Advertisement

Research Trends in Polymer Electrolyte Membranes for PEMFC

  • S. M. Javaid Zaidi
Chapter

Abstract

In this chapter research trends followed by various scientific groups for the development of polymeric membranes have been described and reviewed. Most notably, the developments made at Ballard Advanced Materials (BAM) and some of their results are discussed. In general three different approaches have been followed worldwide by various research groups for the development and conception of alternative membranes. These approaches include: (1) modifying perfluorinated ionomer membranes; (2) functionalization of aromatic hydrocarbon polymers/ membranes; and (3) composite membranes based on solid inorganic proton conducting materials and the organic polymer matrix or prepare acid-base blends and their composite to improve their water retention properties. The current trend is for the composite and hybrid membranes, which combines the properties of both the polymeric component and inorganic part. The most widely studied polymer after Nafion is the sulfonated polyether-ether ketone (SPEEK), as it has a high potential for commercialization. A number of research projects are currently undergoing dealing with the SPEEK polymer in various research labs.

Keywords

Fuel Cell Polymer Electrolyte Composite Membrane Hybrid Membrane Polymer Electrolyte Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B. Smitha, S. Sridhar and A. A. Khan, Solid polymer electrolyte membranes for fuel cell applications—a review, J. Membr. Sci. 259, 10–26 (2005).CrossRefGoogle Scholar
  2. 2.
    K. Kordesch and G. Simader, “Fuel Cells and Their Applications”, New York: VCH Publishers, (1996).Google Scholar
  3. 3.
    M. Rikukawa and K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci. 25, 1463–1502 (2000).CrossRefGoogle Scholar
  4. 4.
    A. E. Steck, “Membrane materials in fuel cells”, First International Symposium on New Materials for Electrochemical systems, Montreal, July (1995), pp. 74–94.Google Scholar
  5. 5.
    A. E. Steck and C. Stone, Development of the BAM membrane for fuel cell applications, in “New Materials for Fuel Cell and Modern Battery Systems II”, ed. O. Savogado and P. R. Roberge, Montreal, Quebec: Ecole Polytechnique de Montreal, (1997), p. 792.Google Scholar
  6. 6.
    A. S. Arico, S. Srinivasan and V. Antonucci, DMFCs: From fundamental aspects to technology development, Fuel Cells 1(2), 133–161 (2001).CrossRefGoogle Scholar
  7. 7.
    O. Savadogo, Emerging membranes for electrochemical systems: (I) Solid polymer electrolyte membranes for fuel cell systems, J. New Mater. Electrochem. Syst. 1(1), 47–66 (1998).Google Scholar
  8. 8.
    A. J. Appleby and E. B. Yeager, Solid polymer electrolyte fuel cells (SPEFCs), Energy 11(1–2), 137–152 (1986).Google Scholar
  9. 9.
    C. Yang, S. Srinivasan, A. S. Arico, P. Creti, V. Baglio and V. Antonucci, Composite Nafion/Zirconium phosphate membranes for direct methanol fuel cell operation at high temperature, Electrochem. Solid State Lett. 4 (4), A31–A34 (2001).CrossRefGoogle Scholar
  10. 10.
    P. Costamagna, C. Yang, A. B. Bocarsly and S. Srinivasan, Nafion® 115/zirconium phosphate composite membranes for operation of PEMFcs above 100°C, Electrochim. Acta 47, 1023–1033 (2002).CrossRefGoogle Scholar
  11. 11.
    K. T. Adjemian, S. J. Lee, S. Srinivasan, J. Benziger and A. B. Bocarsly, Silicon oxide Nafion composite membranes for proton-exchange membrane fuel cell operation at 80–140°C, J. Electrochem. Soc. 149(3), A256–A261 (2002).CrossRefGoogle Scholar
  12. 12.
    D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin and J. S. Kim, Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell, J. Power Sources 106, 173–177 (2002).CrossRefGoogle Scholar
  13. 13.
    P. Dimitrova, K. A. Friedrich, U. Stimming and B. Vogt, Modified Nafion-based membranes for use in direct methanol fuel cells, Solid State Ionics 150, 115–122 (2002).CrossRefGoogle Scholar
  14. 14.
    P. Staiti, Proton conductive membranes constituted of silicotungstic acid anchored to silica-polybenzimidazole matrices, J. New Mater. Electrochem. Syst. 4, 181–186 (2001).Google Scholar
  15. 15.
    O. Savadogo and B. Tazi, New cation exchange membranes based on Nafion and heteropolyacids with and without thiophene, J. New Mater. Electrochem. Syst. 1, 15–20 (2003).Google Scholar
  16. 16.
    V. Ramani, H. R. Kunz and J. M. Fenton, Investigation of Nafion®/HPA composite membranes for high temperature/low relative humidity PEMFC operation, J. Membr. Sci. 232, 31–44 (2004).CrossRefGoogle Scholar
  17. 17.
    V. Tricoli and F. Nannetti, Zeolite-Nafion composites as ion conducting membrane materials, Electrochim. Acta 48, 2625–2633 (2003).CrossRefGoogle Scholar
  18. 18.
    B. Holmberg, H. Wang, J. Norbeck and Y. Yan, Synthesis and characterization of Zeolite Y Nanocrystals for Nafion Zeolite Y composite proton exchange membranes, AIChE, Spring National Meeting, New Orleans, Los Angeles, USA, March 10–14 (2002).Google Scholar
  19. 19.
    P. G. Pickup, M. C. Lefebvre, J. Halfyard, Z. Qi and J. Nengyou, Modification of Nafion proton exchange membranes to reduce methanol crossover in PEM fuel cells, Electrochem. Solid State Lett. 3(12), 529–531 (2000).Google Scholar
  20. 20.
    F. Liu, B. Yi, D. Xing, J. Yu and H. Zhang, Nafion/PTFE composite membranes for fuel cell applications, J. Membr. Sci. 212, 213–223 (2003).CrossRefGoogle Scholar
  21. 21.
    J. Shim, H. Y. Ha, S. A. Hong and I. H. Oh, Characteristics of the Nafion ionomer-impregnated composite membrane for polymer electrolyte fuel cells, J. Power Sources 109, 412–417 (2002).CrossRefGoogle Scholar
  22. 22.
    G. Deluga, B. S. Pivovar and D. S. Shores, Composite membranes in liquid feed direct methanol fuel cells, DOE/NRL Workshop, University of Minnesota, October 6–8 (1999).Google Scholar
  23. 23.
    Z. G. Shao, X. Wang and I. Hsing, Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cell, J. Membr. Sci. 210, 147–153 (2002).CrossRefGoogle Scholar
  24. 24.
    S. M. J. Zaidi and S. U. Rahman, Perfluorinated ionomer-boron phosphate composite membranes for polymer electrolyte membranes for fuel cell applications, J. Electrochem. Soc. 152(8), A1590–A1594 (2005).CrossRefGoogle Scholar
  25. 25.
    S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver and S. Kaliaguine, Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications, J. Membr. Sci. 173, 17–34 (2000).CrossRefGoogle Scholar
  26. 26.
    S. M. J. Zaidi, S. D. Mikhailenko and S. Kaliaguine, Sulfonated polyether ether ketone based composite polymer electrolyte membranes, Catal. Today 67, 225–236 (2001).CrossRefGoogle Scholar
  27. 27.
    L. Li, J. Zhang and Y. Wang, Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell, J. Membr. Sci. 226, 159–167 (2003).CrossRefGoogle Scholar
  28. 28.
    S. M. J. Zaidi, S. D. Mikhailenko and S. Kaliaguine, Electrical conductivity of boron orthophosphate in presence of water, J. Chem. Soc. Faraday Trans. 94(11), 1613–1618 (1998).CrossRefGoogle Scholar
  29. 29.
    S. M. J. Zaidi, S. D. Mikhailenko and S. Kaliaguine, Electrical properties of sulfonated polyether ether ketone/polyetherimide blend membranes doped with inorganic acids, J. Polymer Sci. B: Polym. Phys. 38, 1386–1395 (2000).CrossRefGoogle Scholar
  30. 30.
    S. M. J Zaidi and M. I. Ahmed, Novel SPEEK/heteropolyacids loaded MCM-41 composite membranes for fuel cell applications, J. Membr. Sci. 270, 548–557 (2006).CrossRefGoogle Scholar
  31. 31.
    M. I. Ahmed, S. M. J. Zaidi and S. U. Rahman, Proton conductivity and characterization of novel composite membranes for medium temperature fuel cells, Desalination 193, 387–397 (2006).CrossRefGoogle Scholar
  32. 32.
    V. Silva, B. Ruffmann, H. Silva, H. Mendes, A. Madeira and S. P. Nunes, Zirconium oxide modified sulfonated polyether ether ketone membranes for direct methanol fuel cell applications, Materials 2003-II International Materials Symposium, Caprica, Portugal, April 14–16 (2003).Google Scholar
  33. 33.
    B. Ruffmann, H. Silva, B. Schulte and S. P. Nunes, Organic/inorganic composite membranes for application in DMFC, Solid State Ionics 162–163, 269–275 (2003).CrossRefGoogle Scholar
  34. 34.
    J. H. Chang, J. H. Park, G. G. Park, C. S. Kim and O. O. Park, Proton conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials, J. Power Sources 124, 18–25 (2003).CrossRefGoogle Scholar
  35. 35.
    S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter and K. Richau, Inorganic modifications of proton conductive polymer membranes for direct methanol fuel cells, J. Membr. Sci. 203, 215–225 (2002).CrossRefGoogle Scholar
  36. 36.
    M. L. Ponce, L. Prado, B. Ruffmann, K. Richau, R. Mohrand and S. P. Nunes, Reduction of methanol permeability in polyetherketone-heteropolyacid membranes”, J. Membr. Sci. 217, 5–15 (2003).CrossRefGoogle Scholar
  37. 37.
    Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski and J. E. McGrath, Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications, J. Membr. Sci. 212, 263–282 (2003).CrossRefGoogle Scholar
  38. 38.
    L. Li, L. Xu and Y. Wang, Novel proton conducting composite membranes for direct methanol fuel cell, Mater. Lett. 57, 1406–1410 (2003).CrossRefGoogle Scholar
  39. 39.
    R. He, Q. Li, G. Xiao and N. J. Bjerrum, Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors, J. Membr. Sci. 226, 169–184 (2003).Google Scholar
  40. 40.
    X. F. Xie, H. Guo, Z. Q. Mao and J. M. Xu, Organic/inorganic nanocomposites for direct methanol fuel cell, AICHE, Spring National Meeting, New Orleans, Los Angeles, USA, March 10–14 (2002).Google Scholar
  41. 41.
    D. J. Jones, L. T. Bouckary and J. Roziere, Hybrid polyetherketone membranes for fuel cell applications, Fuel Cells, 2(1), 1–6 (2002).CrossRefGoogle Scholar
  42. 42.
    D. J. Jones, B. Baur, J. Roziere, L. Tchicaya, G. Alberti, M. Casciola, L. Massinelli, A. Peraio, S. Besse and E. Ramunni, Electrochemical characterization of sulfonated polyetherketone membranes, J. New Mater. Electrochem. Syst. 3, 93–98 (2000).Google Scholar
  43. 43.
    M. Y. Jang and Y. Yamazaki, Preparation, characterization and proton conductivity of membrane based on zirconium tricarboxybutylphosphonate and polybenzimidazole for fuel cells, Solid State Ionics 167, 107–112 (2004).CrossRefGoogle Scholar
  44. 44.
    H. Y. Chang and C. W. Lin, Proton conducting membranes based on PEG/SiO2 nanocomposites for direct methanol fuel cells, J. Membr. Sci. 218, 295–306 (2003).CrossRefGoogle Scholar
  45. 45.
    J. Kerres, A. Ullrich, F. Meier and T. Haring, Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells, Solid State Ionics 125, 243–249 (1999).CrossRefGoogle Scholar
  46. 46.
    J. Kerres, A. Ullrich, T. Haring, M. Baldauf, U. Gebhardt and W. Preidal, Preparation, characterization and fuel cell application of new acid base blend membranes, J. New Mater. Electrochem. Syst. 3, 129–139 (2000).Google Scholar
  47. 47.
    P. Pintauro, H. Yoo, R. Wycisk, J. Lee and R. Carter, Direct methanol fuel cell performance with multilayered polyphosphazene membranes, AIChE, Spring National Meeting, New Orleans, Los Angeles, USA, March 10–14 (2002).Google Scholar
  48. 48.
    C. Manea and M. Mulder, New polymeric electrolyte membranes based on proton donor-proton acceptor properties for direct methanol fuel cells, Desalination 147, 179–182 (2002).CrossRefGoogle Scholar
  49. 49.
    F. G. Wilhelm, I. G. M. Punt, N. F. A. Van der vagt, H. Strathmann and M. Wessling, Cation permeable membranes from blends of sulfonated Polyether ether ketone and polyether sulfone, J. Membr. Sci. 199, 167–176 (2002).CrossRefGoogle Scholar
  50. 50.
    Y. Wang, H. Wu and S. Wang, A methanol barrier polymer electrolyte membrane in direct methanol fuel cells, J. New Mater. Electrochem. Syst. 5, 251–254 (2002).Google Scholar
  51. 51.
    Y. Gao, G. P. Robertson, M. D. Guiver and X. Jian, Synthesis and characterization of sulfonated poly(pthalazinone ether ketone) for proton exchange membrane materials, J. Polym. Sci. A: Polym. Chem. 41, 497–507 (2003).CrossRefGoogle Scholar
  52. 52.
    B. Libby, Composite multi-layered membranes for direct methanol fuel cells, PhD Thesis, University of Minnesota, Department of Chemical Engineering and Materials Science, Minneapolis (2001).Google Scholar
  53. 53.
    W. Lee, A. Shibasaki, K. Saito, K. Okuyama and T. Sugo, Proton transport through polyethylene-tetrafluoroethylene-copolymer-based membrane containing sulfonic acid group prepared by RIGP, J. Electrochem. Soc. 143(9), 2795–2799 (1996).CrossRefGoogle Scholar
  54. 54.
    P. L. Antonucci, A. S. Arico, P. Creti, E. Ramunni and V. Antonucci, Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation, Solid State Ionics 125, 431–437 (1999).CrossRefGoogle Scholar
  55. 55.
    Q. Guo, P. N. Pintauro, H. Tang and S. O'Connor, Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes, J. Membr. Sci. 154(2), 175–181 (1999).CrossRefGoogle Scholar
  56. 56.
    J. J. Fontanella, M. C. Wintersgill, J. S. Wainright, R. F. Savinell and M. Litt, High pressure electrical conductivity studies of acid doped polybenzimidazole, Electrochem. Acta 43, 1289–1294 (1998).CrossRefGoogle Scholar
  57. 57.
    G. A. Deluga, S. C. Kelley, B. Pivovar, D. A. Shores and W. H. Smyrl, Composite membranes to reduce crossover in PEM fuel cells, Battery Conference on Applications and Advances, 2000, The fifteenth annual, 51–53 (2000).Google Scholar
  58. 58.
    L. Xiong and A. Manthiram, High performance membrane-electrode assemblies with ultra-low Pt loading for proton exchange membrane fuel cells, Electrochem. Acta 50, 3200–3204 (2005).CrossRefGoogle Scholar
  59. 59.
    H. Pu, Q. Liu and G. Liu, Methanol permeation and proton conductivity of acid-doped poly(N-ethylbenzimidazole) and poly(N-methylbenzimidazole), J. Membr. Sci. 241, 169–175 (2004).CrossRefGoogle Scholar
  60. 60.
    B. Bae and D. Kim, Sulfonated polysterene grafted polypropylene composite electrolyte membranes for direct methanol fuel cells, J. Membr. Sci. 220, 75–87 (2003).CrossRefGoogle Scholar
  61. 61.
    Y. Woo, S. Y. Oh, Y. S. Kang and B. Jung, Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell, J. Membr. Sci. 220, 31–45 (2003).CrossRefGoogle Scholar
  62. 62.
    J. W. Rhim, H. B. Park, C. S. Lee, J. H. Jun, D. S. Kim and Y. M. Lee, Crosslinke poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes, J. Membr. Sci. 238, 143–151 (2004).CrossRefGoogle Scholar
  63. 63.
    S. M. J. Zaidi, Preparation and characterization of Composite membranes are using blends of SPEEK/PEI with Boron Phosphate, Electrochim. Acta 50, 4771–4777 (2005).CrossRefGoogle Scholar
  64. 64.
    V. Arcella, A. Ghielmi, L. Merlo and M. Gebert, Membrane electrode assemblies based on perfluorosulfonic ionomers for an evolving fuel cell technology, Desalination 199, 6–8 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. M. Javaid Zaidi

There are no affiliations available

Personalised recommendations