Advertisement

Fuel Cell Membranes by Radiation-Induced Graft Copolymerization: Current Status, Challenges, and Future Directions

  • Mohamed Mahmoud Nasef

Abstract

Radiation-induced graft copolymerization is an attractive technique to prepare alternative proton conducting membranes (PCMs) for fuel cell applications. The purpose of this chapter is to review the latest progress made in the development of various radiation-grafted PCMs for fuel cells. The challenges facing the development of these membranes and their expected future research directions are also discussed.

Keywords

Fuel Cell Direct Methanol Fuel Cell Sulfonic Acid Group PVDF Film Fuel Cell Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V. Mehta and J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources 114, 32 (2003).CrossRefGoogle Scholar
  2. 2.
    J. Kerres, Development of ionomer membranes for fuel cells, J. Membr. Sci. 185, 3 (2001).CrossRefGoogle Scholar
  3. 3.
    Y.S. Kim, L. Dong, M.A. Hickner, B.S. Pivovar and J.E. McGrath, Processing induced morphological development in hydrated sulfonated poly(arylene ether sulfone) copolymer membranes, Polymer 44, 5729 (2003).CrossRefGoogle Scholar
  4. 4.
    O. Savadogo, Emerging membranes for electrochemical systems: (1) Solid polymer electrolyte membranes for fuel cell systems, J. New Mater. Electrochem. Syst. 1, 47 (1998).Google Scholar
  5. 5.
    B. Smitha, S. Sridhar and A.A. Khan, Solid polymer electrolyte membranes for fuel cell applications — a review, J. Membr. Sci. 259, 10 (2005).CrossRefGoogle Scholar
  6. 6.
    S. Renaud and A. Bruno, Functional fluoropolymers for fuel cell membranes, Prog. Polym. Sci. 30, 644 (2005).CrossRefGoogle Scholar
  7. 7.
    E.B. Easton, B.L. Langsdorf, J.A. Hughes, J. Sultan, Z. Qi, A. Kaufman and P.G. Pickup, Characteristics of polypyrrole/nafion composite membranes in a direct methanol fuel cell, J. Electrochem. Soc. 150, C735 (2003).CrossRefGoogle Scholar
  8. 8.
    N. Jia, M.C. Lefebvre, J. Halfyard, Z. Qi and P.G. Pickup, Modification of Nafion proton exchange membranes to reduce methanol crossover in PEM fuel cells, Electrochem. Solid-State Lett. 3, 529 (2000).CrossRefGoogle Scholar
  9. 9.
    L.J. Hobson, Y. Nakano, H. Ozu and S. Hayase, Targeting improved DMFC performance, J. Power Sources 104, 79 (2002).CrossRefGoogle Scholar
  10. 10.
    M. Walker, K.M. Baumgärtner, J. Feichtinger, M. Kaiser, E. Räuchle and J. Kerres, Barrier properties of plasma-polymerized thin films, Surf. Coat. Technol. 116/119, 996 (1999).CrossRefGoogle Scholar
  11. 11.
    N. Carretta, V. Tricoli and F. Picchioni, Ionomeric membranes based on partially sulfonated poly(styrene): Synthesis, proton conduction, and methanol permeation, J. Membr. Sci. 166, 189 (2000).CrossRefGoogle Scholar
  12. 12.
    Q. Guo, P.N. Pintauro, H. Tang and S. O’Connor, Sulfonated and cross-linked polyphosphazene-based proton-exchange membranes, J. Membr. Sci. 154, 175 (1999).CrossRefGoogle Scholar
  13. 13.
    K. Ramya, B. Vishnupriya and K.S. Dhathathreyan, Methanol permeability studies on sulphonated polyphenylene oxide membrane for direct methanol fuel cell, J. New Mater. Electrochem. Syst. 4, 115 (2001).Google Scholar
  14. 14.
    F. Lufrano, I. Gatto, P. Staiti, V. Antonucci and E. Passalacqua, Sulfonated polysulfone ionomer membranes for fuel cells, Solid State Ionics 145, 47 (2001).CrossRefGoogle Scholar
  15. 15.
    F. Wang, M. Hickner, Y.S. Kim, T.A. Zawodzinski and J.E. McGrath, Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: Candidates for new proton exchange membranes, J. Membr. Sci. 197, 231 (2002).CrossRefGoogle Scholar
  16. 16.
    C. Manea and M. Mulder, Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications, J. Membr. Sci. 206, 443 (2002).CrossRefGoogle Scholar
  17. 17.
    A. Schechter and R.F. Savinell, Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells, Solid State Ionics 147, 181 (2002).CrossRefGoogle Scholar
  18. 18.
    Y. Woo, S.Y. Oh, Y.S. Kang and B. Jung, Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell, J. Membr. Sci. 220, 31 (2003).CrossRefGoogle Scholar
  19. 19.
    G.K.S. Prakash, M.C. Smart, Q.J. Wang, A. Atti, V. Pleynet, B. Yang, K. McGrath, G.A. Olah, S.R. Narayanan, W. Chun, T. Valdez and S. Surampudi, High efficiency direct methanol fuel cell based on poly(styrenesulfonic) acid (PSSA)—poly(vinylidene fluoride) (PVDF) composite membranes, J. Fluor. Chem. 125, 1217 (2004).CrossRefGoogle Scholar
  20. 20.
    X. Qiu, W. Li, S. Zhang, H. Liang and W. Zhu, The microstructure and character of the PVDF-g-PSSA membrane prepared by solution grafting, J. Electrochem. Soc. 150, A917 (2003).CrossRefGoogle Scholar
  21. 21.
    F. Finsterwalder and G. Hambitzer, Proton conductive thin films prepared by plasma polymerization, J. Membr. Sci. 185, 105 (2001).CrossRefGoogle Scholar
  22. 22.
    J.P. Shin, B.J. Chang, J.H. Kim, S.B. Lee and D.H. Suh, Sulfonated polystyrene/PTFE composite membranes, J. Membr. Sci. 251, 247 (2005).CrossRefGoogle Scholar
  23. 23.
    M.M. Nasef, H. Saidi and H.M. Nor, Radiation-induced graft copolymerization for preparation of cation exchange membranes: A review, Nucl. Sci. J. Malaysia 17, 27 (1999).Google Scholar
  24. 24.
    B. Gupta and G.G. Scherer, Proton exchange membranes by radiation-induced graft copolymerization of monomers into Teflon-FEP films, Chimia 48, 127 (1994).Google Scholar
  25. 25.
    T. Dargaville, G. George, D. Hill and A. Whittaker, High energy radiation grafting of fluoropolymers, Prog. Polym. Sci. 28, 1355 (2003).CrossRefGoogle Scholar
  26. 26.
    G. Ellinghorst, A. Niemoeller and D. Vierkotten, Radiation-initiated grafting of polymer films — an alternative technique to prepare membranes for various separation problems, Radiat. Phys. Chem. 22, 635 (1983).Google Scholar
  27. 27.
    M.M. Nasef and E.A. Hegazy, Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films, Prog. Polym. Sci. 29, 499 (2004).CrossRefGoogle Scholar
  28. 28.
    M. Rikukawa and K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci. 25, 1463 (2000).CrossRefGoogle Scholar
  29. 29.
    W.W. Chen, R. Mesrobian, D. Ballantine, D. Metz and A. Glines, Graft copolymers derived by ionizing radiation, J. Polym. Sci. 23, 903 (1957).CrossRefGoogle Scholar
  30. 30.
    A. Chapiro, Radiation induced grafting, Int. J. Radiat. Phys. Chem. 9, 55 (1977).Google Scholar
  31. 31.
    S. Shkolink and D. Behar, Radiation-induced grafting of sulfonates on polyethylene, J. Appl. Polym. Sci. 27, 2189 (1982).CrossRefGoogle Scholar
  32. 32.
    N. Walsby, M. Paronen, J. Juhanoja and F. Sundholm, Sulfonation of styrene-grafted poly(vinylidene fluoride) films, J. Appl. Polym. Sci. 81, 1572 (2001).CrossRefGoogle Scholar
  33. 33.
    T. Momose, H. Harada, H. Miyachi and H. Kato, US Patent 4,605,685 1986.Google Scholar
  34. 34.
    V.F. D’Agostino, J.Y. Lee and E.H. Cook, Jr., US Patent 4,012,303 1977.Google Scholar
  35. 35.
    G.G. Scherer, T. Momose and K. Tomiie, Membrane-water electrolysis cells with a fluorinated cation exchange membranes, J. Electrochem. Soc. 135, 3071 (1988).CrossRefGoogle Scholar
  36. 36.
    A. Guzman-Garcia, P. Pintauro, M. Verbrugge and E. Schneider, Analysis of radiation-grafted membranes for fuel cell electrolytes, J. Appl. Electrochem. 22, 204 (1992).CrossRefGoogle Scholar
  37. 37.
    H. Wang and G. Capuano, Behavior of Raipore radiation-grafted polymer membranes in H2/O2 fuel cells, J. Electrochem. Soc. 145, 780 (1998).CrossRefGoogle Scholar
  38. 38.
    S. Holmberg, T. Lehtinen, J. Naesman, D. Ostrovskii, M. Paronen, R. Serimaa, F. Sundholm, G. Sundholm, L. Torell and M. Torkkeli, Structure and properties of sulfonated poly[(vinylidene fluoride)-g-styrene] porous membranes, J. Mater. Chem. 6, 1309 (1996).CrossRefGoogle Scholar
  39. 39.
    S. Holmberg, J. Nasman and F. Sundholm, Synthesis and properties of sulfonated and cross-linked poly[(vinylidene fluoride)-graft-styrene] membranes, Polym. Adv. Tech. 9, 121 (1998).CrossRefGoogle Scholar
  40. 40.
    N. Walsby, M. Paronen, J. Juhanoja and F. Sundholm, Radiation grafting of styrene onto poly(vinylidene fluoride) films in propanol: The influence of solvent and synthesis conditions, J. Polym. Sci. A: Polym. Chem. 38, 1512 (2000).CrossRefGoogle Scholar
  41. 41.
    S. Hietala, S. Holmberg, M. Karjalainen, J. Näsman, M. Paronen, R. Serimaa, F. Sundholm and S. Vahvaselkä, Structural investigation of radiation grafted and sulfonated poly(vinylidene fluoride), PVDF, membranes, J. Mater. Chem. 7, 721 (1997).CrossRefGoogle Scholar
  42. 42.
    J. Ennari, S. Hietala, M. Paronen, F. Sundholm, N. Walsby, M. Karjalainen, R. Serimaa, T. Lehtinen andG. Sundholm, New polymer electrolyte membranes for low temperature fuel cells, Macromol. Symp. 146, 41 (1999).CrossRefGoogle Scholar
  43. 43.
    S. Hietala, M. Koel, E. Skou, M. Elomaa and F. Sundholm, Thermal stability of styrene grafted and sulfonated proton conducting membranes based on poly(vinylidene fluoride), J. Mater. Chem. 8, 1127 (1998).CrossRefGoogle Scholar
  44. 44.
    S. Hietala, M. Paronen, S. Holmberg, J. Näsman, J. Juhanoja, M. Karjalainen, R. Serimaa, M. Toivola, T. Lehtinen, K. Parovuori, G. Sundholm, H. Ericson, B. Mattsson, L. Torell and F. Sundholm, Phase separation and crystallinity in proton conducting membranes of styrene grafted and sulfonated poly (vinylidene fluoride), J. Polym. Sci. A: Polym. Chem. 37, 1741 (1999).CrossRefGoogle Scholar
  45. 45.
    S. Hietala, S.L. Maunu, F. Sundholm, T. Lehtinen and G. Sundholm, Water sorption and diffusion coefficients of protons and water in PVDF-g-PSSA polymer electrolyte membranes, J. Polym. Sci. B: Polym. Phys. 37, 2893 (1999).CrossRefGoogle Scholar
  46. 46.
    K. Jokela, R. Serimaa, M. Torkkeli, F. Sundholm, T. Kallio and G. Sundholm, Effect of the initial matrix material on the structure of radiation-grafted ion-exchange membranes: Wide-angle and small-angle X-ray scattering studies, J. Polym. Sci. B: Polym. Phys. 40, 1539 (2002).CrossRefGoogle Scholar
  47. 47.
    M. Elomaa, S. Hietala, M. Paronen, N. Walsby, K. Jokela, R. Serimaa, M. Torkkeli, T. Lehtinen, G. Sundholm and F. Sundholm, The state of water and the nature of ion clusters in cross-linked proton conducting membranes of styrene grafted and sulfonated poly(vinylidene fluoride), J. Mater. Chem. 10, 2678 (2000).CrossRefGoogle Scholar
  48. 48.
    T. Kallio, K. Jokela, H. Ericson, R. Serimaa, G. Sundholm, P. Jacobsson and F. Sundholm, Effects of a fuel cell test on the structure of irradiation grafted ion exchange membranes based on different fluoropolymers, J. Appl. Electrochem. 33, 505 (2003).CrossRefGoogle Scholar
  49. 49.
    P. Gode, J. Ihonen, A. Strandroth, H. Ericson, G. Lindbergh, M. Paronen, F. Sundholm, G. Sundholm and N. Walsby, Membrane durability in a proton exchange membrane fuel cell studied using PVDF based radiation-grafted membranes, Fuel Cells 3, 21 (2003).CrossRefGoogle Scholar
  50. 50.
    S. Flint and R. Slade, Investigation of radiation-grafted PVDF-g-polystyrene-sulfonic-acid ion exchange membranes for use in hydrogen oxygen fuel cells, Solid State Ionics 97, 299 (1997).CrossRefGoogle Scholar
  51. 51.
    H.P. Brack and G.G. Scherer, Modification and characterization of thin polymer films for electrochemical applications, Macromol. Symp. 126, 25 (1998).CrossRefGoogle Scholar
  52. 52.
    H.P. Brack, H.G. Bührer, L. Bonorand and G.G. Scherer, Grafting of preirradiated poly(ethylene-alt-tetrafluoroethylene) films with styrene: Influence of base polymer film properties and processing parameters, J. Mater. Chem. 10, 1795 (2000).CrossRefGoogle Scholar
  53. 53.
    B. Soresi, E. Quartarone, P. Mustarelli, A. Magistris and G. Chiodelli, PVDF and P(VDF-HFP)-based proton exchange membranes, J. Membr. Sci. 166, 383 (2004).Google Scholar
  54. 54.
    M.M. Nasef, N.A. Zubir, A.F. Ismail, K.Z.M. Dahlan, H. Saidi and M. Khayet, Preparation of radiochemically pore-filled polymer electrolyte membranes for direct methanol fuel cell, J. Power Sources 156, 200 (2006).CrossRefGoogle Scholar
  55. 55.
    M.M. Nasef, N.A. Zubir, A.F. Ismail, K.Z.M. Dahlan, H. Saidi and M. Khayet, PSSA pore-filled PVDF membranes by simultaneous electron beam irradiation: Preparation and transport characteristics of protons and methanol, J. Membr. Sci. 268, 96 (2006).CrossRefGoogle Scholar
  56. 56.
    K. Scott, W. Taama and P. Argyropoulos, Performance of the direct methanol fuel cell with radiation-grafted polymer membranes, J. Membr. Sci. 171, 119 (2000).CrossRefGoogle Scholar
  57. 57.
    T.N. Danks, R.C.T. Slade and J.R. Varcoe, Comparison of PVDF- and FEP-based radiation-grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs, J. Mater. Chem. 12, 3371 (2002).CrossRefGoogle Scholar
  58. 58.
    T.N. Danks, R.C.T. Slade and J.R. Varcoe, Alkaline anion-exchange radiation-grafted membranes for possible electrochemical application in fuel cells, J. Mater. Chem. 13, 712 (2003).CrossRefGoogle Scholar
  59. 59.
    F. Büchi, B. Gupta, M. Rouilly, C. Hauser, A. Chapiro and G.G. Scherer, 27th IECEC Conference Proceedings, Vol. 3, 1999, pp. 3419–3424.Google Scholar
  60. 60.
    M. Rouilly, E. Koetz, O. Haas, G.G. Scherer and A. Chapiro, Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto Teflon-FEP films-synthesis and characterization, J. Membr. Sci. 81, 89 (1993).CrossRefGoogle Scholar
  61. 61.
    B. Gupta, F. Büchi, G.G. Scherer and A. Chapiro, Materials research aspects of organic solid proton conductors, Solid State Ionics 61, 213 (1993).CrossRefGoogle Scholar
  62. 62.
    B. Gupta, F. Büchi, G.G. Scherer and A. Chapiro, Cross-linked ion exchange membranes by radiation grafting of styrene/divinylbenzene into FEP films, J. Membr. Sci. 118, 231 (1996).CrossRefGoogle Scholar
  63. 63.
    B. Gupta, F. Büchi and G.G. Scherer, Cation exchange membranes by pre-irradiation grafting of styrene into FEP films. I. Influence of synthesis conditions, J. Polym. Sci. A: Polym. Chem. 32, 1931 (1994).CrossRefGoogle Scholar
  64. 64.
    B. Gupta, F. Büchi, M. Staub, D. Grman and G.G. Scherer, Cation exchange membranes by pre-irradiation grafting of styrene into FEP films. II. properties of copolymer membranes, J. Polym. Sci. A: Polym. Chem. 34, 1873 (1996).CrossRefGoogle Scholar
  65. 65.
    F.N. Büchi, B. Gupta, O. Haas and G.G. Scherer, Study of radiation-grafting FEP-g-polystyrene membrane as polymer electrolyte in fuel cells, Electrochem. Acta 40, 345 (1995).CrossRefGoogle Scholar
  66. 66.
    F.N. Büchi, B. Gupta, O. Haas and G.G. Scherer, Performance of differently cross-Linked, partially fluoronated proton exchange membranes in polymer electrolyte fuel cells, Electrochem. Soc. 142, 3044 (1995).CrossRefGoogle Scholar
  67. 67.
    H.P. Brack, F.N. Büchi, J. Husalge and G.G. Scherer, in: S. Gottesfeld, T.F. Fuller and G. Hapert (Eds.), 2nd Symposium on Polymer Electrolyte Fuel Cells, ESC Proceedings Vol. 98–27, 1999.Google Scholar
  68. 68.
    J. Huslage, T. Rager, B. Schnyder and A. Tsukada, Radiation-grafted membrane/electrode assemblies with improved interface, Electrochem. Acta 48, 247 (2002).CrossRefGoogle Scholar
  69. 69.
    J. Huslage, T. Rager, J. Kiefer, L. Steuernagel and G.G. Scherer, Electrochemical Society Meeting, Toronto, Canada, 2000.Google Scholar
  70. 70.
    T. Rager, Pre-irradiation of styrene/divinylbenzene onto poly(tetrafluoroethylene-co-hexafluoropropylene) from non-solvent, Helv. Chim. Acta 86, 1966 (2003).CrossRefGoogle Scholar
  71. 71.
    L. Gubler, H. Kuhn, T.J. Schmidt, G.G. Scherer, H.P. Brack and K. Simbeck, Performance and durability of membrane electrode assemblies based on radiation-grafted FEP-g-polystyrene membranes, Fuel Cells 4, 196 (2004).CrossRefGoogle Scholar
  72. 72.
    J.A. Horsfall and K.V. Lovell, Fuel cell performance of radiation-grafted sulfonic acid membranes, Fuel Cells 1, 186 (2001).CrossRefGoogle Scholar
  73. 73.
    J.A. Horsfall and K.V. Lovell, Comparison of fuel cell performance of selected fluoropolymer and hydrocarbon based grafted copolymers incorporating acrylic acid and styrene sulfonic acid, Polym. Adv. Technol. 13, 381 (2002).CrossRefGoogle Scholar
  74. 74.
    J.A. Horsfall and K.V. Lovell, Proton exchange membranes by irradiation-induced grafting of styrene onto FEP and ETFE: Influences of the cross-linker N,N-methylene-bis-acrylamide, Eur. Polym. J. 38, 1671 (2002).CrossRefGoogle Scholar
  75. 75.
    C. Chuy, V.I. Basura, E. Simon, S. Holdcroft, J.A. Horsfall and K.V. Lovell, Electrochemical characterization of ethylenetetrafluoroethylene-g-polystyrenesulfonic acid solid polymer electrolytes, J. Electrochem. Soc. 147, 4453 (2000).CrossRefGoogle Scholar
  76. 76.
    M.M. Nasef, H. Saidi and H.M. Nor, Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto FEP films.I. fffect of grafting conditions, J. Appl. Polym. Sci. 76, 220 (2000).CrossRefGoogle Scholar
  77. 77.
    M.M. Nasef, H. Saidi, H.M. Nor and M.F. Ooi, Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto FEP films.II. Properties of the sulfonated membranes, J. Appl. Polym. Sci. 78, 2443 (2000).CrossRefGoogle Scholar
  78. 78.
    M.M. Nasef and H. Saidi, Thermal degradation behavior of radiation grafted FEP-g-polystyerne sulfonic acid membranes, Polym. Degrad. Stab. 70, 497 (2000).CrossRefGoogle Scholar
  79. 79.
    M.M. Nasef, H. Saidi and M.A. Yarmo, Surface investigations of radiation grafted FEP-g-polystyrene sulfonic acid membranes using XPS, J. New Mater. Electrochem. Syst. 3, 309 (2000).Google Scholar
  80. 80.
    T.N. Danks, R.C.T. Slade and J.R. Varcoe, Comparison of PVDF- and FEP-based radiation-grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs, J. Mater. Chem. 12, 3371 (2002).CrossRefGoogle Scholar
  81. 81.
    T.N. Danks, R.C.T. Slade and J.R. Varcoe, Alkaline anion-exchange radiation-grafted membranes for possible electrochemical application in fuel cells, J. Mater. Chem. 13, 712 (2003).CrossRefGoogle Scholar
  82. 82.
    H. Herman, R.C.T. Slade and J.R. Varcoe, The radiation-grafting of vinylbenzyl chloride onto poly(hexafluoropropylene-co-tetrafluoroethylene) films with subsequent conversion to alkaline anion-exchange membranes: Optimization of the experimental conditions and characterization, J. Membr. Sci. 147, 218 (2003).Google Scholar
  83. 83.
    R.C.T. Slade and J.R. Varcoe, Investigations of conductivity in FEP-based radiation-grafted alkaline anion-exchange membranes, Solid State Ionics 176, 585 (2005).CrossRefGoogle Scholar
  84. 84.
    U. Lappan, U. Geiβler, U. Scheler and K. Lunkwitz, Identification of new chemical structures in poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) irradiated in vacuum at different temperatures, Radiat. Phys. Chem. 67, 447 (2003).CrossRefGoogle Scholar
  85. 85.
    H.P. Brack and G.G. Scherer, Grafting of preirradiated poly(ethylene-alt-tetrafluoroethylene) films with styrene: Influence of base polymer film properties and processing parameters, J. Mater. Chem. 10, 1795 (2000).CrossRefGoogle Scholar
  86. 86.
    M.M. Nasef, H. Saidi and K.M. Dahlan, Electron beam irradiation effects on ethylene- tetrafluoroethylene copolymer films, Radiat. Phys. Chem. 68, 875 (2003).CrossRefGoogle Scholar
  87. 87.
    J. Forsythe and D. Hill, The radiation chemistry of fluoropolymers, Prog. Polym. Sci. 25, 101 (2000).CrossRefGoogle Scholar
  88. 88.
    H.P. Brack, F.N. Büchi, M. Rota and G.G. Scherer, Development of radiation-grafted membranes for fuel cell applications based on poly(ethylene-alt-tetrafluoroethylene), Polym. Mater. Sci. Eng. 77, 368 (1997).Google Scholar
  89. 89.
    H.P. Brack, L. Bonorand, H.G. Buhrer and G.G. Scherer, Radiation grafting of ETFE and FEP films: Base polymer film effects, Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 39, 976 (1998).Google Scholar
  90. 90.
    H.P. Brack, L. Bonorand, H.G. Buhrer and G.G. Scherer, Radiation processing of fluoropolymer films, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 39, 897 (1998).Google Scholar
  91. 91.
    H.P. Brack, M. Wyler, G. Peter and G.G. Scherer, A contact angle investigation of the surface properties of selected proton-conducting radiation-grafted membranes, J. Membr. Sci. 214, 1 (2003).CrossRefGoogle Scholar
  92. 92.
    T. Hatanka, N. Hasegawa, A. Kamiya, M. Kawasumi, Y. Morimoto and K. Kawahara, Cell performances of direct methanol fuel cells with grafted membranes, Fuel 81, 2173 (2002).CrossRefGoogle Scholar
  93. 93.
    A.S. Aricó, V. Baglio, P. Creti, A. Di Blasi, V. Antonucci, J. Brunea, A. Chapotot, A. Bozzi and J. Schoemans, Investigation of grafted ETFE-based polymer membranes as alternative electrolyte for direct methanol fuel cells, J. Power Sources 123, 107 (2003).CrossRefGoogle Scholar
  94. 94.
    M. Shen, S. Roy, J.W. Kuhlmann, K. Scott, K. Lovell and J.A. Horsfall, Grafted polymer electrolyte membrane for direct methanol fuel cells, J. Membr. Sci. 251, 121 (2005).CrossRefGoogle Scholar
  95. 95.
    V. Saarinen, T. Kallio, M. Paronen, P. Tikkanen, E. Rauhala and K. Kontturi, New ETFE-based membrane for direct methanol fuel cell, Electrochem. Acta 50, 3453 (2005).CrossRefGoogle Scholar
  96. 96.
    J. Chen, M. Asano, T. Yamaki and M. Yoshida, Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films, J. Membr. Sci. 269, 194 (2006).CrossRefGoogle Scholar
  97. 97.
    M.M. Nasef, H. Saidi, A.M. Dessouki and E.M. El-Nesr, Radiation-induced grafting of styrene onto poly(tetrafluoroethylene) (PTFE) films. I. Effect of grafting conditions and properties of the grafted films, Polym. Int. 49, 399 (2000).CrossRefGoogle Scholar
  98. 98.
    M.M. Nasef, H. Saidi, H.M. Nor and O.M. Foo, Radiation-induced grafting of styrene onto poly(tetrafluoroethylene) films. II. Properties of the grafted and sulfonated membranes, Polym. Int. 49, 1572 (2000).CrossRefGoogle Scholar
  99. 99.
    M.M. Nasef, Thermal stability of radiation grafted PTFE-g-polystyrene sulfonic acid membranes, Polym. Degrad. Stabil. 68, 231 (2000).CrossRefGoogle Scholar
  100. 100.
    M.M. Nasef, H. Saidi, H.M. Nor and M.A. Yarmo, XPS studies of radiation grafted PTFE-g-polystyrene sulfonic acid membranes, J. Appl. Polym. Sci. 76, 336 (2000).CrossRefGoogle Scholar
  101. 101.
    M.M. Nasef, Structural investigation of poly(ethylene trephthalate)-graft-polystyrene copolymer films, Eur. Polym. J. 38, 87 (2002).CrossRefGoogle Scholar
  102. 102.
    M.M. Nasef and H. Saidi, Structure-property relationships in radiation grafted poly(tetrafluoroethylene)-graft-polystyrene sulfonic acid membranes, J. Polym. Res. 12, 305 (2005).CrossRefGoogle Scholar
  103. 103.
    M.M. Nasef and H. Saidi, Surface studies of sulfonic acid radiation-grafted membranes: XPS and SEM analysis, J. Appl. Surf. Sci. 252, 3073 (2006).CrossRefGoogle Scholar
  104. 104.
    M.M. Nasef, Ph.D. Thesis, University of Technology, Malaysia 1999.Google Scholar
  105. 105.
    G.Z. Liang, T.L. Lu, X.Y. Ma, H.X. Yan and Z.H. Gong, Synthesis and characteristics of radiation-grafted membranes for fuel cell electrolytes, Polym. Int. 52, 1300 (2003).CrossRefGoogle Scholar
  106. 106.
    A. Oshima, Y. Tabata, H. Kudoh and T. Seguchi, Radiation induced cross-linking of polytetrafluoroethylene, Radiat. Phys. Chem. 45, 269 (1995).CrossRefGoogle Scholar
  107. 107.
    Y. Tabata, A. Oshima, K. Takashika and T. Seguchi, Temperature effects on radiation induced phenomena in polymers, Radiat. Phys. Chem. 48, 563 (1996).CrossRefGoogle Scholar
  108. 108.
    A. Oshima, S. Ikeda, H. Kudoh, T. Seguchi and Y. Tabata, Temperature effects on radiation induced phenomena in polytetrafluoroetylene (PTFE)-Change of G-value, Radiat. Phys. Chem. 50, 611 (1997).CrossRefGoogle Scholar
  109. 109.
    Y. Tabata and A. Oshima, ESR study on free radicals trapped in cross-linked polytetrafluoroethylene (PTFE), Macromol. Symp. 143, 337 (1999).CrossRefGoogle Scholar
  110. 110.
    A. Oshima, S. Ikeda, E. Katoh and Y. Tabata, Chemical structure and physical properties of radiation-induced cross-linking of polytetrafluoroethylene, Radiat. Phys. Chem. 62, 39 (2001).CrossRefGoogle Scholar
  111. 111.
    U. Lappan, U. Geiβler, L. Häuβler, D. Jehnichen, G. Pompe and K. Lunkwitz, Radiation-induced branching and cross-linking of poly(tetrafluoroethylene) (PTFE), Nucl. Instrum. Meth. Phys. Res. B 185, 178 (2001).CrossRefGoogle Scholar
  112. 112.
    T. Yamaki, M. Asano, Y. Maekawa, Y. Morita, T. Suwa, J. Chen, N. Tsubokawa, K. Kobayashi, H. Kubota and M. Yoshida, Radiation grafting of styrene into cross-linked PTFE films and its sulfonation for fuel cell applications, Radiat. Phys. Chem. 67, 403 (2003).CrossRefGoogle Scholar
  113. 113.
    K. Sato, S. Ikeda, M. Iida, A. Oshima, Y. Tabata and M. Washio, Study on poly-electrolyte membrane of cross-linked PTFE by radiation grafting, Nucl. Instrum. Meth. Phys. Res. B 208, 424 (2003).CrossRefGoogle Scholar
  114. 114.
    T. Yamaki, K. Kobayashi, M. Asano, H. Kubota and M. Yoshida, Preparation of proton exchange membranes based on cross-linked polytetrafluoroethylene for fuel cell applications, Polymer 45, 6569 (2004).CrossRefGoogle Scholar
  115. 115.
    U. Lappan, U. Geiβler and S. Uhlmann, Radiation-induced grafting of styrene into radiation-modified fluoropolymer films, Nucl. Instrum. Meth. Phys. Res. B 236, 413 (2005).CrossRefGoogle Scholar
  116. 116.
    J.Y. Li, K. Sato, S. Ichizuri, S. Asano, S. Ikeda, M. Iida, A. Oshima, Y. Tabata and M. Washio, Pre-irradiation induced grafting of styrene into cross-linked and non-cross-linked polytetrafluoroethylene films for polymer electrolyte fuel cell applications. I: Influence of styrene grafting conditions, Eur. Polym. J. 40, 775 (2004).CrossRefGoogle Scholar
  117. 117.
    J.Y. Li, S. Ichizuri, S. Asano, F. Mutou, S. Ikeda, M. Iida, A. Oshima, Y. Tabata and M. Washio, Pre-irradiation induced grafting of styrene into cross-linked and non-cross-linked poly(tetrafluoroethylene) films for polymer electrolyte fuel cell applications. II: Characterization of the styrene grafted films, Eur. Polym. J. 41, 547 (2005).CrossRefGoogle Scholar
  118. 118.
    J.Y. Li, S. Ichizuri, S. Asano, F. Mutou, S. Ikeda, M. Iida, T. Miura, A. Oshima, Y. Tabata and M. Washio, Surface analysis of the proton exchange membranes prepared by pre-irradiation induced grafting of styrene/divinylbenzene into cross-linked thin PTFE membranes, Appl. Surf. Sci. 245, 260 (2005).CrossRefGoogle Scholar
  119. 119.
    J. Chen, M. Asano, T. Yamaki and M. Yoshida, Preparation of sulfonated cross-linked PTFE-graft-poly(alkyl vinyl ether) membranes for polymer electrolyte membrane fuel cells by radiation processing, J. Membr. Sci. 256, 38 (2005).Google Scholar
  120. 120.
    J.C. Caro, U. Lappan and K. Lunkwitz, Sulfonation of fluoropolymers induced by electron beam irradiation, Nucl. Instrum. Meth. Phys. Res. B 151, 181 (1999).CrossRefGoogle Scholar
  121. 121.
    M.M. Nasef, H. Saidi, M.H. Nor and K.Z.M. Dahlan, Cation exchange membranes by radiation-induced graft copolymerization of styrene onto PFA copolymer films. I. Preparation and characterization of the graft copolymer, J. Appl. Polym. Sci. 73, 2095 (1999).CrossRefGoogle Scholar
  122. 122.
    M.M. Nasef, H. Saidi, H.M. Nor and O.M. Foo, Cation exchange membranes by radiation-induced graft copolymerization of styrene onto PFA copolymer films. II. Characterization of sulfonated graft copolymer membranes, J. Appl. Polym. Sci. 76, 1 (2000).CrossRefGoogle Scholar
  123. 123.
    M.M. Nasef, H. Saidi and H.M. Nor, Cation exchange membranes by radiation-induced graft copolymerization of styrene onto PFA copolymer films, J. Appl. Polym. Sci. 77, 1877 (2000).CrossRefGoogle Scholar
  124. 124.
    M.M. Nasef, H. Saidi and M.A. Yarmo, Cation exchange membranes by radiation-induced graft copolymerization of styrene onto PFA copolymer films. IV. Morphological investigations using X-ray photoelectron spectroscopy, J. Appl. Polym. Sci. 77, 2455 (2000).CrossRefGoogle Scholar
  125. 125.
    M.M. Nasef and H. Saidi, Post-mortem analysis of radiation grafted fuel cell membrane using X-ray photoelectron spectroscopy, J. New. Mater. Electrochem. Syst. 5, 183 (2002).Google Scholar
  126. 126.
    M.M. Nasef and H. Saidi, International Exhibition on Ideas, Innovation and New Products (IENA2004), 28–31 October 2004, Nuremberg, Germany.Google Scholar
  127. 127.
    M.M. Nasef and H. Saidi, Preparation of cross-linked cation exchange membranes by radiation grafting of styrene/divinylbenzene mixtures onto PFA films, J. Membr. Sci. 216, 27 (2003).CrossRefGoogle Scholar
  128. 128.
    S. Nezu, H. Seko, M. Gondo and N. Ito, High performance radiation-grafted membranes and electrodes for polymer electrolyte fuel cells. In: Fuel Cell Seminar, 17–20 November 1996, Orlando, FL, pp. 620–627.Google Scholar
  129. 129.
    M. Paronen, F. Sundholm, E. Rauhala, T. Lehtinen and S. Hietala, Effects of irradiation on sulfonation of poly(vinyl fluoride), J. Mater. Chem. 7, 2401 (1997).CrossRefGoogle Scholar
  130. 130.
    M. Paronen, F. Sundholm, D. Ostrovskii, P. Jacobsson, G. Jeschker and E. Rauhala, Preparation of proton conducting membranes by direct sulfonation. 1. Effect of radical and radical decay on the sulfonation of polyvinylidene fluoride film, Chem. Mater. 15, 4447 (2003).CrossRefGoogle Scholar
  131. 131.
    S. Holmberg, P. Holmlund, C.E. Wilen, T. Kallio, G. Sundholm and F. Sundholm, Synthesis of proton-conducting membranes by the utilization of preirradiation grafting and atom transfer radical polymerization techniques, J. Polym. Sci. A: Polym. Phys. 40, 591 (2002).CrossRefGoogle Scholar
  132. 132.
    D. Ostrovskii, M. Paronen, F. Sundholm and L.M. Torell, State of water in sulfonated poly(vinyl fluoride) membranes: An FTIR study, Solid State Ionics 116, 301 (1999).CrossRefGoogle Scholar
  133. 133.
    M. Paronen, M. Karjalainen, K. Jokela, M. Torkkeli, R. Serimaa, J. Juhanoja, D. Ostrovskii, F. Sundholm, T. Lehtinen, G. Sundholm and L. Torell, Structure of sulfonated poly(vinyl fluoride) membranes, J. Appl. Polym. Sci. 73, 1273 (1999).CrossRefGoogle Scholar
  134. 134.
    P. Vie, M. Paronen, M. Strømgård, E. Rauhala and F. Sundholm, Fuel cell performance of proton irradiated and subsequently sulfonated poly(vinyl fluoride) membranes, J. Membr. Sci. 204, 295 (2002).CrossRefGoogle Scholar
  135. 135.
    Z. Florjanczyk, E. Wielgus-Barry and Z. Poltarzewski, Radiation-modified Nafion membranes for methanol fuel cells, Solid State Ionics 145, 119 (2001).CrossRefGoogle Scholar
  136. 136.
    B. Mattsson, H. Ericson, L.M. Torell and F. Sundholm, Degradation of a fuel cell membrane, as revealed by micro-Raman spectroscopy, Electrochem. Acta 45, 1405 (2000).CrossRefGoogle Scholar
  137. 137.
    W. Becker and G. Schmidt-Naake, Proton exchange membranes by irradiation-induced grafting of styrene onto FEP and ETFE: Influences of the cross-linker N,N-methylene-bis-acrylamide, Chem. Eng. Technol. 25, 373 (2002).CrossRefGoogle Scholar
  138. 138.
    T. Momose, H. Yoshioka,I. Ishigaki and J. Okamoto, Radiation grafting of α, β, β-trifluorostyrene onto poly(ethylene-tetrafluoroethylene) film by preirradiation method. I. Effects of preirradiation dose, monomer concentration, reaction temperature, and film thickness, J. Appl. Polym. Sci. 37, 2817 (1989).CrossRefGoogle Scholar
  139. 139.
    W. Becker, M. Bothe and G. Schmidt-Naake, Grafting of poly(styrene-co-acrylonitrile) onto pre-irradiated FEP and ETFE films, Die Angew. Makromol. Chem. 273, 57 (1999).CrossRefGoogle Scholar
  140. 140.
    V.I. Brunea, to Solavy S.A., Brevet D’invention BE 1,011,218, 1998.Google Scholar
  141. 141.
    J. Zu, M. Wu, H. Fu and S. Yao, Cation-exchange membranes by radiation-induced graft copolymerization of monomers onto HDPE, Radiat. Phys. Chem. 72, 759 (2005).CrossRefGoogle Scholar
  142. 142.
    P.R.S. Reddy, G. Agathian and A. Kumar, Preparation of strong acid cation-exchange membrane using radiation-induced graft polymerization, Radiat. Phys. Chem. 72, 511 (2005).CrossRefGoogle Scholar
  143. 143.
    V. Tricoli and N. Carreta, Polymer electrolyte membranes formed of sulfonated polyethylene, Electrochem. Commun. 4, 272 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mohamed Mahmoud Nasef
    • 1
  1. 1.Department of Chemical Engineering, Faculty of Chemical and Natural Resources EngineeringUniversiti Teknologi MalaysiaUTM SkudaiMalaysia

Personalised recommendations