Skip to main content

Carbon-Filled Polymer Blends for PEM Fuel Cell Bipolar Plates

  • Chapter
  • First Online:
Polymer Membranes for Fuel Cells
  • 2471 Accesses

Abstract

Carbon-filled polymer blends with a triple-continuous structure, consisting of a binary (or ternary) polymer blend and carbon particles, have great potential to provide injection moldable PEM fuel cell bipolar plates with superior electrical conductivity and sufficient mechanical properties. Four carbon nanotube (CNT)-filled polymer blends, i.e., CNT-filled polyethylene terephthalate (PET)/polyvinylidene fluoride, PET/polypropylene, PET/nylon 6,6, and PET/high-density polyethylene blends, have been injection molded and characterized in terms of their microstructures, electrical conductivities, and mechanical properties. Effects of the thermodynamic driving force, rheology of the polymer blend, and injection molding conditions on the distribution of CNTs in the blends have been examined. The simultaneous improvements in the electrical conductivity and mechanical properties of carbon-filled polymer blends over carbon-filled polymers have been investigated based on the CNT distribution in the polymer blends. The results unambiguously indicate that the preferential location of CNTs in one of the continuous polymer phases in the polymer blend is highly desirable for both mechanical and electrical properties. Future directions in this emerging area are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. J. Blomen and M. N. Mugerwa, Fuel Cell Systems (Plenum, New York, NY, 1993).

    Google Scholar 

  2. I. Bar-On, R. Kirchain, and R. Roth, Technical Cost Analysis for PEM Fuel Cells, J. Power Sources 109, 71–75 (2002).

    Article  CAS  Google Scholar 

  3. T. M. Besmann, J. W. Klett, J. J. Henry, and E. Lara-Curzio, Carbon/Carbon Composite Bipolar Plate for Proton Exchange Membrane Fuel Cells, J. Electrochem. Soc. 147 (11), 4083–4086 (2000).

    Article  CAS  Google Scholar 

  4. H. Tsuchiya and O. Kobayashi, Mass Production Cost of PEM Fuel Cell by Learning Curve, Int. J. Hydrogen Energ. 29 (10), 985–90 (2004).

    Article  CAS  Google Scholar 

  5. A. Kumar and R. G. Reddy, Materials and Design Development for Bipolar/end Plates in Fuel Cells, J. Power Sources 129, 62–67 (2004).

    Article  CAS  Google Scholar 

  6. V. Mehta and J. S. Cooper, Review and Analysis of PEM Fuel Cell Design and Manufacturing, J. Power Sources 114, 32–53 (2003).

    Article  CAS  Google Scholar 

  7. A. Hermann, T. Chaudhuri, and P. Spagnol, Bipolar Plates for PEM Fuel Cells: A Review, Int. J. Hydrogen Energ. 30, 1297–1302 (2005).

    Article  CAS  Google Scholar 

  8. P. L. Hentall, J. B. Lakeman, G. O. Mepsted, P. L. Adcock, and J. M. Moore, New Materials for Polymer Electrolyte Membrane Fuel Cell Current Collectors, J. Power Sources 80, 235–241 (1999).

    Article  CAS  Google Scholar 

  9. W. Middelman, W. Kout, B. Vogelaar, J. Lenssen, and E. de Waal, Bipolar Plates for PEM Fuel Cells, J. Power Sources 118, 44–46 (2003).

    Article  CAS  Google Scholar 

  10. D. P. Davies, P. L. Adcock, M. Turpin, and S. J. Rowen, Bipolar Plate Materials for Solid Polymer Fuel Cells, J. Appl. Electrochem. 30, 101–105 (2000).

    Article  CAS  Google Scholar 

  11. R. Hornung and G. Kappelt, Bipolar Plate Materials Development using Fe-Based Alloys for Solid Polymer Fuel Cells, J. Power Sources 72, 20–21 (1998).

    Article  CAS  Google Scholar 

  12. R. C. Makkus, A. H. H. Janssen, F. A. de Bruijn, and R. K. A. M. Mallant, Use of Stainless Steel for Cost Competitive Bipolar Plates in the SPFC, J. Power Sources 86, 274–282 (2000).

    Article  CAS  Google Scholar 

  13. H. J. Davis, Metal-Cored Bipolar Separator and End Plates for Polymer Electrolyte Membrane Electrochemical and Fuel Cells, U.S. Patent # 2003/0027028 A1.

    Google Scholar 

  14. M. P. Brady, K. Weisbrod, I. Paulauskas, R. A. Buchannan, K. L. More, H. Wang, M. Wilson, F. Garzon, and L. R. Walker, Preferential Thermal Nitridation to Form Pin-Hole Free Cr-Nitrides to Protect Proton Exchange Membrane Fuel Cell Metallic Bipolar Plates, Scripta Mater. 50, 1017–1022 (2004).

    Article  CAS  Google Scholar 

  15. M. P. Brady, K. Weisbrod, C. Zawodzinski, I. Paulauskas, R. A. Buchannan, and L. R. Walker, Assessment of Thermal Nitridation to Protect Metal Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells, Electrochem. Solid-State Lett. 5 (11), A245–A247 (2002).

    Article  CAS  Google Scholar 

  16. C. Del Rio, M. C. Ojeda, J. L. Acosta, M. J. Escudero, E. Hontanon, and L. Daza, New Polymer Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells: Synthesis and Characterization, J. Appl. Polym. Sci. 83 (13), 2817–2822 (2002).

    Article  CAS  Google Scholar 

  17. G. Marsh, Fuel Cell Materials, Mater. Today 4 (2), 20–24 (2001).

    Article  Google Scholar 

  18. F. Barbir, J. Braun, and J. Neutzler, Properties of Molded Graphite Bipolar Plates for PEM Fuel Cell Stacks, J. New Mater. Electrochem. Syst. 2, 197–200 (1999).

    CAS  Google Scholar 

  19. J. Braun, J. E. Zabriskie, Jr., J. K. Neutzler, M. Fuchs, and R. C. Gustafson, Fuel Cell Collector Plate and Method of Fabrication, US Patent # 6,180,275.

    Google Scholar 

  20. A. Bonnet and J.-F. Salas, Microcomposite Powder Based on Flat Graphite Particles and on a Fluoropolymer and Objects made from Same, U.S. Patent # 2004/0262584 A1.

    Google Scholar 

  21. C.-C. M. Ma, K. H. Chen, H. C. Kuan, S. M. Chen, M. H. Tsai, Y. Y. Yan, and F. Tsau, Preparation of Fuel Cell Composite Bipolar Plate, U.S. Patent # 2005/0001352 A1.

    Google Scholar 

  22. C. W. Extrand, Lyophilic Fuel Cell Component, U.S. Patent # 2005/0008919 A1.

    Google Scholar 

  23. K. I. Bulter, Highly Conductive Molding Compounds for Use as Fuel Cell Plates and the Resulting Products, U.S. Patent # 2003/0042468 A1.

    Google Scholar 

  24. M. Wu and L. Shaw, A Novel Concept of Carbon-Filled Polymer Blends for Applications of PEM Fuel Cell Bipolar Plates, Int. J. Hydrogen Energ. 30 (4), 373–380 (2005).

    Article  CAS  Google Scholar 

  25. M. Wu and L. Shaw, On the Improved Properties of Injection-Molded Carbon Nanotube-Filled PET/PVDF Blends, J. Power Sources 136, 37–44 (2004).

    Article  CAS  Google Scholar 

  26. M. Wu and L. Shaw, Electrical and Mechanical Behaviors of Carbon Nanotube-Filled Polymer Blends, J. Appl. Polym. Sci. 99, 477–488 (2006).

    Article  CAS  Google Scholar 

  27. K. Miyasaka, K. Watanabe, E. Jojima, H. Aida, M. Sumita, and K. Ishikawa, Electrical Conductivity of Carbon-Polymer Composites as a Function of Carbon Content, J. Mater. Sci. 17, 1610–1616 (1982).

    Article  CAS  Google Scholar 

  28. J. C. Grunlan, W. W. Gerberich, and L. F. Francis, Electrical and Mechanical Behavior of Carbon Black-Filled Poly(Vinyl Acetate) Latex-Based Composites, Polym. Eng. Sci. 41 (11), 1947–1962 (2001).

    Article  CAS  Google Scholar 

  29. J.-C. Huang, Review Carbon Black Filled Conducting Polymers and Polymer Blends, Adv. Polym. Tech. 21 (4), 299–313 (2002).

    Article  CAS  Google Scholar 

  30. C. Xu, Y. Agari, and M. Matsuo, Mechanical and Electric Properties of Ultra-High- Molecular Weight Polyethylene and Carbon Black Particle Blends, Polym. J. 30 (5), 372–380 (1998).

    Article  CAS  Google Scholar 

  31. G. Geuskens, J. L. Gielens, D. Geshef, and R. Deltour, The Electrical Conductivity of Polymer Blends Filled with Carbon-Black, Eur. Polym. 23, 993–995 (1987).

    Article  CAS  Google Scholar 

  32. B. G. Soares, F. Gubbels, R. Jérôme, and Ph. Teyssié, Electrical Conductivity in Carbon Black-Loaded Polystyrene-Polyisoprene Blends. Selective Localization of Carbon Black at the Interface, Polym. Bull. 35, 223–228 (1995).

    Article  CAS  Google Scholar 

  33. B. G. Soares, F. Gubbels, R. Jérôme, E. Vanlanthem, and R. Deltour, Electrical Conductivity of Polystyrene-Rubber Blends Loaded with Carbon Black, Rubb. Chem. Technol. 70, 60–70 (1997).

    CAS  Google Scholar 

  34. F. Gubbels, S. Blacher, E. Vanlanthem, R. Jérôme, R. Deltour, F. Brouers, and P. Teyssié, Design of Electrical Conductive Composites: Key Role of the Morphology on the Electrical Properties of Carbon Black Filled Polymer Blends, Macromolecules 28, 1559–1566 (1995).

    Article  CAS  Google Scholar 

  35. R. Tchoudakov, O. Breuer, M. Narkis, and A. Siegmann, Conductive Polymer Blends with Low Carbon Black Loading: Polypropylene/Polyamide, Polym. Eng. Sci. 36, 1336–1346 (1996).

    Article  CAS  Google Scholar 

  36. Ye. P. Mamunya, Morphology and Percolation Conductivity of Polymer Blends Containing Carbon Black, J. Macromol. Sci. Phys. B38, 615–622 (1999).

    CAS  Google Scholar 

  37. K. Cheah, G. P. Simon, and M. Forsyth, Effects of Polymer Matrix and Processing on the Conductivity of Polymer Blends, Polym. Int. 50, 27–36 (2001).

    Article  CAS  Google Scholar 

  38. J. G. Mallette, A. Márquez, O. Manero, and R. Castro-Rodríguez, Carbon Black Filled PET/PMMA Blends: Electrical and Morphological Studies, Polym. Eng. Sci. 40, 2272–2278 (2000).

    Article  CAS  Google Scholar 

  39. S. H. Foulger, Electrical Properties of Composites in the Vicinity of the Percolation Threshold, J. Appl. Polym. Sci. 72, 1573–1582 (1999).

    Article  CAS  Google Scholar 

  40. J. Feng and C. M. Chan, Carbon Black-filled Immiscible Blends of Poly(vinylidene fluoride) and High Density Polyethylene: Electrical Properties and Morphology, Polym. Eng. Sci. 38, 1649–1657 (1998).

    Article  CAS  Google Scholar 

  41. G. J. Lee, K. D. Suh, and S. S. Im, Effect of Incorporating Ethylene-Ethylacrylate Copolymer on the Positive Temperature Coefficient Characteristics of Carbon Black Filled HDPE Systems, Polym. Eng. Sci. 40, 247–255 (2000).

    Article  CAS  Google Scholar 

  42. M. Sumita, K. Sakata, S. Asai, K. Miyasaka, and H. Nakagawa, Dispersion of Fillers and the Electrical Conductivity of Polymer Blends Filled with Carbon Black, Polym. Bull. 25, 265–271 (1991).

    Article  CAS  Google Scholar 

  43. S. Wu, Polymer Interface and Adhesion (Dekker, New York, NY, 1982).

    Google Scholar 

  44. C. E. Scott and C. W. Macosko, Morphology Development during the Initial Stages of Polymer-Polymer Blending, Polymer 36 (3), 461–470 (1995).

    Article  CAS  Google Scholar 

  45. M. Evstatiev, J. M. Schultz, S. Petrovich, G. Georgiev, S. Fakirov, and K. Friedrich, In Situ Polymer/Polymer Composites from Poly(ethylene Terephthalate), Polyamide-6, and Polyamide-66 Blends, J. Appl. Polym. Sci. 67, 723–737 (1998).

    Article  CAS  Google Scholar 

  46. M. Castro, C. Carrot, and F. Prochazka, Experimental and Theoretical Description of Low Frequency Viscoelastic Behavior in Immiscible Polymer Blends, Polymer 45, 4095–4104 (2004).

    Article  CAS  Google Scholar 

  47. J. S. Hong, J. L. Kim, K. H. Ahn, and S. J. Lee, Morphology Development of PBT/PE Blends during Extrusion and Its Reflection on the Rheological Properties, J. Appl. Polym. Sci. 97, 1702–1709 (2005).

    Article  CAS  Google Scholar 

  48. W. Yu, C. Zhou, and Y. Xu, Rheology of Concentrated Blends with Immiscible Components, J. Polym. Sci. 43, 2534–2540 (2005).

    CAS  Google Scholar 

  49. H. A. Khonakdar, S. H. Jafari, A. Yavari, A. Asadinezhad, and U. Wagenknecht, Rheology, Morphology and Estimation of Interfacial Tension of LDPE/EVA and HDPE/EVA Blends, Polym. Bull. 54, 75–84 (2005).

    Article  CAS  Google Scholar 

  50. R. Ratnagiri and C. E. Scott, Effect of Viscosity Variation with Temperature on the Compounding Behavior of Immiscible Blends, Polym. Eng. Sci. 39 (9), 1823–1835 (1999).

    Article  CAS  Google Scholar 

  51. R. C. Willemse, A. Posthuma de Boer, J. van Dam, and A. D. Gotsis, Co-continuous Morphologies in Polymer Blends: the Influence of the Interfacial Tension, Polymer 40, 827–834 (1999).

    Article  CAS  Google Scholar 

  52. N. Marin and B. D. Favis, Co-continuous Morphology Development in Partially Miscible PMMA/PC Blends, Polymer 43, 4723–4731 (2002).

    Article  CAS  Google Scholar 

  53. J. Li and B. D. Favis, Characterizing Co-continuous High Density Polyethylene/Polystyrene Blends, Polymer 42, 5047–5053 (2001).

    Article  CAS  Google Scholar 

  54. J. K. Lee and C. D. Han, Evolution of Polymer Blend Morphology during Compounding in an Internal Mixer, Polymer 40, 6277–6296 (1999).

    Article  CAS  Google Scholar 

  55. C.-K. Shih, D. G. Tynan, and D. A. Denelsbeck, Rhrological Properties of Multicomponent Polymer Systems Undergoing Melting or Softening during Compounding, Polym. Eng. Sci. 31 (23), 1670–1673 (1991).

    Article  CAS  Google Scholar 

  56. B. D. Favis, The Effect of Processing Parameters on the Morphology of an Immiscible Binary Blend, J. Appl. Polym. Sci. 39, 285–300 (1990).

    Article  CAS  Google Scholar 

  57. R. C. Willemse, A. Posthuma de Boer, J. van Dam, and A. D. Gotsis, Co-continuous Morphologies in Polymer Blends: a New Model, Polymer 39 (24), 5879–5887 (1998).

    Article  CAS  Google Scholar 

  58. R. C. Willemse, Co-continuous Morphologies in Polymer Blends: Stability, Polymer 40, 2175–2178 (1999).

    Article  CAS  Google Scholar 

  59. Technical Data from Goodfellow Corporation Home Page, 2004. Available from World Wide Web: http://www.goodfellow.com/csp/active/gfHome.csp.

  60. G. Wu, C. Zhang, T. Miura, S. Asai, and M. Sumita, Electrical Characteristics of Fluorinated Carbon Black-Filled Poly(vinylidene Fluoride) Composites, J. Appl. Polym. Sci. 80 (7), 1063–1070 (2001).

    Article  CAS  Google Scholar 

  61. F. Bueche, Electrical Resistivity of Conducting Particles in an Insulating Matrix, J. Appl. Phys. 43 (11), 4837–4838 (1972).

    Article  CAS  Google Scholar 

  62. Z. Zhao, W. Yu, X. He, and X. Chen, The Conduction Mechanism of Carbon Black-Filled Poly(vinylidene Fluoride) Composite, Mater. Lett. 57, 3082–3088 (2003).

    Article  CAS  Google Scholar 

  63. B. D. Agarwal and L. J. Broutman, Analysis and Performance of Fiber Composites, 2nd Edition (Wiley, New York, NY, 1990).

    Google Scholar 

  64. L. Shaw and R. Abbaschian, On the Flow Behavior of Constrained Ductile Phases, Metall. Trans. 24A, 403–415 (1993).

    Google Scholar 

Download references

Acknowledgments

The author is indebted to Professors Frano Barbir, Montgomery Shaw, and Lei Zhu for fruitful discussion over a wide range of the topics related to this research. The author is also grateful to many of his former and current students, especially Ms. Man Wu, Dr. Daniel Goberman, Mr. Hong Luo, and Dr. Juan Villegas, for carrying out various experiments related to this project. Finally, the financial support from the US Army (contract #: DAAB07-03-3-K415) through the Connecticut Global Fuel Cell Center is greatly appreciated.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shaw, L.L. (2009). Carbon-Filled Polymer Blends for PEM Fuel Cell Bipolar Plates. In: Zaidi, S.M.J., Matsuura, T. (eds) Polymer Membranes for Fuel Cells. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73532-0_12

Download citation

Publish with us

Policies and ethics