Critical Issues in the Commercialization of DMFC and Role of Membranes

  • Hyuk Chang
  • Haekyoung Kim
  • Yeong Suk Choi
  • Wonmok Lee


Mobile telecommunication devices in the next generation require a new concept of quick charging and a long-lasting mobile energy source. The direct methanol fuel cell (DMFC) is becoming attractive, but there are critical issues involved in its commercialization with regard to the core technologies of catalyst, membrane, membrane electrode assembly (MEA), stack, and system. More importantly, the main role of the proton-conducting membrane is enhancing the energy and power density and affecting the other components in DMFC systems. Functions, current status, and technical approaches are discussed in terms of protonic conductivity, methanol permeability, water permeability, life cycle, and processing cost as well as interaction with other compartments. Materials such as perfluorinated and partially fluorinated membranes, hydrocarbon membranes, composite membranes, and other modified ionomers have been studied in connection with technology roadmap of membrane and mobile DMFC systems. These would explain the critical issues of DMFC and the role of membranes for commercialization.


Mobile Device Critical Issue Water Permeability Protonic Conductivity Composite Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Chang, paper presented at the Small Fuel Cells for Portable Applications, 2005.Google Scholar
  2. 2.
    H. Chang, paper presented at the International Fuel Cell Expo, Tokyo 2004.Google Scholar
  3. 3.
    K. D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, Chem. Rev. 104, 4637 (2004).CrossRefGoogle Scholar
  4. 4.
    H. Tang, and P. N. Pintauro, J. Appl. Polym. Sci. 79, 49 (2001).CrossRefGoogle Scholar
  5. 5.
    R. Wycisk, and P. N. Pintauro, J. Membr. Sci. 119, 155 (1996).CrossRefGoogle Scholar
  6. 6.
    X. Ren, T. E. Springer, T. A. Zawodzinski Jr., and S. Gottesfeld, J. Electrochem. Soc. 147, 466 (2000).CrossRefGoogle Scholar
  7. 7.
    G. J. M. Janssen, and M. L. J. Overvelde, J. Power Sources 101, 117 (2001).CrossRefGoogle Scholar
  8. 8.
    B. Smitha, D. Suhanva, S. Sridhar, and M. Ramakrishna, J. Membr. Sci. 241, 1 (2002).CrossRefGoogle Scholar
  9. 9.
    C. A. Edmondson, and J. J. Fontanella, Solid State Ionics 152–153, 355 (2002).CrossRefGoogle Scholar
  10. 10.
    S. Y. Cha, N. Tran, A. T. Duong, G. Hou, M. Lefebvre, and A. Attia, PBFC 2003, 1st International Conference of Polymer for Battery and Fuel Cell (2003).Google Scholar
  11. 11.
    K. A. Mauritz, and R. B. Moore, Chem. Rev. 104, 4535 (2004).CrossRefGoogle Scholar
  12. 12.
    H. Kim, J. Cho, J. Yoon, and H. Chang, 2001 ECS Conference (2001).Google Scholar
  13. 13.
    H. Chang, J. R. Kim, J. H. Cho, H. K. Kim, and K. H. Choi, Solid State Ionics 148, 601 (2002).CrossRefGoogle Scholar
  14. 14.
    J. Guo, G. Sun, O. Wang, G. Wang, Z. Zhou, S. Tang, L. Jiang, B. Zhou, and O. Xin, Carbon 44, 152 (2006).CrossRefGoogle Scholar
  15. 15.
    K. Makino, K. Furukawa, K. Okajima, and M. Sudoh, Electrochim. Acta 51, 961 (2005).CrossRefGoogle Scholar
  16. 16.
    S. Baranton, C. Coutanceau, J. M. Leger, C. Roux, and P. Capron, Electrochim. Acta 51, 517 (2005).CrossRefGoogle Scholar
  17. 17.
    R. Dillon, S. Srinivasan, A. S. Arico, and V. Antonucci, J. Power Sources 127, 112 (2004).CrossRefGoogle Scholar
  18. 18.
    W. L. Gore, B. Bahar, A. R. Hobson, J. A. Kodle, and A. Zuckerbrod, (W. L. Gore & Associates, Inc., US patent 5547551, 1996).Google Scholar
  19. 19.
    C. Xie, J. Bostaph, and J. Pavio, J. Power Sources 136, 55 (2004).CrossRefGoogle Scholar
  20. 20.
    K. H. Kim, S. J. Choi, and H. Chang, 203rd ECS Paris Meeting (2003).Google Scholar
  21. 21.
    G. Q. Lu, F. Q. Liu, and C. Y. Wang, Electrochem. Solid-State Lett. 8, 1099 (2005).Google Scholar
  22. 22.
    M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, Chem. Rev. 104, 4587 (2004).CrossRefGoogle Scholar
  23. 23.
    J. A. Drake, W. Wilson, and K. Killeen, J. Electrochem. Soc. 151, A413 (03 2004, 2004).CrossRefGoogle Scholar
  24. 24.
    A. E. Steck, Proceedings of 1st International Symposium on New Material Fuel Cell Systems, 74, (1995, 1995).Google Scholar
  25. 25.
    W. G. Grot, Chem. Ind. 82, 161 (1994).Google Scholar
  26. 26.
    H. L. Yeager, B. Kipling, and R. L. Dotson, J. Electrochem. Soc. 127, 303 (1980).CrossRefGoogle Scholar
  27. 27.
    M. A. F. Robertson, and H. L. Yeager, Macromolecules 29, 5166 (1996).CrossRefGoogle Scholar
  28. 28.
    M. Doyle, M. E. Lewittes, M. G. Roelofs, S. A. Perusich, and S. A. Lowrey, J. Membr. Sci. 184, 257 (2001).CrossRefGoogle Scholar
  29. 29.
    S. A. Perusich, P. Avakian, and M. Y. Keating, Macromolecules 26, 4756 (1993).CrossRefGoogle Scholar
  30. 30.
    R. G. Rajendran, MRS Bullet. 30, 587 (2005).Google Scholar
  31. 31.
    T. D. Gierke, and W. Y. Hsu, Perfluorinated Ionomer Membranes. A. Eisenberg, H. L. Yeager, Eds., ACS Symposium Series No. 180. (American Chemical Society, Washington, DC, 1982), p 283.Google Scholar
  32. 32.
    M. Eikerling, A. A. Kornyshev, and U. Stimming, J. Phys. Chem. B 101, 10807 (1997).CrossRefGoogle Scholar
  33. 33.
    H. G. Haubold, T. Vad, H. Jungbluth, and P. Hiller, Electrochim. Acta 46, 1559 (2001).CrossRefGoogle Scholar
  34. 34.
    P. J. James, T. J. McMaster, N. J. M, and M. J. Miles, Polymer 41, 4223 (2000).CrossRefGoogle Scholar
  35. 35.
    H. A. Every, M. A. Hickner, J. E. McGrath, and T. A. Zawodzinski Jr., J. Membr. Sci. 250, 183 (2005).CrossRefGoogle Scholar
  36. 36.
    P. Choi, N. H. Jalani, and R. Datta, J. Electrochem. Soc. 152, A1548 (2005).CrossRefGoogle Scholar
  37. 37.
    P. Argyropoulos, K. Scott, A. K. Shukla, and C. Jackson, J. Power Sources 123, 190 (2003).CrossRefGoogle Scholar
  38. 38.
    V. M. Barragan, and A. Heinzel, J. Power Sources 104, 66 (2002).CrossRefGoogle Scholar
  39. 39.
    J. Divisek, J. Fuhrmann, K. Gartner, and R. Jung, J. Electrochem. Soc. 150, A811 (2003).CrossRefGoogle Scholar
  40. 40.
    G. Murgia, L. Pisani, A. K. Shukla, and K. Scott, J. Electrochem. Soc. 150, A1231 (2003).CrossRefGoogle Scholar
  41. 41.
    Z. H. Wang, and C. Y. Wang, Proceedings of International Symposium on Direct Methanol Fuel Cells. 286 (2001).Google Scholar
  42. 42.
    Z. H. Wang, and C. Y. Wang, J. Electrochem. Soc. 150, A508 (2003).CrossRefGoogle Scholar
  43. 43.
    M. W. Verbrugge, J. Electrochem. Soc. 136, 417 (1989).CrossRefGoogle Scholar
  44. 44.
    J. Cruickshank, and K. Scott, J. Power Sources 70, 40 (1998).CrossRefGoogle Scholar
  45. 45.
    X. Ren, and S. Gottesfeld, J. Electrochem. Soc. 144, L267 (2001).CrossRefGoogle Scholar
  46. 46.
    X. Ren, M. S. Wilson, and S. Gottesfeld, J. Electrochem. Soc. 143, L12 (1996).CrossRefGoogle Scholar
  47. 47.
    J. Wei, C. Stone, and A. E. Steck, (Power Systems, Inc., US Patent 5422411, 1995).Google Scholar
  48. 48.
    A. E. Steck, and C. Stone, Proceedings of 2nd International Symposium On New Material Fuel-Cell and Modern Battery Systems II, 792 (1997).Google Scholar
  49. 49.
    H. Kim, (Samsung Electronics, US Patent, 6774150B2, 2004).Google Scholar
  50. 50.
    L. Gubler, H. Kuhn, T. J. Schmidt, G. G. Scherer, H. P. Brack, and K. Simbeck, Fuel Cells 4, 196 (2004).CrossRefGoogle Scholar
  51. 51.
    M. Patri, V. R. Hande, S. Phadnis, B. Somaiah, S. Roychoudhury, and P. C. Deb, Polym Adv. Technol. 15, 270 (2004).CrossRefGoogle Scholar
  52. 52.
    K. Scott, W. M. Taama, and P. Argyropoulos, J. Membr. Sci. 171, 119 (2000).CrossRefGoogle Scholar
  53. 53.
    M. Shen, S. Roy, J. W. Kuhlmann, K. Scott, K. Lovell, and J. A. Horsfall, J. Membr. Sci. 251, 121 (2005).CrossRefGoogle Scholar
  54. 54.
    V. Saarinen, T. Kallio, M. Paronen, P. Tikkanen, E. Rauhala, and K. Kontturi, Electrochim. Acta 50, 3453 (2005).CrossRefGoogle Scholar
  55. 55.
    A. S. Arico, V. Baglio, P. Creti, A. Di Blasi, V. Antonucci, J. Brunea, A. Chapotot, A. Bozzi, and J. Schoemans, J. Power Sources 123, 107 (2003).CrossRefGoogle Scholar
  56. 56.
    J. A. Kerres, J. Membr. Sci. 185, 3 (2001).CrossRefGoogle Scholar
  57. 57.
    M. S. Tirumkudulu, and W. B. Russel, Langmuir 21, (2005).Google Scholar
  58. 58.
    H. R. Allcock, M. A. Hofmann, C. M. Ambler, and R. V. Morford, Macromolecules 35, 3484 (2002).CrossRefGoogle Scholar
  59. 59.
    F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, J. Membr. Sci. 197, 231 (2002).CrossRefGoogle Scholar
  60. 60.
    C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, and M. Pineri, Polymer 42, 359 (2001).CrossRefGoogle Scholar
  61. 61.
    C. W. Walker Jr., J. Power Sources 110, 144 (2002).CrossRefGoogle Scholar
  62. 62.
    Y. A. Elabd, E. Napadensky, J. A. Sloan, D. M. Crawford, and C. W. Walker, J. Membr. Sci. 217, 227 (2003).CrossRefGoogle Scholar
  63. 63.
    B. Smitha, S. Sridhar, and A. A. Khan, Macromolecules 37, 2233 (2004).CrossRefGoogle Scholar
  64. 64.
    J. Ding, C. Chuy, and S. Holdcroft, Macromolecules 35, 1348 (2002).CrossRefGoogle Scholar
  65. 65.
    Y. S. Kim, F. Wang, M. Hickner, S. McCartney, Y. T. Hong, W. Harrison, T. A. Zawodzinski, and J. E. McGrath, J. Polym. Sci. B 41, 2816 (2003).CrossRefGoogle Scholar
  66. 66.
    W. C. Choi, J. D. Kim, and S. I. Woo, J. Power Sources 96, 411 (2001).CrossRefGoogle Scholar
  67. 67.
    E. Smotkin, T. Mallouk, M. Wardchael, and K. Ley, (US Patent 5846669, 1998).Google Scholar
  68. 68.
    S. R. Yoon, G. H. Hwang, W. I. Cho, I. H. Oh, S. A. Hong, and H. Y. Ha, J. Power Sources 106, 215 (2002).CrossRefGoogle Scholar
  69. 69.
    D. Kim, M. A. Scibioh, S. Kwak, I. H. Oh, and H. Y. Ha, Electrochem. Commun. 6, 1069 (2004).CrossRefGoogle Scholar
  70. 70.
    K. Lee, J. H. Nam, J. H. Lee, Y. Lee, S. M. Cho, C. H. Jung, H. G. Choi, Y. Y. Chang, J. U. Kwon, and J. D. Nam, Electrochem. Commun. 7, 113 (2005).CrossRefGoogle Scholar
  71. 71 .
    D. Kim, J. Lee, T.-H. Lim, I.-H. Oh, H. Y. Ha, J. Power Sources 155, 203 (2006).Google Scholar
  72. 72.
    S. Ren, C. Li, X. Zhao, Z. Wu, S. Wang, G. Sun, Q. Xin, and X. Yang, J. Membr. Sci. 247, 59 (2005).CrossRefGoogle Scholar
  73. 73.
    Y. Higuchi, N. Terada, H. Shimoda, and S. Hommura, (Ashai Glass Co., EP1139472, 2001).Google Scholar
  74. 74.
    T. Yamaguchi, F. Miyata, and S. Nakao, Adv. Mater. 15, 1198 (2003).CrossRefGoogle Scholar
  75. 75.
    T. Yamaguchi, H. Kuroki, and F. Miyata, Electrochem. Commun. 7, 730 (2005).CrossRefGoogle Scholar
  76. 76.
    J. A. Kerres, A. Ullrich, F. Meier, and T. Haering, J. Membr. Sci. 206, 443 (2002).CrossRefGoogle Scholar
  77. 77.
    J. A. Kerres, and A. Ullrich, Sep. Purif. Technol. 22–23, 1 (2001).CrossRefGoogle Scholar
  78. 78.
    J. Lin, M. Ouyang, J. M. Fenton, H. R. Kunz, J. T. Koberstein, and M. B. Cutlip, J. Appl. Polym. Sci. 70, 121 (1998).CrossRefGoogle Scholar
  79. 79.
    C. Hasiotis, Electrochim. Acta 46, 2401 (2001).CrossRefGoogle Scholar
  80. 80.
    S. Ren, G. Sun, C. Li, Z. Wu, W. Jin, and W. Chen, Mater. Lett. 60, 44 (2006).CrossRefGoogle Scholar
  81. 81.
    X. Li, D. Chen, D. Xu, C. Zhao, Z. Wang, H. Lu, H. Na, J. Membr. Sci. 275, 134 (2006).CrossRefGoogle Scholar
  82. 82.
    J. Qiao, T. Hamaya, and T. Okada, Polymer 46, 10809 (2005).CrossRefGoogle Scholar
  83. 83.
    K.-Y. Cho, J.-Y. Eom, H.-Y. ung, N.-S. Choi, Y. M. Lee, J.-K. Park, J.-H. Choi, K.-W. Park, and Y.-E. Sung, Electrochim. Acta 50, 583 (2004).CrossRefGoogle Scholar
  84. 84.
    H. J. Kim, H. J. Kim, Y. G. Shul, and H. S. Han, J. Power Sources 135, 66 (2004).CrossRefGoogle Scholar
  85. 85.
    G. K. S. Prakash, M. C. Smart, Q.-J. Wang, A. Atti, V. Pleynet, B. Yang, K. McGrath, G. A. Olah, S. R. Narayanan, and W. Chun, J. Fluorine Chem. 125, 1217 (2004).CrossRefGoogle Scholar
  86. 86.
    M. A. Smit, A. L. Ocampo, M. A. Espinosamedina, and P. J. Sebastian, J. Power Sources 124, 59 (2003).CrossRefGoogle Scholar
  87. 87.
    M. Watanabe, paper presented at the The Electrochemical Society Meeting PV 94–2, Pennington NJ 1994.Google Scholar
  88. 88.
    P. L. Antonucci, A. S. Arico, P. Creti, E. Ramunni, and V. Antonucci, Solid State Ionics 125, 431 (1999).CrossRefGoogle Scholar
  89. 89.
    K. A. Mauritz, Mater. Sci. Eng. C 6, 121 (1998).CrossRefGoogle Scholar
  90. 90.
    Q. Deng, R. B. Moore, and K. A. Mauritz, Chem. Mater. 7, 2259 (1995).CrossRefGoogle Scholar
  91. 91.
    Q. Deng, Y. Hu, R. B. Moore, C. L. McCormick, and K. A. Mauritz, Chem. Mater. 9, 36 (1997).CrossRefGoogle Scholar
  92. 92.
    Q. Deng, C. A. Wilkie, R. B. Moore, and K. A. Mauritz, Polymer 39, 5961 (1998).CrossRefGoogle Scholar
  93. 93.
    D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin, and J. S. Kim, J. Power Sources 106, 173 (2002).CrossRefGoogle Scholar
  94. 94.
    R. A. Zoppi, I. V. P. Yoshida, and S. P. Nunes, Polymer 39, 1309 (1997).CrossRefGoogle Scholar
  95. 95.
    R. A. Zoppi, and S. P. Nunes, Electroanal. Chem. 445, 39 (1997).CrossRefGoogle Scholar
  96. 96.
    H. Kim, J. Cho, J. Yoon, and H. Chang, (Korea Patent KR-P0413801, 2004).Google Scholar
  97. 97.
    S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, and K. Richau, J. Membr. Sci. 203, 215 (2002).CrossRefGoogle Scholar
  98. 98.
    P. Dimitrova, K. A. Friedrich, U. Stimming, and B. Vogt, Solid State Ionics 150, 115 (2002).CrossRefGoogle Scholar
  99. 99.
    D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin, and J. S. Kim, J. Power Sources 118, 205 (2003).CrossRefGoogle Scholar
  100. 100.
    M. L. Ponce, L. Prado, B. Ruffmann, K. Richau, R. Mohr, and S. P. Nunes, J. Membr. Sci. 217, 5 (2003).CrossRefGoogle Scholar
  101. 101.
    C. Rhee, H. Kim, J. S. Lee, and H. Chang, Chem. Mater. 17, 1691 (2005).CrossRefGoogle Scholar
  102. 102.
    S. Gottesfeld, Proceedings of Small Fuel Cells for Portable Applications, 6th Edition (2005).Google Scholar
  103. 103.
    C. K. Shin, G. Maier, B. Andreaus, and G. G. Scherer, J. Membr. Sci. 245, 147 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hyuk Chang
  • Haekyoung Kim
  • Yeong Suk Choi
  • Wonmok Lee

There are no affiliations available

Personalised recommendations