Carbon-Filled Polymer Blends for PEM Fuel Cell Bipolar Plates

  • Leon L. Shaw


Carbon-filled polymer blends with a triple-continuous structure, consisting of a binary (or ternary) polymer blend and carbon particles, have great potential to provide injection moldable PEM fuel cell bipolar plates with superior electrical conductivity and sufficient mechanical properties. Four carbon nanotube (CNT)-filled polymer blends, i.e., CNT-filled polyethylene terephthalate (PET)/polyvinylidene fluoride, PET/polypropylene, PET/nylon 6,6, and PET/high-density polyethylene blends, have been injection molded and characterized in terms of their microstructures, electrical conductivities, and mechanical properties. Effects of the thermodynamic driving force, rheology of the polymer blend, and injection molding conditions on the distribution of CNTs in the blends have been examined. The simultaneous improvements in the electrical conductivity and mechanical properties of carbon-filled polymer blends over carbon-filled polymers have been investigated based on the CNT distribution in the polymer blends. The results unambiguously indicate that the preferential location of CNTs in one of the continuous polymer phases in the polymer blend is highly desirable for both mechanical and electrical properties. Future directions in this emerging area are discussed.


Polymer Electrolyte Internal Combustion Engine Polymer Blend Polyethylene Terephthalate Proton Exchange Membrane Fuel Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author is indebted to Professors Frano Barbir, Montgomery Shaw, and Lei Zhu for fruitful discussion over a wide range of the topics related to this research. The author is also grateful to many of his former and current students, especially Ms. Man Wu, Dr. Daniel Goberman, Mr. Hong Luo, and Dr. Juan Villegas, for carrying out various experiments related to this project. Finally, the financial support from the US Army (contract #: DAAB07-03-3-K415) through the Connecticut Global Fuel Cell Center is greatly appreciated.


  1. 1.
    L. J. Blomen and M. N. Mugerwa, Fuel Cell Systems (Plenum, New York, NY, 1993).Google Scholar
  2. 2.
    I. Bar-On, R. Kirchain, and R. Roth, Technical Cost Analysis for PEM Fuel Cells, J. Power Sources 109, 71–75 (2002).CrossRefGoogle Scholar
  3. 3.
    T. M. Besmann, J. W. Klett, J. J. Henry, and E. Lara-Curzio, Carbon/Carbon Composite Bipolar Plate for Proton Exchange Membrane Fuel Cells, J. Electrochem. Soc. 147 (11), 4083–4086 (2000).CrossRefGoogle Scholar
  4. 4.
    H. Tsuchiya and O. Kobayashi, Mass Production Cost of PEM Fuel Cell by Learning Curve, Int. J. Hydrogen Energ. 29 (10), 985–90 (2004).CrossRefGoogle Scholar
  5. 5.
    A. Kumar and R. G. Reddy, Materials and Design Development for Bipolar/end Plates in Fuel Cells, J. Power Sources 129, 62–67 (2004).CrossRefGoogle Scholar
  6. 6.
    V. Mehta and J. S. Cooper, Review and Analysis of PEM Fuel Cell Design and Manufacturing, J. Power Sources 114, 32–53 (2003).CrossRefGoogle Scholar
  7. 7.
    A. Hermann, T. Chaudhuri, and P. Spagnol, Bipolar Plates for PEM Fuel Cells: A Review, Int. J. Hydrogen Energ. 30, 1297–1302 (2005).CrossRefGoogle Scholar
  8. 8.
    P. L. Hentall, J. B. Lakeman, G. O. Mepsted, P. L. Adcock, and J. M. Moore, New Materials for Polymer Electrolyte Membrane Fuel Cell Current Collectors, J. Power Sources 80, 235–241 (1999).CrossRefGoogle Scholar
  9. 9.
    W. Middelman, W. Kout, B. Vogelaar, J. Lenssen, and E. de Waal, Bipolar Plates for PEM Fuel Cells, J. Power Sources 118, 44–46 (2003).CrossRefGoogle Scholar
  10. 10.
    D. P. Davies, P. L. Adcock, M. Turpin, and S. J. Rowen, Bipolar Plate Materials for Solid Polymer Fuel Cells, J. Appl. Electrochem. 30, 101–105 (2000).CrossRefGoogle Scholar
  11. 11.
    R. Hornung and G. Kappelt, Bipolar Plate Materials Development using Fe-Based Alloys for Solid Polymer Fuel Cells, J. Power Sources 72, 20–21 (1998).CrossRefGoogle Scholar
  12. 12.
    R. C. Makkus, A. H. H. Janssen, F. A. de Bruijn, and R. K. A. M. Mallant, Use of Stainless Steel for Cost Competitive Bipolar Plates in the SPFC, J. Power Sources 86, 274–282 (2000).CrossRefGoogle Scholar
  13. 13.
    H. J. Davis, Metal-Cored Bipolar Separator and End Plates for Polymer Electrolyte Membrane Electrochemical and Fuel Cells, U.S. Patent # 2003/0027028 A1.Google Scholar
  14. 14.
    M. P. Brady, K. Weisbrod, I. Paulauskas, R. A. Buchannan, K. L. More, H. Wang, M. Wilson, F. Garzon, and L. R. Walker, Preferential Thermal Nitridation to Form Pin-Hole Free Cr-Nitrides to Protect Proton Exchange Membrane Fuel Cell Metallic Bipolar Plates, Scripta Mater. 50, 1017–1022 (2004).CrossRefGoogle Scholar
  15. 15.
    M. P. Brady, K. Weisbrod, C. Zawodzinski, I. Paulauskas, R. A. Buchannan, and L. R. Walker, Assessment of Thermal Nitridation to Protect Metal Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells, Electrochem. Solid-State Lett. 5 (11), A245–A247 (2002).CrossRefGoogle Scholar
  16. 16.
    C. Del Rio, M. C. Ojeda, J. L. Acosta, M. J. Escudero, E. Hontanon, and L. Daza, New Polymer Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells: Synthesis and Characterization, J. Appl. Polym. Sci. 83 (13), 2817–2822 (2002).CrossRefGoogle Scholar
  17. 17.
    G. Marsh, Fuel Cell Materials, Mater. Today 4 (2), 20–24 (2001).CrossRefGoogle Scholar
  18. 18.
    F. Barbir, J. Braun, and J. Neutzler, Properties of Molded Graphite Bipolar Plates for PEM Fuel Cell Stacks, J. New Mater. Electrochem. Syst. 2, 197–200 (1999).Google Scholar
  19. 19.
    J. Braun, J. E. Zabriskie, Jr., J. K. Neutzler, M. Fuchs, and R. C. Gustafson, Fuel Cell Collector Plate and Method of Fabrication, US Patent # 6,180,275.Google Scholar
  20. 20.
    A. Bonnet and J.-F. Salas, Microcomposite Powder Based on Flat Graphite Particles and on a Fluoropolymer and Objects made from Same, U.S. Patent # 2004/0262584 A1.Google Scholar
  21. 21.
    C.-C. M. Ma, K. H. Chen, H. C. Kuan, S. M. Chen, M. H. Tsai, Y. Y. Yan, and F. Tsau, Preparation of Fuel Cell Composite Bipolar Plate, U.S. Patent # 2005/0001352 A1.Google Scholar
  22. 22.
    C. W. Extrand, Lyophilic Fuel Cell Component, U.S. Patent # 2005/0008919 A1.Google Scholar
  23. 23.
    K. I. Bulter, Highly Conductive Molding Compounds for Use as Fuel Cell Plates and the Resulting Products, U.S. Patent # 2003/0042468 A1.Google Scholar
  24. 24.
    M. Wu and L. Shaw, A Novel Concept of Carbon-Filled Polymer Blends for Applications of PEM Fuel Cell Bipolar Plates, Int. J. Hydrogen Energ. 30 (4), 373–380 (2005).CrossRefGoogle Scholar
  25. 25.
    M. Wu and L. Shaw, On the Improved Properties of Injection-Molded Carbon Nanotube-Filled PET/PVDF Blends, J. Power Sources 136, 37–44 (2004).CrossRefGoogle Scholar
  26. 26.
    M. Wu and L. Shaw, Electrical and Mechanical Behaviors of Carbon Nanotube-Filled Polymer Blends, J. Appl. Polym. Sci. 99, 477–488 (2006).CrossRefGoogle Scholar
  27. 27.
    K. Miyasaka, K. Watanabe, E. Jojima, H. Aida, M. Sumita, and K. Ishikawa, Electrical Conductivity of Carbon-Polymer Composites as a Function of Carbon Content, J. Mater. Sci. 17, 1610–1616 (1982).CrossRefGoogle Scholar
  28. 28.
    J. C. Grunlan, W. W. Gerberich, and L. F. Francis, Electrical and Mechanical Behavior of Carbon Black-Filled Poly(Vinyl Acetate) Latex-Based Composites, Polym. Eng. Sci. 41 (11), 1947–1962 (2001).CrossRefGoogle Scholar
  29. 29.
    J.-C. Huang, Review Carbon Black Filled Conducting Polymers and Polymer Blends, Adv. Polym. Tech. 21 (4), 299–313 (2002).CrossRefGoogle Scholar
  30. 30.
    C. Xu, Y. Agari, and M. Matsuo, Mechanical and Electric Properties of Ultra-High- Molecular Weight Polyethylene and Carbon Black Particle Blends, Polym. J. 30 (5), 372–380 (1998).CrossRefGoogle Scholar
  31. 31.
    G. Geuskens, J. L. Gielens, D. Geshef, and R. Deltour, The Electrical Conductivity of Polymer Blends Filled with Carbon-Black, Eur. Polym. 23, 993–995 (1987).CrossRefGoogle Scholar
  32. 32.
    B. G. Soares, F. Gubbels, R. Jérôme, and Ph. Teyssié, Electrical Conductivity in Carbon Black-Loaded Polystyrene-Polyisoprene Blends. Selective Localization of Carbon Black at the Interface, Polym. Bull. 35, 223–228 (1995).CrossRefGoogle Scholar
  33. 33.
    B. G. Soares, F. Gubbels, R. Jérôme, E. Vanlanthem, and R. Deltour, Electrical Conductivity of Polystyrene-Rubber Blends Loaded with Carbon Black, Rubb. Chem. Technol. 70, 60–70 (1997).Google Scholar
  34. 34.
    F. Gubbels, S. Blacher, E. Vanlanthem, R. Jérôme, R. Deltour, F. Brouers, and P. Teyssié, Design of Electrical Conductive Composites: Key Role of the Morphology on the Electrical Properties of Carbon Black Filled Polymer Blends, Macromolecules 28, 1559–1566 (1995).CrossRefGoogle Scholar
  35. 35.
    R. Tchoudakov, O. Breuer, M. Narkis, and A. Siegmann, Conductive Polymer Blends with Low Carbon Black Loading: Polypropylene/Polyamide, Polym. Eng. Sci. 36, 1336–1346 (1996).CrossRefGoogle Scholar
  36. 36.
    Ye. P. Mamunya, Morphology and Percolation Conductivity of Polymer Blends Containing Carbon Black, J. Macromol. Sci. Phys. B38, 615–622 (1999).Google Scholar
  37. 37.
    K. Cheah, G. P. Simon, and M. Forsyth, Effects of Polymer Matrix and Processing on the Conductivity of Polymer Blends, Polym. Int. 50, 27–36 (2001).CrossRefGoogle Scholar
  38. 38.
    J. G. Mallette, A. Márquez, O. Manero, and R. Castro-Rodríguez, Carbon Black Filled PET/PMMA Blends: Electrical and Morphological Studies, Polym. Eng. Sci. 40, 2272–2278 (2000).CrossRefGoogle Scholar
  39. 39.
    S. H. Foulger, Electrical Properties of Composites in the Vicinity of the Percolation Threshold, J. Appl. Polym. Sci. 72, 1573–1582 (1999).CrossRefGoogle Scholar
  40. 40.
    J. Feng and C. M. Chan, Carbon Black-filled Immiscible Blends of Poly(vinylidene fluoride) and High Density Polyethylene: Electrical Properties and Morphology, Polym. Eng. Sci. 38, 1649–1657 (1998).CrossRefGoogle Scholar
  41. 41.
    G. J. Lee, K. D. Suh, and S. S. Im, Effect of Incorporating Ethylene-Ethylacrylate Copolymer on the Positive Temperature Coefficient Characteristics of Carbon Black Filled HDPE Systems, Polym. Eng. Sci. 40, 247–255 (2000).CrossRefGoogle Scholar
  42. 42.
    M. Sumita, K. Sakata, S. Asai, K. Miyasaka, and H. Nakagawa, Dispersion of Fillers and the Electrical Conductivity of Polymer Blends Filled with Carbon Black, Polym. Bull. 25, 265–271 (1991).CrossRefGoogle Scholar
  43. 43.
    S. Wu, Polymer Interface and Adhesion (Dekker, New York, NY, 1982).Google Scholar
  44. 44.
    C. E. Scott and C. W. Macosko, Morphology Development during the Initial Stages of Polymer-Polymer Blending, Polymer 36 (3), 461–470 (1995).CrossRefGoogle Scholar
  45. 45.
    M. Evstatiev, J. M. Schultz, S. Petrovich, G. Georgiev, S. Fakirov, and K. Friedrich, In Situ Polymer/Polymer Composites from Poly(ethylene Terephthalate), Polyamide-6, and Polyamide-66 Blends, J. Appl. Polym. Sci. 67, 723–737 (1998).CrossRefGoogle Scholar
  46. 46.
    M. Castro, C. Carrot, and F. Prochazka, Experimental and Theoretical Description of Low Frequency Viscoelastic Behavior in Immiscible Polymer Blends, Polymer 45, 4095–4104 (2004).CrossRefGoogle Scholar
  47. 47.
    J. S. Hong, J. L. Kim, K. H. Ahn, and S. J. Lee, Morphology Development of PBT/PE Blends during Extrusion and Its Reflection on the Rheological Properties, J. Appl. Polym. Sci. 97, 1702–1709 (2005).CrossRefGoogle Scholar
  48. 48.
    W. Yu, C. Zhou, and Y. Xu, Rheology of Concentrated Blends with Immiscible Components, J. Polym. Sci. 43, 2534–2540 (2005).Google Scholar
  49. 49.
    H. A. Khonakdar, S. H. Jafari, A. Yavari, A. Asadinezhad, and U. Wagenknecht, Rheology, Morphology and Estimation of Interfacial Tension of LDPE/EVA and HDPE/EVA Blends, Polym. Bull. 54, 75–84 (2005).CrossRefGoogle Scholar
  50. 50.
    R. Ratnagiri and C. E. Scott, Effect of Viscosity Variation with Temperature on the Compounding Behavior of Immiscible Blends, Polym. Eng. Sci. 39 (9), 1823–1835 (1999).CrossRefGoogle Scholar
  51. 51.
    R. C. Willemse, A. Posthuma de Boer, J. van Dam, and A. D. Gotsis, Co-continuous Morphologies in Polymer Blends: the Influence of the Interfacial Tension, Polymer 40, 827–834 (1999).CrossRefGoogle Scholar
  52. 52.
    N. Marin and B. D. Favis, Co-continuous Morphology Development in Partially Miscible PMMA/PC Blends, Polymer 43, 4723–4731 (2002).CrossRefGoogle Scholar
  53. 53.
    J. Li and B. D. Favis, Characterizing Co-continuous High Density Polyethylene/Polystyrene Blends, Polymer 42, 5047–5053 (2001).CrossRefGoogle Scholar
  54. 54.
    J. K. Lee and C. D. Han, Evolution of Polymer Blend Morphology during Compounding in an Internal Mixer, Polymer 40, 6277–6296 (1999).CrossRefGoogle Scholar
  55. 55.
    C.-K. Shih, D. G. Tynan, and D. A. Denelsbeck, Rhrological Properties of Multicomponent Polymer Systems Undergoing Melting or Softening during Compounding, Polym. Eng. Sci. 31 (23), 1670–1673 (1991).CrossRefGoogle Scholar
  56. 56.
    B. D. Favis, The Effect of Processing Parameters on the Morphology of an Immiscible Binary Blend, J. Appl. Polym. Sci. 39, 285–300 (1990).CrossRefGoogle Scholar
  57. 57.
    R. C. Willemse, A. Posthuma de Boer, J. van Dam, and A. D. Gotsis, Co-continuous Morphologies in Polymer Blends: a New Model, Polymer 39 (24), 5879–5887 (1998).CrossRefGoogle Scholar
  58. 58.
    R. C. Willemse, Co-continuous Morphologies in Polymer Blends: Stability, Polymer 40, 2175–2178 (1999).CrossRefGoogle Scholar
  59. 59.
    Technical Data from Goodfellow Corporation Home Page, 2004. Available from World Wide Web:
  60. 60.
    G. Wu, C. Zhang, T. Miura, S. Asai, and M. Sumita, Electrical Characteristics of Fluorinated Carbon Black-Filled Poly(vinylidene Fluoride) Composites, J. Appl. Polym. Sci. 80 (7), 1063–1070 (2001).CrossRefGoogle Scholar
  61. 61.
    F. Bueche, Electrical Resistivity of Conducting Particles in an Insulating Matrix, J. Appl. Phys. 43 (11), 4837–4838 (1972).CrossRefGoogle Scholar
  62. 62.
    Z. Zhao, W. Yu, X. He, and X. Chen, The Conduction Mechanism of Carbon Black-Filled Poly(vinylidene Fluoride) Composite, Mater. Lett. 57, 3082–3088 (2003).CrossRefGoogle Scholar
  63. 63.
    B. D. Agarwal and L. J. Broutman, Analysis and Performance of Fiber Composites, 2nd Edition (Wiley, New York, NY, 1990).Google Scholar
  64. 64.
    L. Shaw and R. Abbaschian, On the Flow Behavior of Constrained Ductile Phases, Metall. Trans. 24A, 403–415 (1993).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Leon L. Shaw

There are no affiliations available

Personalised recommendations