials aminated on the main chain, Polymer 32(1), 140–145 (1991)CrossRefGoogle Scholar
  77. 77.
    J. Kerres, A. Ullrich, M. Hein, Preparation and characterization of novel basic polysulfone polymers, J. Polym. Sci.: Part A: Polym. Chem. 39, 2874–2888 (2001)CrossRefGoogle Scholar
  78. 78.
    J. Kerres, A. Ullrich, Synthesis of novel engineering polymers containing basic side groups and their application in acid-base polymer blend membranes, Sep. Purif. Technol. 22, 1–15 (2001)CrossRefGoogle Scholar
  79. 79.
    J. Kerres, W. Zhang, A. Ullrich, C.-M. Tang, M. Hein, V. Gogel, T. Frey, L. Jörissen, Synthesis and characterization of polyaryl blend membranes having different composition, different covalent and/or ionical cross-linking density, and their application to DMFC, Desalination 147, 173–178 (2002)CrossRefGoogle Scholar
  80. 80.
    J. Kerres, M. Hein, W. Zhang, N. Nicoloso, S. Graf, Development of new blend membranes for polymer electrolyte fuel cell applications, J. New Mat. Electrochem. Syst. 6(4), 223–229 (2003)Google Scholar
  81. 81.
    J. Kerres, A. Ullrich, F. Meier, Th. Häring, Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells, Solid State Ionics 125, 243–249 (1999)CrossRefGoogle Scholar
  82. 82.
    D. R. Coffin, G. A. Serad, H. L. Hicks, R. T. Montgomery, Properties and applications of celanese PBI-Polybenzimidazole fiber, Textile Res. J. 52(7), 466–472 (1982)CrossRefGoogle Scholar
  83. 83.
    A. Panchenko, H. Dilger, J. Kerres, M. Hein, A. Ullrich, T. Kaz, E. Roduner, In-situ spin trap electron paramagnetic resonance study of fuel cell processes,Phys. Chem. Chem. Phys. 6, 2891–2894 (2004)CrossRefGoogle Scholar
  84. 84.
    J. Kerres, A. Ullrich, M. Hein, V. Gogel, K. A. Friedrich, L. Jörissen, Cross-linked polyaryl blend membranes for polymer electrolyte fuel cells,Fuel Cells 4, 105–112 (2004)CrossRefGoogle Scholar
  85. 85.
    E. Roduner, A. Panchenko, J. Kerres, unpublished resultsGoogle Scholar
  86. 86.
    J. Kerres, W. Zhang, L. Jörissen, V. Gogel, Application of different types of polyaryl-blend-membranes in DMFC, J. New Mat. Electrochem. Syst. 5, 97–107 (2002)Google Scholar
  87. 87.
    J. Kerres, M. Hein, W. Zhang, N. Nicoloso, S. Graf, S., Invited lecture (J. Kerres), 5th International Symposium “New Materials for Electrochemical Systems”, 6. to 11. July 2003, Montreal, Canada J. Kerres, W. Zhang, T. Häring, Covalently cross-linked ionomer (blend) membranes for fuel cells, J. New Mat. Electrochem. Syst. 7, 299–309 (2004)Google Scholar
  88. 88.
    J. Kerres, Invited Lecture, 204th Meeting of The Electrochemical Society, October 12-October 16, 2003, Orlando, Florida, proceedings submittedGoogle Scholar
  89. 89.
    J. Kerres, Invited lecture, Symposium “Advances in Materials for Proton Exchange Membrane Fuel Cell Systems”, February 23–27, 2003, Asilomar, California.Google Scholar
  90. 90.
    J. Kerres, DE Appl. 103 08 462.2 from 19th February, 2003Google Scholar
  91. 91.
    J. Kerres, W. Zhang, unpublished resultsGoogle Scholar
  92. 92.
    T. S. Chung, P. N. Chen, Polybenzimidazole (PBI) and polyarylate blends, J. Appl. Polym. Sci. 40, 1209–1222 (1990)CrossRefGoogle Scholar
  93. 93.
    F. Meier, J. Kerres, G. Eigenberger, Characterization of polyaryl-blend-membranes for DMFC application J. New Mat. Electrochem. Syst. 5, 91–96 (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jochen Kerres

    There are no affiliations available

    Personalised recommendations