Methanol Permeation Through Proton Exchange Membranes of DMFCs

  • M. Bello
  • S. M. Javaid Zaidi
  • S. U. Rahman


This chapter presents efforts and progress being made by researchers worldwide to develop membranes with low methanol permeability, without compromising on other qualities, such as high ionic conductivity, good chemical and thermal stability, and cost. Three approaches have been pursued —Nafion membranes modification, development of alternative membranes, and development of high activity anode catalysts or methanol-tolerant cathode catalysts. Success has been made in developing membranes with permeability values of 10–70 times lower than the pure Nafion membranes. Various techniques, both electrochemical and non-electrochemical, for measuring methanol permeation through the membranes are also discussed. It has been found that electrochemical techniques are more accurate. Potentiometric technique in particular has ease of reproducibility of results, and getting more data points.


Energy Efficiency High Ionic Conductivity Nafion Membrane High Energy Efficiency Cathode Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baldauf, M., and Preidel, W., 1999, “Status of the development of a direct methanol fuel cell ”, J. Power Sources, 84 (2):161 –166.CrossRefGoogle Scholar
  2. 2.
    Barragan, V. M., and Heinzel, A., 2002, “Estimation of the membrane methanol diffusion coefficient from open circuit voltage measurements in a direct methanol fuel cell ”, J. Power Sources 104 (1):66 –72.CrossRefGoogle Scholar
  3. 3.
    Beck, N. K., Steiger, B., Scherer, G. G., and Wokaun, A., 2006, “Methanol tolerant oxygen reduction catalysts derived from electrochemically pretreated Bi2Pt2 −yIryO7 pyrochlores ”, Fuel Cells, No.1:26 –30.CrossRefGoogle Scholar
  4. 4.
    Bello, M., Zaidi, S. M. J., and Rahman, S. U., 2008, “Proton and methanol transport behavior of SPEEK/TPA/MCM-41 composite membranes for fuel cell application”, J. Membr. Sci. 322: 218–224..CrossRefGoogle Scholar
  5. 5.
    Bello, M., Zaidi, S. M. J., and Rahman, S. U., 2006, “Evaluation of methanol crossover through SPEEK/TPA/Y- zeolite composite membranes by an electrochemical method ”, Fuel cells seminar a677, Hawaii, USA.Google Scholar
  6. 6.
    Bello, M., Rahman, S. U., and Zaidi, S. M. J., 2007, “Comparative study on measurement techniques for methanol crossover through polymer electrolyte membranes of DMFCs ”, 7th International conference and exhibition on chemistry in industry, Manama, Kingdom of Bahrain.Google Scholar
  7. 7.
    Byungchan, B., Yong, H. H., and Dukjoon, K., 2005 “Preparation and characterization of Nafion/poly (1- vinylimidazole) composite membrane for direct methanol fuel cell application ”, J. Electrochem. Soc. 152 (7):A1366–A1372.CrossRefGoogle Scholar
  8. 8.
    Carmo, M., Paganin, V. A., Rosolen, J. M., and Gonzacez, E. R., 2005, “Alternative supports for the preparation of catalyst for low temperature fuel cells: The use of carbon nanotubes ”, J. Power Sources 142 (1 –2):169 –176.CrossRefGoogle Scholar
  9. 9.
    Chang, J. H., Park, J. H., Park, G-G., Kim, C-S., and Park, O-OK., 2003, “Proton- conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials ”, J. Power Sources 124 (1):18 –25.CrossRefGoogle Scholar
  10. 10.
    Choi, W. C., Kim, J. D., and Woo, S. I., 2001, “Modification of proton conducting membrane for reducing methanol crossover in a direct methanol fuel cell ”, J. Power Sources 96 (2):411 –414.CrossRefGoogle Scholar
  11. 11.
    Dimitrova, P., Friedrich, K. A., Stimming, U., and Vogt, B., 2002, “Modified Nafion — based membranes for use in direct methanol fuel cells ”, Solid State Ionics 150 (1 –2):115–122CrossRefGoogle Scholar
  12. 12.
    Dohle, H., Divisek, J., Mergel, J., Oetjen, H. F., Zingler, C., and Stolten, D., 2002, “Recent developments of the measurement of the methanol permeation in a direct methanol fuel cell ”, J. Power Sources, 105(2):274 –282.CrossRefGoogle Scholar
  13. 13.
    Drake, J. A., Wilson, W., and Killen, K., 2004, “Evaluation of the experimental model for methanol crossover in DMFCs ”, J. Electrochem. Soc. 151 (3):A413 –A417CrossRefGoogle Scholar
  14. 14.
    Every, H. A., Hickner, M. A., McGrath, J. E., and Zawodzinski Jr, T. A., 2005, “An NMR study of methanol diffusion in polymer electrolyte fuel cell membranes ”, J. Membr. Sci. 250 (1 –2):183 –188.CrossRefGoogle Scholar
  15. 15.
    Fedkin, M. V., Zhou, X., Hofmann, M. A., Chalkova, E., Weston, J. A., Allcock, H. R., Lvov, S. N., and Serguie, N., 2002, “Evaluation of methanol crossover in proton-conducting polyphosphazene membranes ”, Mater. Lett. 52 (3):192 –196.CrossRefGoogle Scholar
  16. 16.
    Hamnett, H., 2003, “Direct methanol fuel cell ” in: Handbook of fuel cells; Fundamental technology and applications ”, edited by: Wolf, V., Arnold, L., and Hubert, A. G., Wiley, Vol. 1: 305 –322.Google Scholar
  17. 17.
    Hong, W., Yuxin, W., and Shichang, W., 2002, “Study on the preparation and properties of PVdF — based — blend Nafion membranes ”, Gaofenzi Xuebao 4:540–543.Google Scholar
  18. 18.
    Ise, M., 2000, “Polymer elecktrolyt membranen: untersuchungen zur mikrostruktur und zu den transporteingenschaften fur protonen und wasser ”, PhD Thesis, University of Stuttgart.Google Scholar
  19. 19.
    Jiang, R., Kunz, H. R., and Fenton, J. M., 2005, “Improvement of DMFC performance and stability using multilayer structure membranes ”, 230th ACS National Meeting, Washington DC, USA.Google Scholar
  20. 20.
    Jin, L., Huanting, W., Shaoan, C., and Kwong-Yu, C., 2005, “Nafion — Polyfurfuryl alcohol nanocomposite membranes for direct methanol fuel cells ”, J Membr. Sci. 246 (1):95–101.CrossRefGoogle Scholar
  21. 21.
    Jung, I., Kim, D., Yun, Y., Chung, S., Lee, J., and Tak, Y., 2004, “Electro-oxidation of methanol diffused through proton exchange membrane on Pt surface: crossover rate of methanol ”, Electrochem. Acta 50 (2 –3):607 –610.CrossRefGoogle Scholar
  22. 22.
    Kim, D. W., Choi, H-S., Lee, C., Blumstein, A., and Kang, Y., 2005, “Investigation on methanol permeability of Nafion modified by self — assembled clay — nanocomposite membrane for DMFC”, Solid State Ionics, 176 (11– 12):1079–1089.Google Scholar
  23. 23.
    Kim, Y-M., Park, K-W., Choi, J-H., Park, I. S., and Sung, Y-E., 2003, “A Pd- impregnated nanocomposite Nafion membrane for use in high—concentration methanol fuel in DMFC”, Electrochem. Com. 5 (7):571–574.CrossRefGoogle Scholar
  24. 24.
    Kim, J., Kim, B., and Jung, B., 2002, “Proton conductivity and methanol permeability of membranes made from partially sulfonated polystyrene-block-poly (ethylene-ran-butylene)-block-polystyrene copolymers”, J. Membr. Sci. 207 (1):129–137.CrossRefGoogle Scholar
  25. 25.
    Kuver, A., and Potje-Kamloth, K., 1998, “Comparative study of methanol crossover across electro-polymerized and commercial proton exchange membrane electrolytes for the acid direct methanol fuel cell”, Electrochem. Acta 43 (16–17):2527–2535.CrossRefGoogle Scholar
  26. 26.
    Li, L., Zhang, J., and Wang, Y., 2003, “Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell”, J. Membr. Sci. 226 (1–2):159–167.CrossRefGoogle Scholar
  27. 27.
    Libby, B., Smyrl, W. H., and Cussler, E. L., 2003, “Polymer-zeolite composite membranes for direct methanol fuel cells”, AIChE J. 49 (4):991–1001.CrossRefGoogle Scholar
  28. 28.
    Maria, G., Xiangling, J., Xianfeng, L., Hui, N., Hampsey, J. E., and Yunfeng, L., 2004, “Direct synthesis of sulfonated aromatic poly (ether ether ketone) proton exchange membranes for fuel cell applications”, J. Membr. Sci. 234 (1–2):75–81.Google Scholar
  29. 29.
    Mikhailenko, S. D., Zaidi, S. M. J., and Kaliaguine, S., 2001, “Sulfonated polyether ether ketone based composite polymer electrolyte membranes”, Cat. Today 67 (1–3):225–236.CrossRefGoogle Scholar
  30. 30.
    Miyake, N., Wainright, J. S., and Savinell, R. F., 2001, “Evaluation of a sol-gel derived Nafion/silica hybrid membrane for polymer electrolyte membrane fuel cell applications 11: Methanol uptake and methanol permeability”, J. Electrochem. Soc. 148 (8):A905–A909.CrossRefGoogle Scholar
  31. 31.
    Munichandraiah, N., McGrath, K., Prakash, G. K. S., Aniszfeld, R., and Olah, G. A., 2003, “A potentiometric method of monitoring methanol crossover through polymer electrolyte membranes of direct methanol fuel cells”, J. Power Sources, 117 (1–2):98–101.CrossRefGoogle Scholar
  32. 32.
    Narayanan, S. R., Valdez, T., Rohatgi, N., Chun, W., and Hoover, G., 1999, “Recent advances in direct methanol fuel cells”, Proceedings of 11th Annual Battery Conference on Applications and Advances, California, USA (12–15):73–77.Google Scholar
  33. 33.
    Navarra, M. A., Materazzi, S., Panero, S., and Scorsese, B., 2003, “PVdF-based membranes for DMFC applications”, J. Electrochem. Soc. 150 (11):A1528–A1532.CrossRefGoogle Scholar
  34. 34.
    Ponce, M. L., Prado, L., Ruffmann, B., Richau, K., Mohr, R., and Nunes, S. P., 2003, “Reduction of methanol permeability in polyetherketone-heteropoly acid membranes”, J. Membr. Sci. 217 (1–2):5–15.CrossRefGoogle Scholar
  35. 35.
    Qi, Z., and Kaufman, A., 2002, “Open circuit voltage and methanol crossover in DMFCs”, J. Power Sources 110 (1):177–185.CrossRefGoogle Scholar
  36. 36.
    Ramya, K., and Dhathathreyan, K. S., 2003, “Direct methanol fuel cells: Determination of fuel crossover in a polymer electrolyte membrane”, J. Electroanal. Chem. 542:109–115.CrossRefGoogle Scholar
  37. 37.
    Ren, X., Springer, T. E., Zawodzinski, T. A., and Gottesfeld, S., 2000, “Methanol transport through Nafion membranes electro-osmotic drag effects on potential step measurements”, J. Electrochem. Soc. 147 (2):466–474.CrossRefGoogle Scholar
  38. 38.
    Saarinen, V., Kallio, T., Paronan, M., Tikkanen, P., Rauhala, E., and Kontturi, K., 2005, “New ETFE-based membrane for direct methanol fuel cell”, Electrochem. Acta 50 (1):3453–3460.CrossRefGoogle Scholar
  39. 39.
    Schaffer, T., Hacker, V., Tschinder, T., Besenhand, J. O., and Prenninger, P., 2005, “Introduction of an improved gas chromatographic analysis and comparison of methods to determine methanol crossover in DMFCs”, J. Power Sources 145 (2):188–198.CrossRefGoogle Scholar
  40. 40.
    Shen, M., Roy, S., Kuhlmann, J. W., Scott, K., Lovell, K., and Horsfall, J. A., 2005, “Grafted polymer electrolyte membrane for direct methanol fuel cells”, J. Membr. Sci. 251 (1–2):121–130.CrossRefGoogle Scholar
  41. 41.
    Shin, J-P., Chang, B-J., Kim, J-H., Lee, S-B., and Suh, D. H., 2005, “Sulfonated polystyrene/PTFE composite membranes”, J. Membr. Sci., 251(1–2):247–254.CrossRefGoogle Scholar
  42. 42.
    Smitha, B., Sridhar, S., and Khan, A. A., 2005, “Solid polymer electrolyte membranes for fuel cell applications — a review, J. Membr. Sci. 259 (1–2):10–26.CrossRefGoogle Scholar
  43. 43.
    Tricoli, V., 1998, “Proton and methanol transport in poly (perfluorosulfonate) membranes containing Cs+ and H,+ cations”, J. Electrochem. Soc. 145 (11):3798–3801.CrossRefGoogle Scholar
  44. 44.
    Tricoli, V., Carretta, N., and Bartolozzi, M., 2000, “A comparative investigation of proton and methanol transport in fluorinated ionomeric membranes”, J. Electrochem. Soc. 147 (4):1286–1290.CrossRefGoogle Scholar
  45. 45.
    Verbrugge, M. W., 1989, “Methanol diffusion in per-fluorinated ion-exchange membranes”, J. Electrochem. Soc., 136 (2):417 –423.CrossRefGoogle Scholar
  46. 46.
    Weilin, X., Tianhong, L., Changpeng, L., and Wei, X., 2005, “Low methanol permeable composite Nafion/Silica/PWA membranes for low temperature direct methanol fuel cells”, Electrochem. Acta, 50 (16–17):3280–3285.Google Scholar
  47. 47.
    Xu, F., Innocent, C., Bonnet, B., Jones, D. J., and Roziere, J., 2005, “Chemical modification of per fluorosulfonated membranes with pyrrole for fuel cell application: Preparation, characterization and methanol transport”, Fuel Cells 5 (3):398–405.CrossRefGoogle Scholar
  48. 48.
    Zhi-Gang, S., Xin, W., and I-Ming, H., 2002, “Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cells”, J Membr. Sci. 210 (1):147–153.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. Bello
  • S. M. Javaid Zaidi
  • S. U. Rahman

There are no affiliations available

Personalised recommendations