Skip to main content

Fuel Cell Membranes by Radiation-Induced Graft Copolymerization: Current Status, Challenges, and Future Directions

  • Chapter
Polymer Membranes for Fuel Cells
  • 2529 Accesses

Abstract

Radiation-induced graft copolymerization is an attractive technique to prepare alternative proton conducting membranes (PCMs) for fuel cell applications. The purpose of this chapter is to review the latest progress made in the development of various radiation-grafted PCMs for fuel cells. The challenges facing the development of these membranes and their expected future research directions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Mehta and J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources 114, 32 (2003).

    Article  CAS  Google Scholar 

  2. J. Kerres, Development of ionomer membranes for fuel cells, J. Membr. Sci. 185, 3 (2001).

    Article  CAS  Google Scholar 

  3. Y.S. Kim, L. Dong, M.A. Hickner, B.S. Pivovar and J.E. McGrath, Processing induced morphological development in hydrated sulfonated poly(arylene ether sulfone) copolymer membranes, Polymer 44, 5729 (2003).

    Article  CAS  Google Scholar 

  4. O. Savadogo, Emerging membranes for electrochemical systems: (1) Solid polymer electrolyte membranes for fuel cell systems, J. New Mater. Electrochem. Syst. 1, 47 (1998).

    CAS  Google Scholar 

  5. B. Smitha, S. Sridhar and A.A. Khan, Solid polymer electrolyte membranes for fuel cell applications — a review, J. Membr. Sci. 259, 10 (2005).

    Article  CAS  Google Scholar 

  6. S. Renaud and A. Bruno, Functional fluoropolymers for fuel cell membranes, Prog. Polym. Sci. 30, 644 (2005).

    Article  CAS  Google Scholar 

  7. E.B. Easton, B.L. Langsdorf, J.A. Hughes, J. Sultan, Z. Qi, A. Kaufman and P.G. Pickup, Characteristics of polypyrrole/nafion composite membranes in a direct methanol fuel cell, J. Electrochem. Soc. 150, C735 (2003).

    Article  CAS  Google Scholar 

  8. N. Jia, M.C. Lefebvre, J. Halfyard, Z. Qi and P.G. Pickup, Modification of Nafion proton exchange membranes to reduce methanol crossover in PEM fuel cells, Electrochem. Solid-State Lett. 3, 529 (2000).

    Article  CAS  Google Scholar 

  9. L.J. Hobson, Y. Nakano, H. Ozu and S. Hayase, Targeting improved DMFC performance, J. Power Sources 104, 79 (2002).

    Article  CAS  Google Scholar 

  10. M. Walker, K.M. Baumgärtner, J. Feichtinger, M. Kaiser, E. Räuchle and J. Kerres, Barrier properties of plasma-polymerized thin films, Surf. Coat. Technol. 116/119, 996 (1999).

    Article  Google Scholar 

  11. N. Carretta, V. Tricoli and F. Picchioni, Ionomeric membranes based on partially sulfonated poly(styrene): Synthesis, proton conduction, and methanol permeation, J. Membr. Sci. 166, 189 (2000).

    Article  CAS  Google Scholar 

  12. Q. Guo, P.N. Pintauro, H. Tang and S. O’Connor, Sulfonated and cross-linked polyphosphazene-based proton-exchange membranes, J. Membr. Sci. 154, 175 (1999).

    Article  CAS  Google Scholar 

  13. K. Ramya, B. Vishnupriya and K.S. Dhathathreyan, Methanol permeability studies on sulphonated polyphenylene oxide membrane for direct methanol fuel cell, J. New Mater. Electrochem. Syst. 4, 115 (2001).

    CAS  Google Scholar 

  14. F. Lufrano, I. Gatto, P. Staiti, V. Antonucci and E. Passalacqua, Sulfonated polysulfone ionomer membranes for fuel cells, Solid State Ionics 145, 47 (2001).

    Article  CAS  Google Scholar 

  15. F. Wang, M. Hickner, Y.S. Kim, T.A. Zawodzinski and J.E. McGrath, Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: Candidates for new proton exchange membranes, J. Membr. Sci. 197, 231 (2002).

    Article  CAS  Google Scholar 

  16. C. Manea and M. Mulder, Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications, J. Membr. Sci. 206, 443 (2002).

    Article  CAS  Google Scholar 

  17. A. Schechter and R.F. Savinell, Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells, Solid State Ionics 147, 181 (2002).

    Article  CAS  Google Scholar 

  18. Y. Woo, S.Y. Oh, Y.S. Kang and B. Jung, Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell, J. Membr. Sci. 220, 31 (2003).

    Article  CAS  Google Scholar 

  19. G.K.S. Prakash, M.C. Smart, Q.J. Wang, A. Atti, V. Pleynet, B. Yang, K. McGrath, G.A. Olah, S.R. Narayanan, W. Chun, T. Valdez and S. Surampudi, High efficiency direct methanol fuel cell based on poly(styrenesulfonic) acid (PSSA)—poly(vinylidene fluoride) (PVDF) composite membranes, J. Fluor. Chem. 125, 1217 (2004).

    Article  CAS  Google Scholar 

  20. X. Qiu, W. Li, S. Zhang, H. Liang and W. Zhu, The microstructure and character of the PVDF-g-PSSA membrane prepared by solution grafting, J. Electrochem. Soc. 150, A917 (2003).

    Article  CAS  Google Scholar 

  21. F. Finsterwalder and G. Hambitzer, Proton conductive thin films prepared by plasma polymerization, J. Membr. Sci. 185, 105 (2001).

    Article  CAS  Google Scholar 

  22. J.P. Shin, B.J. Chang, J.H. Kim, S.B. Lee and D.H. Suh, Sulfonated polystyrene/PTFE composite membranes, J. Membr. Sci. 251, 247 (2005).

    Article  CAS  Google Scholar 

  23. M.M. Nasef, H. Saidi and H.M. Nor, Radiation-induced graft copolymerization for preparation of cation exchange membranes: A review, Nucl. Sci. J. Malaysia 17, 27 (1999).

    Google Scholar 

  24. B. Gupta and G.G. Scherer, Proton exchange membranes by radiation-induced graft copolymerization of monomers into Teflon-FEP films, Chimia 48, 127 (1994).

    CAS  Google Scholar 

  25. T. Dargaville, G. George, D. Hill and A. Whittaker, High energy radiation grafting of fluoropolymers, Prog. Polym. Sci. 28, 1355 (2003).

    Article  CAS  Google Scholar 

  26. G. Ellinghorst, A. Niemoeller and D. Vierkotten, Radiation-initiated grafting of polymer films — an alternative technique to prepare membranes for various separation problems, Radiat. Phys. Chem. 22, 635 (1983).

    CAS  Google Scholar 

  27. M.M. Nasef and E.A. Hegazy, Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films, Prog. Polym. Sci. 29, 499 (2004).

    Article  CAS  Google Scholar 

  28. M. Rikukawa and K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci. 25, 1463 (2000).

    Article  CAS  Google Scholar 

  29. W.W. Chen, R. Mesrobian, D. Ballantine, D. Metz and A. Glines, Graft copolymers derived by ionizing radiation, J. Polym. Sci. 23, 903 (1957).

    Article  CAS  Google Scholar 

  30. A. Chapiro, Radiation induced grafting, Int. J. Radiat. Phys. Chem. 9, 55 (1977).

    CAS  Google Scholar 

  31. S. Shkolink and D. Behar, Radiation-induced grafting of sulfonates on polyethylene, J. Appl. Polym. Sci. 27, 2189 (1982).

    Article  Google Scholar 

  32. N. Walsby, M. Paronen, J. Juhanoja and F. Sundholm, Sulfonation of styrene-grafted poly(vinylidene fluoride) films, J. Appl. Polym. Sci. 81, 1572 (2001).

    Article  CAS  Google Scholar 

  33. T. Momose, H. Harada, H. Miyachi and H. Kato, US Patent 4,605,685 1986.

    Google Scholar 

  34. V.F. D’Agostino, J.Y. Lee and E.H. Cook, Jr., US Patent 4,012,303 1977.

    Google Scholar 

  35. G.G. Scherer, T. Momose and K. Tomiie, Membrane-water electrolysis cells with a fluorinated cation exchange membranes, J. Electrochem. Soc. 135, 3071 (1988).

    Article  CAS  Google Scholar 

  36. A. Guzman-Garcia, P. Pintauro, M. Verbrugge and E. Schneider, Analysis of radiation-grafted membranes for fuel cell electrolytes, J. Appl. Electrochem. 22, 204 (1992).

    Article  CAS  Google Scholar 

  37. H. Wang and G. Capuano, Behavior of Raipore radiation-grafted polymer membranes in H2/O2 fuel cells, J. Electrochem. Soc. 145, 780 (1998).

    Article  CAS  Google Scholar 

  38. S. Holmberg, T. Lehtinen, J. Naesman, D. Ostrovskii, M. Paronen, R. Serimaa, F. Sundholm, G. Sundholm, L. Torell and M. Torkkeli, Structure and properties of sulfonated poly[(vinylidene fluoride)-g-styrene] porous membranes, J. Mater. Chem. 6, 1309 (1996).

    Article  CAS  Google Scholar 

  39. S. Holmberg, J. Nasman and F. Sundholm, Synthesis and properties of sulfonated and cross-linked poly[(vinylidene fluoride)-graft-styrene] membranes, Polym. Adv. Tech. 9, 121 (1998).

    Article  CAS  Google Scholar 

  40. N. Walsby, M. Paronen, J. Juhanoja and F. Sundholm, Radiation grafting of styrene onto poly(vinylidene fluoride) films in propanol: The influence of solvent and synthesis conditions, J. Polym. Sci. A: Polym. Chem. 38, 1512 (2000).

    Article  CAS  Google Scholar 

  41. S. Hietala, S. Holmberg, M. Karjalainen, J. Näsman, M. Paronen, R. Serimaa, F. Sundholm and S. Vahvaselkä, Structural investigation of radiation grafted and sulfonated poly(vinylidene fluoride), PVDF, membranes, J. Mater. Chem. 7, 721 (1997).

    Article  CAS  Google Scholar 

  42. J. Ennari, S. Hietala, M. Paronen, F. Sundholm, N. Walsby, M. Karjalainen, R. Serimaa, T. Lehtinen andG. Sundholm, New polymer electrolyte membranes for low temperature fuel cells, Macromol. Symp. 146, 41 (1999).

    Article  CAS  Google Scholar 

  43. S. Hietala, M. Koel, E. Skou, M. Elomaa and F. Sundholm, Thermal stability of styrene grafted and sulfonated proton conducting membranes based on poly(vinylidene fluoride), J. Mater. Chem. 8, 1127 (1998).

    Article  CAS  Google Scholar 

  44. S. Hietala, M. Paronen, S. Holmberg, J. Näsman, J. Juhanoja, M. Karjalainen, R. Serimaa, M. Toivola, T. Lehtinen, K. Parovuori, G. Sundholm, H. Ericson, B. Mattsson, L. Torell and F. Sundholm, Phase separation and crystallinity in proton conducting membranes of styrene grafted and sulfonated poly (vinylidene fluoride), J. Polym. Sci. A: Polym. Chem. 37, 1741 (1999).

    Article  CAS  Google Scholar 

  45. S. Hietala, S.L. Maunu, F. Sundholm, T. Lehtinen and G. Sundholm, Water sorption and diffusion coefficients of protons and water in PVDF-g-PSSA polymer electrolyte membranes, J. Polym. Sci. B: Polym. Phys. 37, 2893 (1999).

    Article  CAS  Google Scholar 

  46. K. Jokela, R. Serimaa, M. Torkkeli, F. Sundholm, T. Kallio and G. Sundholm, Effect of the initial matrix material on the structure of radiation-grafted ion-exchange membranes: Wide-angle and small-angle X-ray scattering studies, J. Polym. Sci. B: Polym. Phys. 40, 1539 (2002).

    Article  CAS  Google Scholar 

  47. M. Elomaa, S. Hietala, M. Paronen, N. Walsby, K. Jokela, R. Serimaa, M. Torkkeli, T. Lehtinen, G. Sundholm and F. Sundholm, The state of water and the nature of ion clusters in cross-linked proton conducting membranes of styrene grafted and sulfonated poly(vinylidene fluoride), J. Mater. Chem. 10, 2678 (2000).

    Article  CAS  Google Scholar 

  48. T. Kallio, K. Jokela, H. Ericson, R. Serimaa, G. Sundholm, P. Jacobsson and F. Sundholm, Effects of a fuel cell test on the structure of irradiation grafted ion exchange membranes based on different fluoropolymers, J. Appl. Electrochem. 33, 505 (2003).

    Article  CAS  Google Scholar 

  49. P. Gode, J. Ihonen, A. Strandroth, H. Ericson, G. Lindbergh, M. Paronen, F. Sundholm, G. Sundholm and N. Walsby, Membrane durability in a proton exchange membrane fuel cell studied using PVDF based radiation-grafted membranes, Fuel Cells 3, 21 (2003).

    Article  CAS  Google Scholar 

  50. S. Flint and R. Slade, Investigation of radiation-grafted PVDF-g-polystyrene-sulfonic-acid ion exchange membranes for use in hydrogen oxygen fuel cells, Solid State Ionics 97, 299 (1997).

    Article  CAS  Google Scholar 

  51. H.P. Brack and G.G. Scherer, Modification and characterization of thin polymer films for electrochemical applications, Macromol. Symp. 126, 25 (1998).

    Article  CAS  Google Scholar 

  52. H.P. Brack, H.G. Bührer, L. Bonorand and G.G. Scherer, Grafting of preirradiated poly(ethylene-alt-tetrafluoroethylene) films with styrene: Influence of base polymer film properties and processing parameters, J. Mater. Chem. 10, 1795 (2000).

    Article  CAS  Google Scholar 

  53. B. Soresi, E. Quartarone, P. Mustarelli, A. Magistris and G. Chiodelli, PVDF and P(VDF-HFP)-based proton exchange membranes, J. Membr. Sci. 166, 383 (2004).

    CAS  Google Scholar 

  54. M.M. Nasef, N.A. Zubir, A.F. Ismail, K.Z.M. Dahlan, H. Saidi and M. Khayet, Preparation of radiochemically pore-filled polymer electrolyte membranes for direct methanol fuel cell, J. Power Sources 156, 200 (2006).

    Article  CAS  Google Scholar 

  55. M.M. Nasef, N.A. Zubir, A.F. Ismail, K.Z.M. Dahlan, H. Saidi and M. Khayet, PSSA pore-filled PVDF membranes by simultaneous electron beam irradiation: Preparation and transport characteristics of protons and methanol, J. Membr. Sci. 268, 96 (2006).

    Article  CAS  Google Scholar 

  56. K. Scott, W. Taama and P. Argyropoulos, Performance of the direct methanol fuel cell with radiation-grafted polymer membranes, J. Membr. Sci. 171, 119 (2000).

    Article  CAS  Google Scholar 

  57. T.N. Danks, R.C.T. Slade and J.R. Varcoe, Comparison of PVDF- and FEP-based radiation-grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs, J. Mater. Chem. 12, 3371 (2002).

    Article  CAS  Google Scholar 

  58. T.N. Danks, R.C.T. Slade and J.R. Varcoe, Alkaline anion-exchange radiation-grafted membranes for possible electrochemical application in fuel cells, J. Mater. Chem. 13, 712 (2003).

    Article  CAS  Google Scholar 

  59. F. Büchi, B. Gupta, M. Rouilly, C. Hauser, A. Chapiro and G.G. Scherer, 27th IECEC Conference Proceedings, Vol. 3, 1999, pp. 3419–3424.

    Google Scholar 

  60. M. Rouilly, E. Koetz, O. Haas, G.G. Scherer and A. Chapiro, Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto Teflon-FEP films-synthesis and characterization, J. Membr. Sci. 81, 89 (1993).

    Article  CAS  Google Scholar 

  61. B. Gupta, F. Büchi, G.G. Scherer and A. Chapiro, Materials research aspects of organic solid proton conductors, Solid State Ionics 61, 213 (1993).

    Article  CAS  Google Scholar 

  62. B. Gupta, F. Büchi, G.G. Scherer and A. Chapiro, Cross-linked ion exchange membranes by radiation grafting of styrene/divinylbenzene into FEP films, J. Membr. Sci. 118, 231 (1996).

    Article  CAS  Google Scholar 

  63. B. Gupta, F. Büchi and G.G. Scherer, Cation exchange membranes by pre-irradiation grafting of styrene into FEP films. I. Influence of synthesis conditions, J. Polym. Sci. A: Polym. Chem. 32, 1931 (1994).

    Article  CAS  Google Scholar 

  64. B. Gupta, F. Büchi, M. Staub, D. Grman and G.G. Scherer, Cation exchange membranes by pre-irradiation grafting of styrene into FEP films. II. properties of copolymer membranes, J. Polym. Sci. A: Polym. Chem. 34, 1873 (1996).

    Article  CAS  Google Scholar 

  65. F.N. Büchi, B. Gupta, O. Haas and G.G. Scherer, Study of radiation-grafting FEP-g-polystyrene membrane as polymer electrolyte in fuel cells, Electrochem. Acta 40, 345 (1995).

    Article  Google Scholar 

  66. F.N. Büchi, B. Gupta, O. Haas and G.G. Scherer, Performance of differently cross-Linked, partially fluoronated proton exchange membranes in polymer electrolyte fuel cells, Electrochem. Soc. 142, 3044 (1995).

    Article  Google Scholar 

  67. H.P. Brack, F.N. Büchi, J. Husalge and G.G. Scherer, in: S. Gottesfeld, T.F. Fuller and G. Hapert (Eds.), 2nd Symposium on Polymer Electrolyte Fuel Cells, ESC Proceedings Vol. 98–27, 1999.

    Google Scholar 

  68. J. Huslage, T. Rager, B. Schnyder and A. Tsukada, Radiation-grafted membrane/electrode assemblies with improved interface, Electrochem. Acta 48, 247 (2002).

    Article  CAS  Google Scholar 

  69. J. Huslage, T. Rager, J. Kiefer, L. Steuernagel and G.G. Scherer, Electrochemical Society Meeting, Toronto, Canada, 2000.

    Google Scholar 

  70. T. Rager, Pre-irradiation of styrene/divinylbenzene onto poly(tetrafluoroethylene-co-hexafluoropropylene) from non-solvent, Helv. Chim. Acta 86, 1966 (2003).

    Article  CAS  Google Scholar 

  71. L. Gubler, H. Kuhn, T.J. Schmidt, G.G. Scherer, H.P. Brack and K. Simbeck, Performance and durability of membrane electrode assemblies based on radiation-grafted FEP-g-polystyrene membranes, Fuel Cells 4, 196 (2004).

    Article  CAS  Google Scholar 

  72. J.A. Horsfall and K.V. Lovell, Fuel cell performance of radiation-grafted sulfonic acid membranes, Fuel Cells 1, 186 (2001).

    Article  CAS  Google Scholar 

  73. J.A. Horsfall and K.V. Lovell, Comparison of fuel cell performance of selected fluoropolymer and hydrocarbon based grafted copolymers incorporating acrylic acid and styrene sulfonic acid, Polym. Adv. Technol. 13, 381 (2002).

    Article  CAS  Google Scholar 

  74. J.A. Horsfall and K.V. Lovell, Proton exchange membranes by irradiation-induced grafting of styrene onto FEP and ETFE: Influences of the cross-linker N,N-methylene-bis-acrylamide, Eur. Polym. J. 38, 1671 (2002).

    Article  CAS  Google Scholar 

  75. C. Chuy, V.I. Basura, E. Simon, S. Holdcroft, J.A. Horsfall and K.V. Lovell, Electrochemical characterization of ethylenetetrafluoroethylene-g-polystyrenesulfonic acid solid polymer electrolytes, J. Electrochem. Soc. 147, 4453 (2000).

    Article  Google Scholar 

  76. M.M. Nasef, H. Saidi and H.M. Nor, Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto FEP films.I. fffect of grafting conditions, J. Appl. Polym. Sci. 76, 220 (2000).

    Article  CAS  Google Scholar 

  77. M.M. Nasef, H. Saidi, H.M. Nor and M.F. Ooi, Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto FEP films.II. Properties of the sulfonated membranes, J. Appl. Polym. Sci. 78, 2443 (2000).

    Article  CAS  Google Scholar 

  78. M.M. Nasef and H. Saidi, Thermal degradation behavior of radiation grafted FEP-g-polystyerne sulfonic acid membranes, Polym. Degrad. Stab. 70, 497 (2000).

    Article  Google Scholar 

  79. M.M. Nasef, H. Saidi and M.A. Yarmo, Surface investigations of radiation grafted FEP-g-polystyrene sulfonic acid membranes using XPS, J. New Mater. Electrochem. Syst. 3, 309 (2000).

    CAS  Google Scholar 

  80. T.N. Danks, R.C.T. Slade and J.R. Varcoe, Comparison of PVDF- and FEP-based radiation-grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs, J. Mater. Chem. 12, 3371 (2002).

    Article  CAS  Google Scholar 

  81. T.N. Danks, R.C.T. Slade and J.R. Varcoe, Alkaline anion-exchange radiation-grafted membranes for possible electrochemical application in fuel cells, J. Mater. Chem. 13, 712 (2003).

    Article  CAS  Google Scholar 

  82. H. Herman, R.C.T. Slade and J.R. Varcoe, The radiation-grafting of vinylbenzyl chloride onto poly(hexafluoropropylene-co-tetrafluoroethylene) films with subsequent conversion to alkaline anion-exchange membranes: Optimization of the experimental conditions and characterization, J. Membr. Sci. 147, 218 (2003).

    Google Scholar 

  83. R.C.T. Slade and J.R. Varcoe, Investigations of conductivity in FEP-based radiation-grafted alkaline anion-exchange membranes, Solid State Ionics 176, 585 (2005).

    Article  CAS  Google Scholar 

  84. U. Lappan, U. Geiβler, U. Scheler and K. Lunkwitz, Identification of new chemical structures in poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) irradiated in vacuum at different temperatures, Radiat. Phys. Chem. 67, 447 (2003).

    Article  CAS  Google Scholar 

  85. H.P. Brack and G.G. Scherer, Grafting of preirradiated poly(ethylene-alt-tetrafluoroethylene) films with styrene: Influence of base polymer film properties and processing parameters, J. Mater. Chem. 10, 1795 (2000).

    Article  CAS  Google Scholar 

  86. M.M. Nasef, H. Saidi and K.M. Dahlan, Electron beam irradiation effects on ethylene- tetrafluoroethylene copolymer films, Radiat. Phys. Chem. 68, 875 (2003).

    Article  CAS  Google Scholar 

  87. J. Forsythe and D. Hill, The radiation chemistry of fluoropolymers, Prog. Polym. Sci. 25, 101 (2000).

    Article  CAS  Google Scholar 

  88. H.P. Brack, F.N. Büchi, M. Rota and G.G. Scherer, Development of radiation-grafted membranes for fuel cell applications based on poly(ethylene-alt-tetrafluoroethylene), Polym. Mater. Sci. Eng. 77, 368 (1997).

    CAS  Google Scholar 

  89. H.P. Brack, L. Bonorand, H.G. Buhrer and G.G. Scherer, Radiation grafting of ETFE and FEP films: Base polymer film effects, Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 39, 976 (1998).

    CAS  Google Scholar 

  90. H.P. Brack, L. Bonorand, H.G. Buhrer and G.G. Scherer, Radiation processing of fluoropolymer films, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 39, 897 (1998).

    CAS  Google Scholar 

  91. H.P. Brack, M. Wyler, G. Peter and G.G. Scherer, A contact angle investigation of the surface properties of selected proton-conducting radiation-grafted membranes, J. Membr. Sci. 214, 1 (2003).

    Article  CAS  Google Scholar 

  92. T. Hatanka, N. Hasegawa, A. Kamiya, M. Kawasumi, Y. Morimoto and K. Kawahara, Cell performances of direct methanol fuel cells with grafted membranes, Fuel 81, 2173 (2002).

    Article  Google Scholar 

  93. A.S. Aricó, V. Baglio, P. Creti, A. Di Blasi, V. Antonucci, J. Brunea, A. Chapotot, A. Bozzi and J. Schoemans, Investigation of grafted ETFE-based polymer membranes as alternative electrolyte for direct methanol fuel cells, J. Power Sources 123, 107 (2003).

    Article  CAS  Google Scholar 

  94. M. Shen, S. Roy, J.W. Kuhlmann, K. Scott, K. Lovell and J.A. Horsfall, Grafted polymer electrolyte membrane for direct methanol fuel cells, J. Membr. Sci. 251, 121 (2005).

    Article  CAS  Google Scholar 

  95. V. Saarinen, T. Kallio, M. Paronen, P. Tikkanen, E. Rauhala and K. Kontturi, New ETFE-based membrane for direct methanol fuel cell, Electrochem. Acta 50, 3453 (2005).

    Article  CAS  Google Scholar 

  96. J. Chen, M. Asano, T. Yamaki and M. Yoshida, Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films, J. Membr. Sci. 269, 194 (2006).

    Article  CAS  Google Scholar 

  97. M.M. Nasef, H. Saidi, A.M. Dessouki and E.M. El-Nesr, Radiation-induced grafting of styrene onto poly(tetrafluoroethylene) (PTFE) films. I. Effect of grafting conditions and properties of the grafted films, Polym. Int. 49, 399 (2000).

    Article  CAS  Google Scholar 

  98. M.M. Nasef, H. Saidi, H.M. Nor and O.M. Foo, Radiation-induced grafting of styrene onto poly(tetrafluoroethylene) films. II. Properties of the grafted and sulfonated membranes, Polym. Int. 49, 1572 (2000).

    Article  CAS  Google Scholar 

  99. M.M. Nasef, Thermal stability of radiation grafted PTFE-g-polystyrene sulfonic acid membranes, Polym. Degrad. Stabil. 68, 231 (2000).

    Article  CAS  Google Scholar 

  100. M.M. Nasef, H. Saidi, H.M. Nor and M.A. Yarmo, XPS studies of radiation grafted PTFE-g-polystyrene sulfonic acid membranes, J. Appl. Polym. Sci. 76, 336 (2000).

    Article  CAS  Google Scholar 

  101. M.M. Nasef, Structural investigation of poly(ethylene trephthalate)-graft-polystyrene copolymer films, Eur. Polym. J. 38, 87 (2002).

    Article  CAS  Google Scholar 

  102. M.M. Nasef and H. Saidi, Structure-property relationships in radiation grafted poly(tetrafluoroethylene)-graft-polystyrene sulfonic acid membranes, J. Polym. Res. 12, 305 (2005).

    Article  CAS  Google Scholar 

  103. M.M. Nasef and H. Saidi, Surface studies of sulfonic acid radiation-grafted membranes: XPS and SEM analysis, J. Appl. Surf. Sci. 252, 3073 (2006).

    Article  CAS  Google Scholar 

  104. M.M. Nasef, Ph.D. Thesis, University of Technology, Malaysia 1999.

    Google Scholar 

  105. G.Z. Liang, T.L. Lu, X.Y. Ma, H.X. Yan and Z.H. Gong, Synthesis and characteristics of radiation-grafted membranes for fuel cell electrolytes, Polym. Int. 52, 1300 (2003).

    Article  CAS  Google Scholar 

  106. A. Oshima, Y. Tabata, H. Kudoh and T. Seguchi, Radiation induced cross-linking of polytetrafluoroethylene, Radiat. Phys. Chem. 45, 269 (1995).

    Article  CAS  Google Scholar 

  107. Y. Tabata, A. Oshima, K. Takashika and T. Seguchi, Temperature effects on radiation induced phenomena in polymers, Radiat. Phys. Chem. 48, 563 (1996).

    Article  CAS  Google Scholar 

  108. A. Oshima, S. Ikeda, H. Kudoh, T. Seguchi and Y. Tabata, Temperature effects on radiation induced phenomena in polytetrafluoroetylene (PTFE)-Change of G-value, Radiat. Phys. Chem. 50, 611 (1997).

    Article  CAS  Google Scholar 

  109. Y. Tabata and A. Oshima, ESR study on free radicals trapped in cross-linked polytetrafluoroethylene (PTFE), Macromol. Symp. 143, 337 (1999).

    Article  CAS  Google Scholar 

  110. A. Oshima, S. Ikeda, E. Katoh and Y. Tabata, Chemical structure and physical properties of radiation-induced cross-linking of polytetrafluoroethylene, Radiat. Phys. Chem. 62, 39 (2001).

    Article  CAS  Google Scholar 

  111. U. Lappan, U. Geiβler, L. Häuβler, D. Jehnichen, G. Pompe and K. Lunkwitz, Radiation-induced branching and cross-linking of poly(tetrafluoroethylene) (PTFE), Nucl. Instrum. Meth. Phys. Res. B 185, 178 (2001).

    Article  CAS  Google Scholar 

  112. T. Yamaki, M. Asano, Y. Maekawa, Y. Morita, T. Suwa, J. Chen, N. Tsubokawa, K. Kobayashi, H. Kubota and M. Yoshida, Radiation grafting of styrene into cross-linked PTFE films and its sulfonation for fuel cell applications, Radiat. Phys. Chem. 67, 403 (2003).

    Article  CAS  Google Scholar 

  113. K. Sato, S. Ikeda, M. Iida, A. Oshima, Y. Tabata and M. Washio, Study on poly-electrolyte membrane of cross-linked PTFE by radiation grafting, Nucl. Instrum. Meth. Phys. Res. B 208, 424 (2003).

    Article  CAS  Google Scholar 

  114. T. Yamaki, K. Kobayashi, M. Asano, H. Kubota and M. Yoshida, Preparation of proton exchange membranes based on cross-linked polytetrafluoroethylene for fuel cell applications, Polymer 45, 6569 (2004).

    Article  CAS  Google Scholar 

  115. U. Lappan, U. Geiβler and S. Uhlmann, Radiation-induced grafting of styrene into radiation-modified fluoropolymer films, Nucl. Instrum. Meth. Phys. Res. B 236, 413 (2005).

    Article  CAS  Google Scholar 

  116. J.Y. Li, K. Sato, S. Ichizuri, S. Asano, S. Ikeda, M. Iida, A. Oshima, Y. Tabata and M. Washio, Pre-irradiation induced grafting of styrene into cross-linked and non-cross-linked polytetrafluoroethylene films for polymer electrolyte fuel cell applications. I: Influence of styrene grafting conditions, Eur. Polym. J. 40, 775 (2004).

    Article  CAS  Google Scholar 

  117. J.Y. Li, S. Ichizuri, S. Asano, F. Mutou, S. Ikeda, M. Iida, A. Oshima, Y. Tabata and M. Washio, Pre-irradiation induced grafting of styrene into cross-linked and non-cross-linked poly(tetrafluoroethylene) films for polymer electrolyte fuel cell applications. II: Characterization of the styrene grafted films, Eur. Polym. J. 41, 547 (2005).

    Article  CAS  Google Scholar 

  118. J.Y. Li, S. Ichizuri, S. Asano, F. Mutou, S. Ikeda, M. Iida, T. Miura, A. Oshima, Y. Tabata and M. Washio, Surface analysis of the proton exchange membranes prepared by pre-irradiation induced grafting of styrene/divinylbenzene into cross-linked thin PTFE membranes, Appl. Surf. Sci. 245, 260 (2005).

    Article  CAS  Google Scholar 

  119. J. Chen, M. Asano, T. Yamaki and M. Yoshida, Preparation of sulfonated cross-linked PTFE-graft-poly(alkyl vinyl ether) membranes for polymer electrolyte membrane fuel cells by radiation processing, J. Membr. Sci. 256, 38 (2005).

    CAS  Google Scholar 

  120. J.C. Caro, U. Lappan and K. Lunkwitz, Sulfonation of fluoropolymers induced by electron beam irradiation, Nucl. Instrum. Meth. Phys. Res. B 151, 181 (1999).

    Article  CAS  Google Scholar 

  121. M.M. Nasef, H. Saidi, M.H. Nor and K.Z.M. Dahlan, Cation exchange membranes by radiation-induced graft copolymerization of styrene onto PFA copolymer films. I. Preparation and characterization of the graft copolymer, J. Appl. Polym. Sci. 73, 2095 (1999).

    Article  CAS  Google Scholar 

  122. M.M. Nasef, H. Saidi, H.M. Nor and O.M. Foo, Cation exchange membranes by radiation-induced graft copolymerization of styrene onto PFA copolymer films. II. Characterization of sulfonated graft copolymer membranes, J. Appl. Polym. Sci. 76, 1 (2000).

    Article  CAS  Google Scholar 

  123. M.M. Nasef, H. Saidi and H.M. Nor, Cation exchange membranes by radiation-induced graft copolymerization of styrene onto PFA copolymer films, J. Appl. Polym. Sci. 77, 1877 (2000).

    Article  CAS  Google Scholar 

  124. M.M. Nasef, H. Saidi and M.A. Yarmo, Cation exchange membranes by radiation-induced graft copolymerization of styrene onto PFA copolymer films. IV. Morphological investigations using X-ray photoelectron spectroscopy, J. Appl. Polym. Sci. 77, 2455 (2000).

    Article  CAS  Google Scholar 

  125. M.M. Nasef and H. Saidi, Post-mortem analysis of radiation grafted fuel cell membrane using X-ray photoelectron spectroscopy, J. New. Mater. Electrochem. Syst. 5, 183 (2002).

    CAS  Google Scholar 

  126. M.M. Nasef and H. Saidi, International Exhibition on Ideas, Innovation and New Products (IENA2004), 28–31 October 2004, Nuremberg, Germany.

    Google Scholar 

  127. M.M. Nasef and H. Saidi, Preparation of cross-linked cation exchange membranes by radiation grafting of styrene/divinylbenzene mixtures onto PFA films, J. Membr. Sci. 216, 27 (2003).

    Article  CAS  Google Scholar 

  128. S. Nezu, H. Seko, M. Gondo and N. Ito, High performance radiation-grafted membranes and electrodes for polymer electrolyte fuel cells. In: Fuel Cell Seminar, 17–20 November 1996, Orlando, FL, pp. 620–627.

    Google Scholar 

  129. M. Paronen, F. Sundholm, E. Rauhala, T. Lehtinen and S. Hietala, Effects of irradiation on sulfonation of poly(vinyl fluoride), J. Mater. Chem. 7, 2401 (1997).

    Article  CAS  Google Scholar 

  130. M. Paronen, F. Sundholm, D. Ostrovskii, P. Jacobsson, G. Jeschker and E. Rauhala, Preparation of proton conducting membranes by direct sulfonation. 1. Effect of radical and radical decay on the sulfonation of polyvinylidene fluoride film, Chem. Mater. 15, 4447 (2003).

    Article  CAS  Google Scholar 

  131. S. Holmberg, P. Holmlund, C.E. Wilen, T. Kallio, G. Sundholm and F. Sundholm, Synthesis of proton-conducting membranes by the utilization of preirradiation grafting and atom transfer radical polymerization techniques, J. Polym. Sci. A: Polym. Phys. 40, 591 (2002).

    Article  CAS  Google Scholar 

  132. D. Ostrovskii, M. Paronen, F. Sundholm and L.M. Torell, State of water in sulfonated poly(vinyl fluoride) membranes: An FTIR study, Solid State Ionics 116, 301 (1999).

    Article  CAS  Google Scholar 

  133. M. Paronen, M. Karjalainen, K. Jokela, M. Torkkeli, R. Serimaa, J. Juhanoja, D. Ostrovskii, F. Sundholm, T. Lehtinen, G. Sundholm and L. Torell, Structure of sulfonated poly(vinyl fluoride) membranes, J. Appl. Polym. Sci. 73, 1273 (1999).

    Article  CAS  Google Scholar 

  134. P. Vie, M. Paronen, M. Strømgård, E. Rauhala and F. Sundholm, Fuel cell performance of proton irradiated and subsequently sulfonated poly(vinyl fluoride) membranes, J. Membr. Sci. 204, 295 (2002).

    Article  CAS  Google Scholar 

  135. Z. Florjanczyk, E. Wielgus-Barry and Z. Poltarzewski, Radiation-modified Nafion membranes for methanol fuel cells, Solid State Ionics 145, 119 (2001).

    Article  CAS  Google Scholar 

  136. B. Mattsson, H. Ericson, L.M. Torell and F. Sundholm, Degradation of a fuel cell membrane, as revealed by micro-Raman spectroscopy, Electrochem. Acta 45, 1405 (2000).

    Article  CAS  Google Scholar 

  137. W. Becker and G. Schmidt-Naake, Proton exchange membranes by irradiation-induced grafting of styrene onto FEP and ETFE: Influences of the cross-linker N,N-methylene-bis-acrylamide, Chem. Eng. Technol. 25, 373 (2002).

    Article  CAS  Google Scholar 

  138. T. Momose, H. Yoshioka,I. Ishigaki and J. Okamoto, Radiation grafting of α, β, β-trifluorostyrene onto poly(ethylene-tetrafluoroethylene) film by preirradiation method. I. Effects of preirradiation dose, monomer concentration, reaction temperature, and film thickness, J. Appl. Polym. Sci. 37, 2817 (1989).

    Article  CAS  Google Scholar 

  139. W. Becker, M. Bothe and G. Schmidt-Naake, Grafting of poly(styrene-co-acrylonitrile) onto pre-irradiated FEP and ETFE films, Die Angew. Makromol. Chem. 273, 57 (1999).

    Article  CAS  Google Scholar 

  140. V.I. Brunea, to Solavy S.A., Brevet D’invention BE 1,011,218, 1998.

    Google Scholar 

  141. J. Zu, M. Wu, H. Fu and S. Yao, Cation-exchange membranes by radiation-induced graft copolymerization of monomers onto HDPE, Radiat. Phys. Chem. 72, 759 (2005).

    Article  CAS  Google Scholar 

  142. P.R.S. Reddy, G. Agathian and A. Kumar, Preparation of strong acid cation-exchange membrane using radiation-induced graft polymerization, Radiat. Phys. Chem. 72, 511 (2005).

    Article  CAS  Google Scholar 

  143. V. Tricoli and N. Carreta, Polymer electrolyte membranes formed of sulfonated polyethylene, Electrochem. Commun. 4, 272 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nasef, M.M. (2009). Fuel Cell Membranes by Radiation-Induced Graft Copolymerization: Current Status, Challenges, and Future Directions. In: Zaidi, S.M.J., Matsuura, T. (eds) Polymer Membranes for Fuel Cells. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73532-0_5

Download citation

Publish with us

Policies and ethics