Research and Development on Polymeric Membranes for Fuel Cells: An Overview

  • Dipak Rana
  • Takeshi Matsuura
  • S. M. Javaid Zaidi


This review is intended to provide the recent status in the development of polymeric-electrolyte (proton-exchange) membranes for the improvement of fuel cell performance based primarily on the preceding chapters of this book. Special attention is paid to the modification of present membranes, recent novel strategies for preparation of membranes, conceptual design of new membrane materials, and also promising approaches to overcome issues that severely restrict commercialization. The critical role of the materials and membranes and also relevant infrastructure of electrode is addressed. The new possibilities to improve technologies for implementation, and future trends are briefly examined.


Fuel Cell Phosphoric Acid Polymer Electrolyte Solid Oxide Polymeric Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the Taylor & Francis, Inc., T. A. Trabold, Minichannels in polymer electrolyte membrane fuel cells, Heat Transfer Eng. 26(3), 3–12 (2005), and the Elsevier, K. Sundmacher, L. K. Rihko-Struckmann, and V. Galvita, Catal. Today 104(2–4), 185–199 (2005); and the Elsevier, K. D. Kreuer, J. Membr. Sci. 185(1), 29–39 (2001), for allowing us to use their figures.


  1. 1.
    W. R. Grove, On voltaic series and the combination of gases by platinum, Phil. Mag. Ser. 3 14, 127–130 (1839).Google Scholar
  2. 2.
    S. Srinivasan, Fuel Cells: Fundamentals to Applications (Springer-Verlag, New York, 2005).Google Scholar
  3. 3.
    E. Spohr, Proton transport in polymer electrolyte fuel cell membranes, in: Ionic Soft Matter: Modern Trends in Theory and Applications, edited by D. Henderson, M. Holovko, and A. Trokhymchuk (Springer, Dordrecht, Netherlands, 2005), pp. 361–379.CrossRefGoogle Scholar
  4. 4.
    J. Larminie, and A. Dicks, Fuel Cell Systems Explained (Wiley, Chichester, UK, 2003).Google Scholar
  5. 5.a)
    B. C. H. Steele, and A. Heinzel, Materials for fuel-cell technologies, Nature 414(6861), 345–352 (2001); b) B. C. H. Steele, Material science and engineering: The enabling technology for the commercialization of fuel cell systems, J. Mater. Sci. 36(5), 1053–1068 (2001).Google Scholar
  6. 6.
    L. Carrette, K. A. Friedrich, and U. Stimming, Fuel cells fundamentals and applications, Fuel Cells 1(1), 5–39 (2001).CrossRefGoogle Scholar
  7. 7.
    M. Kunimatsu, T. Shudo, and Y. Nakajima, Study of performance improvement in a direct methanol fuel cell, JSAE Rev. 23(1), 21–26 (2002).CrossRefGoogle Scholar
  8. 8.
    G. Alberti, and M. Casciola, Composite membranes from medium-temperature PEM fuel cells, Annu. Rev. Mater. Res. 33, 129–154 (2003).CrossRefGoogle Scholar
  9. 9.
    J. Rozière, and D. J. Jones, Non-fluorinated polymer materials for proton exchange membrane fuel cells, Annu. Rev. Mater. Res. 33, 503–555 (2003).CrossRefGoogle Scholar
  10. 10.
    K. Scott, and A. K. Shukla, Polymer electrolyte membrane fuel cells: Principles and advances, Rev. Environ. Sci. Bio/Tech. 3(3), 273–280 (2004).CrossRefGoogle Scholar
  11. 11.
    M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, Alternative polymer systems for proton exchange membranes (PEMs), Chem. Rev. 104(10), 4587–4612 (2004).CrossRefGoogle Scholar
  12. 12.
    R. Dillon, S. Srinivasan, A. S. Aricò, and V. Antonucci, International activities in DMFC R&D: Status of technologies and potential applications, J. Power Sources 127(1–2), 112–126 (2004).CrossRefGoogle Scholar
  13. 13.
    A. Hayashi, T. Kosugi, and H. Yoshida, Evaluation of polymer electrolyte fuel cell application technology R&Ds by GERT analysis, Int. J. Hydrogen Energy 30(9), 931–941 (2005).CrossRefGoogle Scholar
  14. 14.
    B. Smitha, S. Sridhar, and A. A. Khan, Solid polymer electrolyte membranes for fuel cell applications — A review, J. Membr. Sci. 259(1–2), 10–26 (2005).CrossRefGoogle Scholar
  15. 15.
    J. Meier-Haack, A. Taeger, C. Vogel, K. Schlenstedt, W. Lenk, and D. Lehmann, Membranes from sulfonated block copolymers for use in fuel cells, Sep. Purif. Technol. 41(3), 207–220 (2005).CrossRefGoogle Scholar
  16. 16.
    C. Iojoiu, M. Maréchal, F. Chabert, and J.-Y. Sanchez, Mastering sulfonation of aromatic polysulfones: Crucial for membranes for fuel cell application, Fuel Cells 5(3), 344–354 (2005).CrossRefGoogle Scholar
  17. 17.
    T. A. Trabold, Minichannels in polymer electrolyte membrane fuel cells, Heat Transfer Eng. 26(3), 3–12 (2005).CrossRefGoogle Scholar
  18. 18.
    K. Sundmacher, L. K. Rihko-Struckmann, and V. Galvita, Solid electrolyte membrane reactors: Status and trends, Catal. Today 104(2–4), 185–199 (2005).CrossRefGoogle Scholar
  19. 19. a)
    H. H. Gibbs, and R. N. Griffin, Fluorocarbon sulfonyl fluorides, E. I. du Pont de Nemours and Company, US Patent 3 041 317, 26 June 1962; b) D. J. Connolly, and W. F. Gresham, Fluorocarbon vinyl ether polymers, E. I. du Pont de Nemours and Company, US Patent 3 282 875, 1 Nov 1966; c) R. Beckerbauer, Unsaturated α-hydroperfluoroalkylsulfonyl fluoride, E. I. du Pont de Nemours and Company, US Patent 3 714 245, 30 Jan 1973; d) P. N. Walmsley, Composite cation exchange membrane and use thereof in electrolysis of an alkali metal halide, E. I. du Pont de Nemours and Company, US Patent 3 909 375, 30 Sep 1975; e) W. G. Grot, Electrolysis cell using cation exchange membranes of improved permselectivity, E. I. du Pont de Nemours and Company, US Patent 4 026 783, 31 May 1977.Google Scholar
  20. 20. a)
    T. Kuwata, and S. Yoshikawa, Cation permselective membranes, Asahi Glass Co. Ltd., US Patent 3 086 947, 23 Apr 1963; b) Y. Oda, M. Suhara, and E. Endo, Process for producing alkali metal hydroxide, Asahi Glass Co. Ltd., US Patent 4 065 366, 27 Dec 1977.Google Scholar
  21. 21. a)
    N. Seko, Y. Yamakoshi, H. Miyauchi, M. Fukumoto, K. Kimoto, I. Watanabe, T. Hane, and S. Tsushima, Cation exchange membrane preparation and use thereof, Asahi Kasei Kogyo Kabushiki Kaisha, US Patent 4 151 053, 24 Apr 1979; b) K. Kimoto, H. Miyauchi, J. Ohmura, M. Ebisawa, and T. Hane, Novel fluorinated copolymer with trihydro fluorosulfonyl fluoride pendent groups and preparation thereof, Asahi Kasei Kogyo Kabushiki Kaisha, US Patent 4 329 435, 11 May 1982.Google Scholar
  22. 22. a)
    B. R. Ezzell, W. P. Carl, and W. A. Mod, Novel polymers having acid functionality, The Dow Chemical Co., US Patent 4 330 654, 18 May 1982; b) B. R. Ezzell, W. P. Carl, and W. A. Mod, Sulfonic acid electrolytic cell membranes, The Dow Chemical Co., US Patent 4 417 969, 29 Nov 1983.Google Scholar
  23. 23. a)
    B. Bahar, A. R. Hobson, J. A. Kolde, and D. Zuckerbrod, Ultra-thin integral composite membrane, W. L. Gore & Associates, Inc., US Patent 5 547 551, 20 Aug 1996; b) B. Bahar, A. R. Hobson, and J. A. Kolde, Integral composite membrane, W. L. Gore & Associates, Inc., US Patent 5 599 614, 4 Feb 1997; c) B. Bahar, A. R. Hobson, and J. A. Kolde, Electrode apparatus containing an integral composite membrane, W. L. Gore & Associates, Inc., US Patent 5 635 041, 3 Jun 1997.Google Scholar
  24. 24. a)
    J. Wei, C. Stone, and A. E. Steck, Trifluorostyrene and substituted trifluorostyrene copolymeric compositions and ion-exchange membrane formed thereform, Ballard Power Systems Inc., US Patent 5 422 411, 6 Jun 1995; b) C. Stone, and A. E. Steck, Graft polymeric membranes and ion-exchange membranes formed therefrom, Ballard Power Systems Inc., US Patent 6 359 019, 19 Mar 2002.Google Scholar
  25. 25. a)
    S. G. Ehrenberg, J. Serpico, G. E. Wnek, and J. N. Rider, Fuel cell incorporating novel ion-conducting membrane, Dais Corporation, US Patent 5 468 574, 21 Nov 1995; b) S. G. Ehrenberg, J. M. Serpico, G. E. Wnek, and J. N. Rider, Fuel cell incorporating novel ion-conducting membrane, Dais Corporation, US Patent 5 679 482, 21 Oct 1997.Google Scholar
  26. 26. a)
    a) K. A. Mauritz, and R. B. Moore, State of understanding of Nafion, Chem. Rev. 104(10), 4535–4585 (2004);CrossRefGoogle Scholar
  27. 26. b)
    b) S. Banerjee, and D. E. Curtin, Nafion® perfluorinated membranes in fuel cells, J. Fluorine Chem. 125(8), 1211–1216 (2004).CrossRefGoogle Scholar
  28. 27. a)
    W. T. Grubb Jr., Fuel cell, General Electric Company, US Patent 2 913 511, 17 Nov 1959; b) L. W. Niedrach, Fuel cell, General Electric Company, US Patent 3 134 697, 26 May 1964; c) R. B. Hodgdon Jr., Cation exchange fuel cell, General Electric Company, US Patent 3 484 293, 16 Dec 1969.Google Scholar
  29. 28.
    a) K. D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J. Membr. Sci 185(1), 29–39 (2001); b) M. Ise, Ph. D. Thesis, University Stuttgart, Stuttgart, Germany, 2000.Google Scholar
  30. 29.
    R. A. Zoppi, I. V. P. Yoshida, and S. P. Nunes, Hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol-gel reaction from solution: Morphology and thermal analysis, Polymer 39(6–7), 1309–1315 (1997).Google Scholar
  31. 30.
    K. A. Mauritz, Organic-inorganic hybrid materials: Perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides, Mater. Sci. Eng. C 6(2–3), 121–133 (1998).CrossRefGoogle Scholar
  32. 31.
    S. Malhotra, and R. Datta, Membrane-supported nonvolatile acidic electrolytes allow higher temperature operation of proton-exchange membrane fuel cells, J. Electrochem. Soc. 144(2), L23–L26 (1997).CrossRefGoogle Scholar
  33. 32.
    S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, and S. Kaliaguine, Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications, J. Membr. Sci. 173(1), 17–34 (2000).CrossRefGoogle Scholar
  34. 33.
    B. Tazi, and O. Savadogo, Parameters of PEM fuel-cells based on new membranes fabricated from Nafion®, silicotungstic acid and thiophene, Electrochim. Acta 45(25–26), 4329–4339 (2000).CrossRefGoogle Scholar
  35. 34.
    P. Genova-Dimitrova, B. Baradie, D. Foscallo, C. Poinsignon, and J. Y. Sanchez, Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): Sulfonated polysulfone associated with phosphatoantimonic acid, J. Membr. Sci. 185(1), 59–71 (2001).CrossRefGoogle Scholar
  36. 35.
    S. M. Haile, Materials for fuel cells, Mater. Today 6(3), 24–29 (2003).CrossRefGoogle Scholar
  37. 36.
    S. Song, and P. Tsiakaras, Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs), Appl. Catal. B 63(3–4), 187–193 (2006).Google Scholar
  38. 37.
    V. S. Silva, A. Mendes, L. M. Maderia, and S. P. Nunes, Proton exchange membranes for direct methanol fuel cells: Properties critical study concerning methanol crossover and proton conductivities, J. Membr. Sci. 276(1–2), 126–134 (2006).CrossRefGoogle Scholar
  39. 38.
    C. Iojoiu, F. Chabert, M. Maréchal, N. El. Kissi, J. Guindet, and J.-Y. Sanchez, From polymer chemistry to membrane elaboration: A global approach of fuel cell polymeric electrolytes, J. Power Sources 153(2), 198–209 (2006).CrossRefGoogle Scholar
  40. 39.
    J. A. Asensio, and P. Gómez-Romero, Recent developments on proton conducting poly(2,5-benzimidazole) (ABPBI) membranes for high temperature polymer electrolyte membrane fuel cells, Fuel Cells 5(3), 336–343 (2005).CrossRefGoogle Scholar
  41. 40.
    J. Kerres, A. Ullrich, M. Hein, V. Gogel, K. A. Friedrich, and L. Jörissen, Cross-linked polyaryl blend membranes for polymer electrolyte fuel cells, Fuel Cells 4(1–2), 105–112 (2004).CrossRefGoogle Scholar
  42. 41.
    D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications, J. Membr. Sci. 240(1–2), 37–48 (2004).CrossRefGoogle Scholar
  43. 42.
    G. K. Surya Prakash, M. C. Smart, Q. -J. Wang, A. Atti, V. Pleynet, B. Yang, K. McGrath, G. A. Olah, S. R. Narayanan, W. Chum, T. Valdez, and S. Surampudi, High efficiency direct methanol fuel cell based on poly(styrenesulfonic acid) (PSSA)-poly(vinylidene fluoride) (PVDF) composite membranes, J. Fluorine Chem. 125(8), 1217–1230 (2004).CrossRefGoogle Scholar
  44. 43.
    M. Schuster, T. Rager, A. Noda, K. D. Kreuer, and J. Maier, About the choice of the protogenic group in PEM separator materials for intermediate temperature, low humidity operation: A critical composition of sulfonic acid, phosphonic acid and imidazole functionalized model compounds, Fuel Cells 5(3), 355–365 (2005).CrossRefGoogle Scholar
  45. 44.
    L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E.-W. Choe, L. S. Ramanathan, S. Yu, and B. C. Benicewicz, Synthesis and characterization of pyridine-based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applications, Fuel Cells 5(2), 287–295 (2005).CrossRefGoogle Scholar
  46. 45.
    R. P. Raffaelle, B. J. Landi, J. D. Harris, S. G. Bailey, and A. F. Hepp, Carbon nanotubes for power applications, Mater. Sci. Eng. B 116(3), 233–243 (2005).CrossRefGoogle Scholar
  47. 46.
    N. Rajalakshmi, H. Ryu, M. M. Shaijumon, and S. Ramaprabhu, Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material, J. Power Sources 140(2), 250–257 (2005).CrossRefGoogle Scholar
  48. 47.
    W. Li, X. Wang, Z. Chen, M. Waje, and Y. Yan, Carbon nanotube film by filtration as cathode catalyst support for proton-exchange membrane fuel cell, Langmuir 21(21), 9386–9389 (2005).CrossRefGoogle Scholar
  49. 48.
    Y. Gao, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, X. Li, and S. Kaliaguine, Low-swelling proton-conducting copoly(aryl ether nitrile)s containing naphthalene structure with sulfonic acid groups meta to the ether linkage, Polymer 47(3), 808–816 (2006).CrossRefGoogle Scholar
  50. 49.
    S. Li, Z. Zhou, M. Liu, W. Li, J. Ukai, K. Hase, and M. Nakanishi, Synthesis and properties of imidazole-grafted hybrid inorganic-organic polymer membranes, Electrochim. Acta 51(7), 1351–1358 (2006).CrossRefGoogle Scholar
  51. 50.
    A. Taniguchi, and K. Yasuda, Highly water-proof coating of gas flow channels by plasma polymerization for PEM fuel cells, J. Power Sources 141(1), 8–12 (2005).CrossRefGoogle Scholar
  52. 51.
    M. Shen, S. Roy, J. W. Kuhlmann, K. Scott, K. Lovell, and J. A. Horsfall, Grafted polymer electrolyte membrane for direct methanol fuel cell, J. Membr. Sci. 251(1–2), 121–130 (2005).CrossRefGoogle Scholar
  53. 52.
    J. Chen, M. Asano, T. Yamaki, and M. Yoshida, Improvement of chemical stability of polymer electrolyte fuel cell membranes by grafting of new substituted styrene monomers into ETFE films, J. Mater. Sci. 41(4), 1289–1292 (2006).CrossRefGoogle Scholar
  54. 53.
    Z.-G. Shao, H. Xu, M. Li, and I.-M. Hsing, Hybrid Nafion-inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell, Solid State Ionics 177(7–8), 779–785 (2006).CrossRefGoogle Scholar
  55. 54.
    M. L. Di Vona, D. Marani, C. D'Ottavi, M. Trombetta, E. Traversa, I. Beurroies, P. Knauth, and S. Licoccia, A simple new route to covalent organic/inorganic hybrid proton exchange polymeric membranes, Chem. Mater. 18(1), 69–75 (2006).CrossRefGoogle Scholar
  56. 55.
    S. Reichman, T. Duvdevani, A. Aharon, M. Philosoph, D. Golodnitsky, and E. Peled, A novel PTFE-based proton-conductive membrane, J. Power Sources 153(2), 228–233 (2006).CrossRefGoogle Scholar
  57. 56.
    S. Swier, V. Ramani, J. M. Fenton, H. R. Kunz, M. T. Shaw, and R. A. Weiss, Polymer blends based on sulfonated poly(ether ketone ketone) and poly(ether sulfone) as proton exchange membranes for fuel cells, J. Membr. Sci. 256(1–2), 122–133 (2005).Google Scholar
  58. 57.
    a) S. M. J. Zaidi, Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate, Electrochim. Acta 50(24), 4771–4777 (2005); b) S. M. J. Zaidi, and M. I. Ahmad, Novel SPEEK/heteropolyacids loaded MCM-41 composite membranes for fuel cell applications, J. Membr. Sci. 279(1–2), 548–557 (2006).Google Scholar
  59. 58.
    Y. Yang, and S. Holdcroft, Synthetic strategies for controlling the morphology of proton conducting polymer membranes, Fuel Cells 5(2), 171–186 (2005).CrossRefGoogle Scholar
  60. 59.
    M. A. Smit, A. L. Ocampo, M. A. Espinosa-Medina, and P. J. Sebastián, A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell, J. Power Sources 124(1), 59–64 (2003).CrossRefGoogle Scholar
  61. 60.
    S. Moravcová, Z. Cílová, and K. Bouzek, Preparation of a novel composite material based on a Nafion® membrane and polypyrrole for potential application in a PEM fuel cell, J. Appl. Electrochem. 35(10), 991–997 (2005).CrossRefGoogle Scholar
  62. 61.
    F. Xu, C. Innocent, B. Bonnet, D. J. Jones, and J. Rozière, Chemical modification of perfluorosulfonated membranes with pyrrole for fuel cell application: Preparation, characterization and methanol transport, Fuel Cells 5(3), 398–405 (2005).CrossRefGoogle Scholar
  63. 62.
    J. Shah, J. W. Brown, E. M. Buckley-Dhoot, and A. J. Bandara, The use of a phenylpyrazine liquid crystalline material with a liquid crystalline solvent mediator as an ion-selective electrode, J. Mater. Chem. 10(12), 2627–2628 (2000).CrossRefGoogle Scholar
  64. 63.
    H. Wolf, and M. Willert-Porada, Electrically conductive LCP-carbon composite with low carbon content for bipolar plate application in polymer electrolyte membrane fuel cell, J. Power Sources 153(1), 41–46 (2006).CrossRefGoogle Scholar
  65. 64.
    C. Sanchez, B. Julián, P. Belleville, and M. Popall, Applications of hybrid organic-inorganic nanocomposites, J. Mater. Chem. 15(35–36), 3559–3592 (2005).CrossRefGoogle Scholar
  66. 65.
    N. H. Jalani, K. Dunn, and R. Datta, Synthesis and characterization of Nafion—-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells, Electrochim. Acta 51(3), 553–560 (2005).CrossRefGoogle Scholar
  67. 66.
    C. S. Karthikeyan, S. P. Nunes, L. A. S. A. Prado, M. L. Ponce, H. Silva, B. Ruffmann, and K. Schulte, Polymer nanocomposite membranes for DMFC application, J. Membr. Sci. 254(1–2), 139–146 (2005).CrossRefGoogle Scholar
  68. 67.
    J.-M. Thomassin, C. Pagnoulle, G. Caldarella, A. Germain, and R. Jéröme, Contribution of nanoclays to the barrier properties of a model proton exchange membrane for fuel cell application, J. Membr. Sci. 270(1–2), 50–56 (2006).CrossRefGoogle Scholar
  69. 68.
    I. Stamatin, A. Morozan, K. Scott, A. Dumitru, S. Vulpe, and F. Nastase, Hybrid membranes for fuel cells based on nanometer YSZ and polyacrylonitrile matrix, J. Membr. Sci. 277(1–2), 1–6 (2006).CrossRefGoogle Scholar
  70. 69.
    T. R. Farhat, and P. T. Hammond, Designing a new generation of proton-exchange membranes using layer-by-layer deposition of electrolytes, Adv. Funct. Mater. 15(6), 945–954 (2005).CrossRefGoogle Scholar
  71. 70.
    H. Pei, L. Hong, and J. Y. Lee, Embedded polymerization driven asymmetric PEM for direct methanol fuel cells, J. Membr. Sci. 270(1–2), 169–178 (2006).CrossRefGoogle Scholar
  72. 71.
    S. Ren, C. Li, X. Zhao, Z. Wu, S. Wang, G. Sun, Q. Xin, and X. Yang, Surface modification of sulfonated poly(ether ether ketone) membranes using Nafion solution for direct methanol fuel cells, J. Membr. Sci. 247(1–2), 59–63 (2005).CrossRefGoogle Scholar
  73. 72. a)
    a) D. Rana, T. Matsuura, R. M. Narbaitz, and C. Feng, Development and characterization of novel hydrophilic surface modifying macromolecule for polymeric membranes, J. Membr. Sci. 249(1–2), 103–112 (2005);CrossRefGoogle Scholar
  74. 72. b)
    b) D. Rana, T. Matsuura, and R. M. Narbaitz, Novel hydrophilic surface modifying macromolecules for polymeric membranes: Polyurethane ends capped by hydroxy group, J. Membr. Sci. 282(1–2), 205–216 (2006).CrossRefGoogle Scholar
  75. 73.
    S. Ramakrishna, K. Fujihara, W.-E. Teo, T. Yong, Z. Ma, and R. Ramaseshan, Electrospun nanofibers: Solving global issues, Mater. Today 9(3), 40–50 (2006).CrossRefGoogle Scholar
  76. 74. a)
    a) R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, and T. Matsuura, Electrospun nanofibrous filtration membrane, J. Membr. Sci. 281(1–2), 581–586 (2006);CrossRefGoogle Scholar
  77. 74. b)
    R. Gopal, S. Kaur, C. Y. Feng, C. Chan, S. Ramakrishna, S. Tabe, and T. Matsuura, Electrospun nanofibrous polysulfone membranes as pre-filters: Particulate removal, J. Membr. Sci. 289 (1-2), 210-219 (2007).CrossRefGoogle Scholar
  78. 75.
    S. Kaur, D. Rana, G. Singh, W. J. Ng, S. Ramakrishna, and T. Matsuura, 2008 (unpublished results).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dipak Rana
  • Takeshi Matsuura
  • S. M. Javaid Zaidi

There are no affiliations available

Personalised recommendations