Advertisement

Development of Sulfonated Poly(ether-ether ketone)s for PEMFC and DMFC

  • Dae Sik Kim
  • Michael D. Guiver
Chapter

Abstract

During the last two decades, extensive efforts have been made to develop alternative hydrocarbon-based polymer electrolyte membranes to overcome the drawbacks of the current widely used perfluorosulfonic acid Nafion. This chapter presents an overview of the synthesis, chemical properties, and polymer electrolyte fuel cell applications of new proton-conducting polymer electrolyte membranes based on sulfonated poly(arylene ether ether ketone) polymers and copolymers.

Primary attention has been paid to the basic properties of the sulfonated polymer prepared by post-sulfonation and direct copolymerization. This chapter attempts to summarize the preparation of sulfonated poly(arylene ether ether ketone) polymers with high proton conductivity, including synthesis from monomers containing sulfonic acid groups and hybrid membranes containing inorganic materials, and fuel cells derived from new proton-conducting polymer electrolytes that have been made during the past decade.

Keywords

Fuel Cell Fossil Fuel Polymer Electrolyte Sulfonic Acid Proton Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. S. Kim, Ph.D. Thesis, Novel polymer electrolyte membrane materials: Candidates for proton exchange membrane fuel cell. Hanyang University, Seoul, Korea, 2005.Google Scholar
  2. 2.
    A. J. Appleby, R. L. Foulkes, Fuel Cell Handbook, Van Nostrand Reinhold, NewYork. (1989).Google Scholar
  3. 3.
    M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, J. E. McGrath, Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104(10), 4587–4612 (2004).CrossRefGoogle Scholar
  4. 4.
    Y. S. Kim, F. Wang, M. Hickner, S. McCartney, Y. T. Hong, W. T. Harrison, A. Zawodzinski, J. E. McGrath, Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. J. Polym. Sci. A 41(14), 2264–2276 (2003).CrossRefGoogle Scholar
  5. 5.
    T. Schults, S. Zhou, K. Sundmacher, Current status of and recent developments in the direct methanol fuel cell. Chem. Eng. Technol. 24(12), 1223–1233 (2001).CrossRefGoogle Scholar
  6. 6.
    O. Savadogo, Emerging membranes for electrochemical systems: (I) Solid polymer electrolyte membranes for fuel cell systems. J. New Mater. Electrochem. Syst. 1, 47–66 (1998).Google Scholar
  7. 7.
    L. H. William, Ph.D. Thesis, Synthesis and characterization of sulfonated poly(arylene ether sulfone) copolymers via direct copolymerization: candidates for proton exchange membrane fuel cells. Hampton University, Virginia, USA, 2002.Google Scholar
  8. 8.
    W. H. J. Hogarth, J. C. Diniz da Costa, G. Q. Lu, Solid acid membranes for high temperature (140°C) proton exchange membrane fuel cells. J. Power Sources 142, 223–237 (2005).CrossRefGoogle Scholar
  9. 9.
    K. D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 185, 29–39 (2001).CrossRefGoogle Scholar
  10. 10.
    G. Alberti, M. Casciola, L. Massinelli, B. Bauer, Polymeric proton conducting membranes for medium temperature fuel cells (110–160°C). J. Membr. Sci. 185, 73–81 (2001).CrossRefGoogle Scholar
  11. 11.
    P. Genova-Dimitrova, B. Baradie, D. Foscallo, C. Poinsignon, J. Y. Sanchez, Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): Sulfonated polysulfone associated with phosphatoantimonic acid. J. Membr. Sci. 185, 59–71 (2001).CrossRefGoogle Scholar
  12. 12.
    F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, J. E. McGrath, Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: Candidates for new proton exchange membranes. J. Membr. Sci. 197, 231–242 (2002).CrossRefGoogle Scholar
  13. 13.
    N. Carretta, V. Tricoli, F. Picchioni, Ionomeric membranes based on partially sulfonated poly(styrene): Synthesis, proton conduction and methanol permeation. J. Membr. Sci. 166, 189–197 (2000).CrossRefGoogle Scholar
  14. 14.
    K. Miyatake, E. Shouji, K. Yamamoto, E. Tsuchida, Synthesis and proton conductivity of highly sulfonated poly(thiophenylene). Macromolecules 30, 2941–2946 (1997).CrossRefGoogle Scholar
  15. 15.
    Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, J. E. McGrath, Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications. J. Membr. Sci. 212, 263–282 (2003).CrossRefGoogle Scholar
  16. 16.
    M. Rikukawa, K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci. 25, 1463–1502 (2000).CrossRefGoogle Scholar
  17. 17.
    B. Bauer, D. J. Jones, J. Rozière, L. Tchicaya, G. Alberti, M. Casciola, L. Massinelli, A. Peraio, S. Besse, E. Ramunni, Electrochemical characterisation of sulfonated polyetherketone membranes. J. New Mater. Electrochem. Syst. 2, 93 (2000).Google Scholar
  18. 18.
    T. Soczka-Guth, J. Baurmeister, G. Frank, R. Knauf, WO 99/29763[R30]Google Scholar
  19. 19.
    S. Kaliaguine, S. D. Mikhailenko, K. P. Wang, P. Xing, G. Robertson, M. D. Guiver, Properties of SPEEK based PEMs for fuel cell application. Catal. Today. 82, 213–222 (2003).CrossRefGoogle Scholar
  20. 20.
    G. P. Robertson, S. D. Mikhailenko, K. Wang, P. Xing, M. D. Guiver, S. Kaliaguine, Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication. J. Membr. Sci. 219, 113–121 (2003).CrossRefGoogle Scholar
  21. 21.
    P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, K. Wang, S. Kaliaguine, Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. J. Membr. Sci. 229, 95–106 (2004).CrossRefGoogle Scholar
  22. 22.
    M. T. Bishop, F. E. Karasz, P. S. Russo, K. H. Langley, Solubility and properties of a poly(aryl ether ketone) in strong acids. Macromolecules 18, 86–93 (1985).CrossRefGoogle Scholar
  23. 23.
    R. Y. M. Huang, P. Shao, C. M. Burns, X. Feng, Sulfonation of poly(ether ether ketone)(PEEK): Kinetic study and characterization. J. Appl. Polym. Sci. 82, 2651–2660 (2001).CrossRefGoogle Scholar
  24. 24.
    C. Bailly, D. J. Williams, F. E. Karasz, W. J. MacKnight, The sodium salts of sulphonated poly(aryl-ether-ether-ketone) (PEEK): Preparation and characterization. Polymer 28, 1009–1016 (1987).CrossRefGoogle Scholar
  25. 25.
    J. Rozière, D. J. Jones, Non-fluorinated polymer materials for proton exchange membrane fuel cells. Ann. Rev. Mater. Res. 33, 503–555 (2003).CrossRefGoogle Scholar
  26. 26.
    H. C. Lee, H. S. Hong, Y. M. Kim, S. H. Choi, M. Z. Hong, H. S. Lee, K. Kim, Preparation and evaluation of sulfonated-fluorinated poly(arylene ether)s membranes for a proton exchange membrane fuel cell (PEMFC). Electrochim. Acta 49, 2315–2323 (2004).CrossRefGoogle Scholar
  27. 27.
    D. S. Kim, B. Liu, M. D. Guiver, Influence of silica content in sulfonated poly(arylene ether ether ketone ketone)(SPAEEKK) hybrid membranes on properties for fuel cell application. Polymer 47, 7871–7880 (2006).CrossRefGoogle Scholar
  28. 28.
    Y. Gao, G. P. Robertson, M. D. Guiver, X. Jian, Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials. J. Polym. Sci. A 41, 497–507 (2003).CrossRefGoogle Scholar
  29. 29.
    Y. Gao, G. P. Robertson, M. D. Guiver, X. Jian, S. D. Mikhailenko, K. Wang, S. Kaliaguine, Sulfonation of poly(phthalazinones) with fuming sulfuric acid mixtures for proton exchange membrane materials. J. Membr. Sci. 227, 39–50 (2003).CrossRefGoogle Scholar
  30. 30.
    Y. Dai, X. Jian, X. Liu, M. D. Guiver, Synthesis and characterization of sulfonated poly(phthalazinone ether sulfone ketone) for ultrafiltration and nanofiltration membranes. J. Appl. Polym. Sci. 79, 1685–1692 (2001).CrossRefGoogle Scholar
  31. 31.
    L. Wang, Y. Z. Meng, S. J. Wang, A. S. Hay, Synthesis and sulfonation of poly(arylene ether)s containing tetraphenyl methane moieties. J. Polym. Sci. A 42, 1779–1788 (2004).CrossRefGoogle Scholar
  32. 32.
    L. Wang, Y. Z. Meng, S. J. Wang, M. Xiao, Synthesis and properties of sulfonated poly(arylene ether) containing tetraphenylmethane moieties for proton-exchange membrane. J. Polym. Sci. A 43, 6411–6418 (2005).CrossRefGoogle Scholar
  33. 33.
    X. Shang, S. Tain, L. Kong, Y. Z. Meng, Synthesis and characterization of sulfonated fluorene-containing poly(arylene ether ketone) for proton exchange membrane. J. Membr. Sci. 266, 94–101 (2005).CrossRefGoogle Scholar
  34. 34.
    W. L. Harrison, Ph.D. Thesis, Synthesis and characterization of sulfonated poly (arylene ether sulfone) copolymers via direct copolymerization: candidates for proton exchange membrane fuel cells. Virginia Polytechnic Institute and State University, USA, 2002.Google Scholar
  35. 35.
    Y. S. Kim, F. Wang, M. Hickner, S. McCartney, Y. T. Hong, T. A. Zawodzinski, J. E. McGrath, Effect of acidification treatment and morphological stability of sulfonated poly(arylene ether sulfone) copolymer proton-exchange membranes for fuel-cell use above 100°C. J. Polym. Sci. B 41, 2816–2828 (2003).CrossRefGoogle Scholar
  36. 36.
    F. Wang, T. Chen, J. Xu, Sodium sulfonate-functionalized poly(ether ether ketone)s. Macromol. Chem. Phys. 199, 1421–1426 (1998).CrossRefGoogle Scholar
  37. 37.
    F. Wang, J. Li, T. Chen, J. Xu, Synthesis of poly(ether ether ketone) with high content of sodium sulfonate groups and its membrane characteristics. Polymer 40, 795–799 (1999).CrossRefGoogle Scholar
  38. 38.
    R. Hopp, F. Wang, J. E. McGrath, 2001 Summer undergraduate research program reports. Virginia Tech, August 2001.Google Scholar
  39. 39.
    Y. Gao, G. P. Robertson, M. D. Guiver, X. Jian, S. D. Mikhailenko, K. Wang, S. Kaliaguine, Direct copolymerization of sulfonated poly(phthalazinone arylene ether)s for proton-exchange-membrane materials. J. Polym. Sci. A 41, 2731–2742 (2003).CrossRefGoogle Scholar
  40. 40.
    P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, S. Kaliaguine, Sulfonated poly(aryl ether ketones) containing naphthalene moieties obtained by direct copolymerization as novel polymers for proton exchange membranes. J. Polym. Sci. A 42, 2866–2876 (2004).CrossRefGoogle Scholar
  41. 41.
    D. S. Kim, H. B. Park, J. Y. Jang, Y. M. Lee, Synthesis of sulfonated poly(imidoaryl ether sulfone) membranes for polymer electrolyte membrane fuel cells. J. Polym. Sci. A 43, 5620–5631 (2005).CrossRefGoogle Scholar
  42. 42.
    S. J. Wang, Y. Z. Meng, A. R. Hlil, A. S. Hay, Synthesis and characterization of Phthalazinone containing Poly(arylene ether)s, Poly(arylene thioether)s, and Poly(arylene sulfone)s via a novel N-C coupling reaction. Macromolecules 37, 60–65 (2004).CrossRefGoogle Scholar
  43. 43.
    Y. L. Chen, Y. Z. Meng, A. S. Hay, Direct synthesis of sulfonated poly(phthalazinone ether) for proton exchange membrane via N—C coupling reaction. Polymer 46, 11125–11132 (2005).CrossRefGoogle Scholar
  44. 44.
    Y. L. Chen, Y. Z. Meng, A. S. Hay, Novel synthesis of sulfonated Poly(phthalazinone ether ketone) used as a proton exchange membrane via N-C coupling reaction. Macromolecules 38, 3564–3566 (2005).CrossRefGoogle Scholar
  45. 45.
    P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, S. Kaliaguine, Sulfonated Poly(aryl ether ketones) containing the Hexafluoroisopropylidene Diphenyl moiety prepared by direct copolymerization, as proton exchange membranes for fuel cell application. Macromolecules 37, 7960–7967 (2004).CrossRefGoogle Scholar
  46. 46.
    P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, S. Kaliaguine, Synthesis and characterization of poly(aryl ether ketone) copolymers containing (hexafluoroisopropylidene)-diphenol moiety as proton exchange membrane materials. Polymer 46, 3257–3263 (2005).CrossRefGoogle Scholar
  47. 47.
    B. Liu, D. S. Kim, J. Murphy, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, S. Kaliaguine, Y. M. Sun, Y. L. Liu, J. Y. Lai, Fluorenyl-containing sulfonated poly(aryl ether ether ketone ketones) (SPFEEKK) for fuel cell applications. J. Membr. Sci. 280, 54–64 (2006).CrossRefGoogle Scholar
  48. 48.
    X. Li, C. Liu, H. Lu, C. Zhao, Z. Wang, W. Xing, H. Na, Preparation and characterization of sulfonated poly(ether ether ketone ketone) proton exchange membranes for fuel cell application. J. Membr. Sci. 255, 149–155 (2005).CrossRefGoogle Scholar
  49. 49.
    X. Li, C. Zhao, H. Lu, Z. Wang, H. Na, Direct synthesis of sulfonated poly(ether ether ketone ketones) (SPEEKKs) proton exchange membranes for fuel cell application. Polymer 46, 5820–5827 (2005).CrossRefGoogle Scholar
  50. 50.
    D. S. Kim, H. B. Park, J. W. Rhim, Y. M. Lee, Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. J. Membr. Sci. 240, 37–48 (2004).CrossRefGoogle Scholar
  51. 51.
    Y. S. Kim, M. A. Hickner, L. Dong, B. S. Pivovar, J. E. McGrath, Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: Composition and morphology effects on the methanol permeability. J. Membr. Sci. 243, 317–326 (2004).CrossRefGoogle Scholar
  52. 52.
    T. Kobayashi, M. Rikukawa, K. Sanui, N. Ogata, Proton-conducting polymers derived from poly(ether-ether-ketone) and poly(4-phenoxybenzoyl-1,4-phenylene). Solid State Ionics 106, 219–225 (1998).CrossRefGoogle Scholar
  53. 53.
    B. Lafitte, L. E. Karlsson, P. Jannasch, Sulfophenylation of polysulfones for proton-conducting fuel cell membranes. Macromol. Rapid Commun. 23, 896 (2002).CrossRefGoogle Scholar
  54. 54.
    Y. Gao, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, X. Li, S. Kaliaguine, Synthesis of poly(arylene ether ether ketone ketone) copolymers containing pendant sulfonic acid groups bonded to naphthalene as proton exchange membrane materials. Macromolecules 37, 6748–6754 (2004).CrossRefGoogle Scholar
  55. 55.
    K. Miyatake, K. Oyaizu, E. Tsuchida, A. S. Hay, Synthesis and properties of novel sulfonated arylene ether/fluorinated alkane copolymers. Macromolecules 34, 2065–2071 (2001).CrossRefGoogle Scholar
  56. 56.
    D. S. Kim, H. B. Park, J. W. Rhim, Y. M. Lee, Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/Silica hybrid membranes. Solid State Ionics 176, 117–126 (2005).CrossRefGoogle Scholar
  57. 57.
    J. A. Kerres, Development of ionomer membranes for fuel cells. J. Membr. Sci. 185, 3–27 (2001).CrossRefGoogle Scholar
  58. 58.
    W. Vielstich, A. Lamm, H. Gasteiger (Eds.), Handbook of Fuel Cells, Vol 3: Fuel cell technology and applications: Part 1, Wiley, England, (2003).Google Scholar
  59. 59.
    G. Hubner, E. Roduner, EPR investigation of HO/radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes. J. Mater. Chem. 9, 409 (1999).CrossRefGoogle Scholar
  60. 60.
    P. Staiti, M. Minutoli, S. Hocevar, Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application. J. Power Sources 90, 231–235 (2000).CrossRefGoogle Scholar
  61. 61.
    S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, S. Kaliaguine, Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J. Membr. Sci. 173, 17–34 (2000).CrossRefGoogle Scholar
  62. 62.
    S. D. Mikhailenko, S. M. J. Zaidi, S. Kaliaguine, Sulfonated polyether ether ketone based composite polymer electrolyte membranes. Catal. Today 67, 225–236 (2001).CrossRefGoogle Scholar
  63. 63.
    P. Krishnan, J. S. Park, C. S. Kim, Preparation of proton-conducting sulfonated poly(ether ether ketone)/boron phosphate composite membranes by an in situ sol—gel process. J. Membr. Sci. 279, 220–229 (2006).CrossRefGoogle Scholar
  64. 64.
    A. R. Valencia, S. Kaliaguine, M. Bousmina, Tensile mechanical properties of sulfonated poly(ether ether ketone) (SPEEK) and BPO4/SPEEK membranes. J. Appl. Polym. Sci. 98, 2380–2393 (2005).CrossRefGoogle Scholar
  65. 65.
    W. C. Cui, J. Kerres, G. Eigenberger, Development and characterization of ion-exchange polymer blend membranes. Separ. Purif. Technol. 14, 145–154 (1998).CrossRefGoogle Scholar
  66. 66.
    J. A. Kerres, A. Ullrich, F. Meier, Th. Haring, Synthesis and characterization of novel acid—base polymer blends for application in membrane fuel cells. Solid State Ionics 125, 243–249 (1999).CrossRefGoogle Scholar
  67. 67.
    J. A. Kerres, A. Ullrich, TH. Haring, M. Baldauf, U. Gebhard, W. Preidel, Preparation, characterization, and fuel cell application of new acid-base blend membranes. J. New Mater. Electrochem. Syst. 3, 229 (2000).Google Scholar
  68. 68.
    S. M. J. Zaidi, Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate. Electrochim. Acta 50, 4771–4777 (2005).CrossRefGoogle Scholar
  69. 69.
    G. Zhang, Z. Zhou, Organic/inorganic composite membranes for application in DMFC. J. Membr. Sci. 261, 107–113 (2005).CrossRefGoogle Scholar
  70. 70.
    Y. S. Kim, L. Dong, M. A. Hickner, T. G. Glass, V. Webb, J. E. McGrath, State of Water in Disulfonated Poly(arylene ether sulfone) Copolymers and a Perfluorosulfonic acid copolymer (Nafion) and its effect on physical and electrochemical properties. Macromolecules 36, 6281–6285 (2003).CrossRefGoogle Scholar
  71. 71.
    M. Ise, K. D. Kreuer, J. Maier, Electroosmotic drag in polymer electrolyte membranes: An electrophoretic NMR study. Solid State Ionics 125, 213–223 (1999).CrossRefGoogle Scholar
  72. 72.
    D. S. Kim, H. S. Kwang, H. B. Park, Y. M. Lee, Preparation and characterization of sulfonated poly(phthalazinone ether sulfone ketone)/silica hybrid membranes for DMFC applications. Macromol. Res. 12, 413–421 (2004).Google Scholar
  73. 73.
    Y. H. Su, Y. L. Liu, Y. M. Sun, J. Y. Lai, M. D. Guiver, Y. Gao, Using silica nanoparticles for modifying sulfonated poly(phthalazinone ether ketone) membrane for direct methanol fuel cell: A significant improvement on cell performance. J. Power Sources 155, 111–117 (2006).Google Scholar
  74. 74.
    S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, K. Richau, Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells. J. Membr. Sci. 203, 215–225 (2002).CrossRefGoogle Scholar
  75. 75.
    F. Helmer-Metzmann, F. Osan, A. Schneller, H. Ritter, K. Ledjeff, R. Nolte, R. Thorwirth, Polymer electrolyte membrane, and process for the production thereof, US Patent 5,438,082 (1995).Google Scholar
  76. 76.
    S. S. Mao, S. J. Hamrock, D. A. Ylitalo, Crosslinked ion conductive membranes, US Patent 6,090,895 (2000).Google Scholar
  77. 77.
    S. D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G. P. Robertson, M. D. Guiver, Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK). J. Memb. Sci. 233, 93–99 (2004).CrossRefGoogle Scholar
  78. 78.
    S. Thomas, M. Zalbowits, Green Power, Los Alamos National Laboratory Report, Los Alamos, New Mexico (1999).Google Scholar
  79. 79.
    G. Hoogers (Ed.), Fuel Cell Technology Handbook, CRC Press, FL, (2003).Google Scholar
  80. 80.
    Q. Li, R. He, J. O. Jensen, N. J. Bjerrum, Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100°C. Chem. Mater. 15, 4896–4915 (2003).CrossRefGoogle Scholar
  81. 81.
    R. Savinell, E. Yeager, D. Tryk, U. Landau, J. Wainright, D. Weng, K. Lux, M. Litt, C. Rogers, A polymer electrolyte for operation at temperatures up to 200°C. J. Electrochem. Soc. 141, L46–L48 (1994).CrossRefGoogle Scholar
  82. 82.
    S. Malhotra, R. Datta, Membrane-supported nonvolatile acidic electrolytes allow higher temperature operation of proton-exchange membrane fuel cells. J. Electrochem. Soc. 144, L23–L26 (1997).CrossRefGoogle Scholar
  83. 83.
    H. Wang, B. A. Holmberg, L. Huang, Z. Wang, A. Mitra, J. M. Norbeck, Y. Yan, Nafion-bifunctional silica composite proton conductive membranes. J. Mater. Chem. 12, 834–837 (2002).CrossRefGoogle Scholar
  84. 84.
    P. L. Antonucci, A. S. Arico, P. Creti, E. Ramunni, V. Antonucci, Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation. Solid State Ionics 125, 431–437 (1999).CrossRefGoogle Scholar
  85. 85.
    J. C. Lin, H. R. Jnuz, J. M. Fenton, In Handbook of Fuel Cells; W. Vielstich, A. Lamm, H. A. Gasteiger (Eds.), Wiley, New York, (2003), Chap. 3, pp. 457.Google Scholar
  86. 86.
    C. Yang, S. Srinivasan, A. S. Arico, P. Creti, V. Baglio, V. Antonucci, Composite Nafion/Zirconium phosphate membranes for direct methanol fuel cell operation at high temperature. Electrochem. Solid-State Lett. 4, A31–A34 (2001).CrossRefGoogle Scholar
  87. 87.
    P. Costamagna, C. Yang, A. B. Bocarsly, S. Srinivasan, Nafion® 115/zirconium phosphate composite membranes for operation of PEMFCs above 100°C. Electrochim. Acta 47, 1023–1033 (2002).CrossRefGoogle Scholar
  88. 88.
    P. Staiti, A. S. Arico, V. Baglio, F. Lufrano, E. Passalacqua, V. Antonucci, Hybrid Nafion—silica membranes doped with heteropolyacids for application in direct methanol fuel cells. Solid State Ionics 145, 101–107 (2001).CrossRefGoogle Scholar
  89. 89.
    B. Bonnet, D. J. Jones, J. Rozière, L. Tchicaya, G. Alberti, M. Casciola, L. Massinelli, B. Baner, A. Peraio, E. Ramunni, Hybrid organic-inorganic membranes for a medium temperature fuel cell. J. New. Mater. Electrochem. Syst. 2, 87–92 (2000).Google Scholar
  90. 90.
    J. Rozière, D. J. Jones, L. Tchicaya-Bouckary, B. Bauer, WO 02/05370, 2000.Google Scholar
  91. 91.
    Y. M. Sun, T. C. Wu, H. C. Lee, G. B. Jung, M. D. Guiver, Y. Gao, Y. L. Liu, J. Y. Lai, Sulfonated poly(phthalazinone ether ketone) for proton exchange membranes in direct methanol fuel cells. J. Membr. Sci. 265, 108–114 (2005).CrossRefGoogle Scholar
  92. 92.
    V. S. Silva, J. Schirmer, R. Reissner, B. Ruffmann, H. Silva, A. Mendes, L. M. Madeira, S. P. Nunes, Proton electrolyte membrane properties and direct methanol fuel cell performance: II. Fuel cell performance and membrane properties effects. J. Power Sources 140, 41–49 (2005).CrossRefGoogle Scholar
  93. 93.
    V. S. Silva, B. Ruffmann, S. Vetter, A. Mendes, L. M. Maderia, S. P. Nunes, Characterization and application of composite membranes in DMFC. Catal. Today 104, 205–212 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dae Sik Kim
  • Michael D. Guiver

There are no affiliations available

Personalised recommendations