Membrane and MEA Development in Polymer Electrolyte Fuel Cells

  • Panagiotis Trogadas
  • Vijay Ramani


The polymer electrolyte fuel cell (PEFC) is based on Nafion polymer membranes operating at a temperature of 80°C. The main characteristics (structure and properties) and problems of Nafion-based PEFC technology are discussed. The primary drawbacks of Nafion membranes are poor conductivity at low relative humidities (and consequently at temperatures >100°C and ambient pressure) and large crossover of methanol in direct methanol fuel cell (DMFC) applications. These drawbacks have prompted an extensive effort to improve the properties of Nafion and identify alternate materials to replace Nafion. Polymer electrolyte membranes (PEMs) are classified in modified Nafion, membranes based on functionalized non-fluorinated backbones and acid-base polymer systems. Perhaps the most widely employed approach is the addition of inorganic additives to Nafion membranes to yield organic/inorganic composite membranes. Four major types of inorganic additives that have been studied (zirconium phosphates, heteropolyacids, metal hydrogen sulfates, and metal oxides) are reviewed in the following. DMFC and H2/O2 (air) cells based on modified Nafion membranes have been successfully operated at temperatures up to 120°C under ambient pressure and up to 150°C under 3–5 atm. Membranes based on functionalized non-fluorinated backbones are potentially promising for high-temperature operation. High conductivities have been obtained at temperatures up to 180°C. The final category of polymeric PEMs comprises non-functionalized polymers with basic character doped with proton-conducting acids such as phosphoric acid. The advanced features include high CO tolerance and thermal management. The advances made in the fabrication of electrodes for PEM fuel cells from the PTFE-bound catalyst layers of almost 20 years ago to the present technology are briefly discussed. There are two widely employed electrode designs: (1) PTFE-bound, and (2) thin-film electrodes. Emerging methods include those featuring catalyst layers formed with electrodeposition and vacuum deposition (sputtering). The thin-film electrodes have significantly increased performance and reduced the level of platinum loading required. Thin sputtered layers have shown promise for low catalyst loading with adequate performance. Electrodeposition methods are briefly discussed. Finally, the relationship between MEA processing and the durability of the membrane/electrode interface and hence the fuel cell as a whole is presented.


Fuel Cell Composite Membrane Catalyst Layer Proton Exchange Membrane Fuel Cell Direct Methanol Fuel Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Blomen, L. J. M. J., and Mugerwa, M. N., 1993, Fuel Cell Systems, Plenum Press, New York, pp. 493–530.Google Scholar
  2. 2.
    Prater, K. B., 1994, Polymer electrolyte fuel cells: a review of recent developments, J. Power Sources 51: 129–144.CrossRefGoogle Scholar
  3. 3.
    Liebhafsky, H. A., and Cairns, E. J., 1969, Fuel Cells and Fuel Batteries: A Guide to Their Research and Development, John Wiley and Sons, New York, pp. 1–692.Google Scholar
  4. 4.
    Zawodzinski, T. A., Derouin, C., Radzinski, S., Sherman, R. J., Springer, T. E., Gottesfeld, S., and Smith, V. T., 1993a, Water uptake by and transport through Nafion® 117 membranes, J. Electrochem. Soc. 140: 1041–1047.CrossRefGoogle Scholar
  5. 5.
    Zawodzinski, T. A., Lopez, C., Jestel, R., Valerio, J., Gottesfeld, S., and Davey, J., 1993b, A Comparative study of water uptake by and transport through ionomeric fuel cell membranes, J. Electrochem. Soc. 140: 1981–1985.CrossRefGoogle Scholar
  6. 6.
    Randin, J. P., 1982, Ion-containing polymers ass semisolid electrolytes in WO3-based electrochromic devices, J. Electrochem Soc. 129: 1215–1220.CrossRefGoogle Scholar
  7. 7.
    Anantaraman, A. V., and Gardner, C. L., 1996, Studies on ion-exchange membranes. Part 1. Effect of humidity on the conductivity of Nafion®, J. Electroanal. Chem. 414: 115–120.CrossRefGoogle Scholar
  8. 8.
    Zawodzinski, T. A., Neeman, M., Sellerud, T., and Gottesfeld, S., 1991, Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes, J. Phys. Chem. 95: 6040–6044.CrossRefGoogle Scholar
  9. 9.
    Sone, Y., Ekdunge, P., and Simonsson, D., 1996, Proton conductivity of Nafion® 117 as measured by a four-electrode AC impedance method, J. Electrochem. Soc. 143: 1254–1259.CrossRefGoogle Scholar
  10. 10.
    Fontanella, J. J., McLin, M. G., Wintersgill, M. C., Calame, J. P., 1993, Electrical impedance studies of acid form NAFION® membranes, Solid State Ionics 66: 1–4.CrossRefGoogle Scholar
  11. 11.
    Ludwigsson, M., Lindgren, J., and Tegenfeldt, T., 2000, FTIR study of water in cast Nafion films, Electrochim. Acta 45: 2267–2271.CrossRefGoogle Scholar
  12. 12.
    Haubold, H. G., Vad, Th., Jungbluth, H., and Hiller, P., 2001, Nano structure of NAFION: a SAXS study, Electrochim. Acta 46: 1559–1563.CrossRefGoogle Scholar
  13. 13.
    Deng, D., Wilkie, A., Moore, R. B., and Mauritz, K. A., 1998, TGA-FTIR investigation of the thermal degradation of Nafion® and Nafion®/[silicon oxide]-based nanocomposites, Polymer 39: 5961–5972.CrossRefGoogle Scholar
  14. 14.
    Zawodzinski, T. A., Springer, T. E., Uribe, F., and Gottesfeld, S., 1993c, Characterization of polymer electrolytes for fuel cell applications, Solid State Ionics 60: 199–211.CrossRefGoogle Scholar
  15. 15.
    Rikukawa, M., Inagaki, D., Kaneko, K., Takeoka, Y., Ito, I., Kanzaki, Y., and Sanui, K., 2005, Proton conductivity of smart membranes based on hydrocarbon polymers having phosphoric acid groups, J. Molecular Structure 739: 153–161.CrossRefGoogle Scholar
  16. 16.
    Eisenberg, A., 1970, Clustering of ions in organic polymers. A theoretical approach, Macromolecules 3: 147–154.CrossRefGoogle Scholar
  17. 17.
    Hsu, W. Y., and Gierke, T. D., 1982, Elastic theory for ionic clustering in perfluorinated ionomers, Macromolecules 15: 101–105.CrossRefGoogle Scholar
  18. 18.
    Hsu, W. Y., and Gierke, T. D., 1983, Ion transport and clustering in nafion perfluorinated membranes, J. Membr. Sci. 13: 307–326.CrossRefGoogle Scholar
  19. 19.
    Eisenberg, A., Hird, B., and Moore, R. B., 1990, A new multiplet-cluster model for the morphology of random ionomers, Macromolecules 23: 4098–4107.CrossRefGoogle Scholar
  20. 20.
    Mauritz, K. A., and Moore, R. B., 2004, State of understanding of nafion, Chem. Rev. 104: 4535–4586.CrossRefGoogle Scholar
  21. 21.
    Moore, R. B., and Martin, C. R., 1986, Procedure for preparing solution-cast perfluorosulfonate ionomer films and membranes, Anal. Chem. 58: 2569–2570.CrossRefGoogle Scholar
  22. 22.
    Moore, R. B., and Martin, C. R., 1988, Chemical and morphological properties of solution-cast perfluorosulfonate ionomers, Macromolecules 21: 1334–1339.CrossRefGoogle Scholar
  23. 23.
    Gebel, G., Aldebert, P., and Pineri, M., 1987, Structure and related properties of solution-cast perfluorosulfonated ionomer films, Macromolecules 20: 1425–1428.CrossRefGoogle Scholar
  24. 24.
    Zook, L. A., and Leddy, J., 1996, Density and solubility of Nafion: recast, annealed, and commercial films, Anal. Chem. 68: 3793–3796.CrossRefGoogle Scholar
  25. 25.
    Costamagna, P., and Srinivasan, S., 2001, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: part I. Fundamental scientific aspects, J. Power Sources 102: 242–252.CrossRefGoogle Scholar
  26. 26.
    Li, L., Zhang, J., and Wang, Y., 2003, Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell, J. Membr. Sci. 226: 159–167.CrossRefGoogle Scholar
  27. 27.
    Alberti, G., and Casciola, M., 1997, Layered metalIV phosphonates, a large class of inorgano-organic proton conductors, Solid State Ionics 97: 177–186.CrossRefGoogle Scholar
  28. 28.
    Alberti, G., and Casciola, M., 2001, Solid state protonic conductors, present main applications and future prospects, Solid State Ionics 145: 3–16.CrossRefGoogle Scholar
  29. 29.
    Clearfield, A., and Smith, J., 1969, Crystallography and structure of alpha-zirconium bis(monohydrogen orthophosphate) monohydra, Inorg. Chem. 8: 431–436.CrossRefGoogle Scholar
  30. 30.
    Abe, Y., Li, G., Nogami, M., Kasuga, T., and Hench, L. L., 1996, Superprotonic conductors of glassy zirconium phosphates, J. Electrochem. Soc. 143: 144–147.CrossRefGoogle Scholar
  31. 31.
    Glipa, X., El Haddad, M., Jones, D. J., and Rozière, J., 1997a, Synthesis and characterisation of sulfonated polybenzimidazole: a highly conducting proton exchange polymer, Solid State Ionics 97: 323–331.CrossRefGoogle Scholar
  32. 32.
    Glipa, X., Leloup, J. M., Jones, D. J., and Roziere, J., 1997b, Enhancement of the protonic conductivity of α-zirconium phosphate by composite formation with alumina or silica, Solid state Ionics 97: 227–232.CrossRefGoogle Scholar
  33. 33.
    Alberti, G., Casciola, M., and Palombari, R., 2000, Inorgano-organic proton conducting membranes for fuel cells and sensors at medium temperatures, J. Membr. Sci. 172: 233–239.CrossRefGoogle Scholar
  34. 34.
    Nakamura, O., Ogino, I., and Kodama, T., 1981, Temperature and humidity ranges of some hydrates of high-proton-conductive dodecamolybdophosphoric acid and dodecatungstophosphoric acid crystals under an atmosphere of hydrogen or either oxygen or air, Solid State Ionics 3–4: 347–351.CrossRefGoogle Scholar
  35. 35.
    Giordano, N., Staiti, P., Hocevar, S., and Arico, A. S., 1996, High performance fuel cell based on phosphotungstic acid as proton conducting electrolyte, Electrochim. Acta 41: 397–403.CrossRefGoogle Scholar
  36. 36.
    Staiti, P., Hocevar, S., and Giordano, N., 1997, Fuel cells with H3PW12O40 29H2O as solid electrolyte, Int. J. Hydrogen Energy 22: 809–814.CrossRefGoogle Scholar
  37. 37.
    Staiti, P., Hocevar, S., and Passalacqua, E., 1997, P18 activity and stability tests in phosphotungstic acid electrolyte fuel cell, J. Power Sources 65: 281–282.CrossRefGoogle Scholar
  38. 38.
    Malhotra, S., and Datta, R., 1997, Membrane-supported nonvolatile acidic electrolytes allow higher temperature operation of proton-exchange membrane fuel cells, J. Electrochem. Soc. 144: L23–L26.CrossRefGoogle Scholar
  39. 39.
    Savadogo, O., and Tazi, B., 2000, Parameters of PEM fuel-cells based on new membranes fabricated from Nafion®, silicotungstic acid and thiophene, Electrochim. Acta 45: 4329–4339.CrossRefGoogle Scholar
  40. 40.
    Savadogo, O., and Tazi, B., 2001, Effect of various heteropolyacids (HPAs) on the characteristics of Nafion HPAS membranes and their H 2/O2 polymer electrolyte fuel cell parameters, J. New Mat. Electrochem. Syst. 4: 187–191.Google Scholar
  41. 41.
    Ramani, V., Kunz, H. R., and Fenton, J. M., 2005a, Effect of particle size reduction on the conductivity of Nafion®/phosphotungstic acid composite membranes, J. Membr. Sci. 266: 110–114.CrossRefGoogle Scholar
  42. 42.
    Ramani, V., Kunz, H. R., and Fenton, J. M., 2005b, Stabilized heteropolyacid/Nafion® composite membranes for elevated temperature/low relative humidity PEFC operation, Electrochim. Acta 50: 1181CrossRefGoogle Scholar
  43. 43.
    Baranov, A. I., Merinov, B. V., Tregubchenko, A. V., Khiznichenko, V. P., Shuvalov, L. A., and Schagina, N. M., 1989, Fast proton transport in crystals with a dynamically disordered hydrogen bond network, Solid State Ionics 36: 279–282.CrossRefGoogle Scholar
  44. 44.
    Ponomareva, V. G., Uvarov, N. F., Lavrova, G. V., and Hairetdinov, E. F., 1996, Composite protonic solid electrolytes in the CsHSO4-SiO2 system, Solid State Ionics 90: 161–166.CrossRefGoogle Scholar
  45. 45.
    Ponomareva, V. G., and Lavrova, G. V., 1998, Influence of dispersed TiO2 on protonic conductivity of CsHSO4, Solid State Ionics 106: 137–141.CrossRefGoogle Scholar
  46. 46.
    Crisholm, C. R. I., and Haile, S. M., 2000, Superprotonic behavior of Cs2 (HSO4)(H2PO4) — a new solid acid in the CsHSO4−CsH2PO4 system, Solid State Ionics 136–137: 229–241.CrossRefGoogle Scholar
  47. 47.
    Haile, S. M., Lentz, G., Kreuer, K. D., and Maier, J., 1995, Superprotonic conductivity in Cs3 (HSO4)2 (H2PO4), Solid State Ionics 77: 128–134.CrossRefGoogle Scholar
  48. 48.
    Boysen, D. A., Chrisholm, C. R. I., Haile, S. M., and Narayanan, R. S., 2000, Polymer solid acid composite membranes for fuel-cell applications, J. Electrochem. Soc. 147: 3610–3613.CrossRefGoogle Scholar
  49. 49.
    Bauer, F., and Willert-Porada, M., 2004, Microstructural characterization of Zr-phosphate—Nafion® membranes for direct methanol fuel cell (DMFC) applications, J. Membr. Sci. 233: 141–149.CrossRefGoogle Scholar
  50. 50.
    Datta, R., Jalani, N. H., and Dunn, K., 2005, Synthesis and characterization of Nafion-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells, Electrochim. Acta 51: 553–560.CrossRefGoogle Scholar
  51. 51.
    Watanabe, M., Uchida, H., Seki, Y., and Emori, M., 1998, Polymer electrolyte membranes incorporated with nanometer-size particles of pt and/or metal-oxides: experimental analysis of the self-humidification and suppression of gas-crossover in fuel cells, J. Phys. Chem. B 102: 3129–3137.CrossRefGoogle Scholar
  52. 52.
    Adjemian, K. T., Lee, S. J., Srinivasan, S., Benziger, J., and Bocarsly, A. B., 2002, Silicon oxide nafion composite membranes for proton-exchange membrane fuel cell operation at 80–140°C, J. Electrochem. Soc. 149: A256–A261.CrossRefGoogle Scholar
  53. 53.
    Mauritz, K. A., 1998, Organic-inorganic hybrid materials: perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides, Mater. Sci. Eng. C 6: 121–133.CrossRefGoogle Scholar
  54. 54.
    Mauritz, K. A., and Warren, R. M., 1989, Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction. 1. Infrared spectroscopic studies, Macromolecules 22: 1730–1734.CrossRefGoogle Scholar
  55. 55.
    Stefanithis, I. D., and Mauritz, K. A., 1990, Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction. 3. Thermal analysis studies, Macromolecules 23: 2397–2402.CrossRefGoogle Scholar
  56. 56.
    Klein, L. C., Daiko, Y., Aparicio, M., and Damay, F., 2005, Methods for modifying proton exchange membranes using the sol-gel process, Polymer 46: 4504–4509.CrossRefGoogle Scholar
  57. 57.
    Deng, Q., Hu, Y., Moore, R. B., McCormick, C. L., and Mauritz, K. A., 1997, Nafion/ORMOSIL Hybrids via in situ sol-gel reactions. 3. Pyrene fluorescence probe investigations of nanoscale environment, Chem. Mater. 9: 36–44.CrossRefGoogle Scholar
  58. 58.
    Zoppi, R. A., Yoshida, I. V. P., and Nunes, S. P., 1997, Hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol-gel reaction from solution: morphology and thermal analysis, Polymer 39: 1309–1315.CrossRefGoogle Scholar
  59. 59.
    Zoppi, R. A., and Nunes, S. P., 1998, Electrochemical impedance studies of hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol-gel reaction from solution, J. Electroanal. Chem. 445: 39–45.CrossRefGoogle Scholar
  60. 60.
    Harmer, M. A., Farneth, W. E., and Sun, Q., 1996, High surface area Nafion® resin/silica nanocomposites: a new class of solid acid catalyst. J. Am. Chem. Soc. 118: 7708–7715.CrossRefGoogle Scholar
  61. 61.
    Sun, Q., Farneth, W. E., and Harmer, M. A., 1996, Dimerization of α-methylstyrene (AMS) catalyzed by sulfonic acid resins: a quantitative kinetic study, J Catal. 164: 62–69.CrossRefGoogle Scholar
  62. 62.
    Doyle, M., and Rajendran, G., Perfluorinated membranes, 2003, in: Handbook of Fuel Cells, Volume 3, W. Vielstichm, A. Lamm,and H. A. Gasteiger, eds., John Wiley & Sons Ltd., New York, pp. 351–395.Google Scholar
  63. 63.
    Frotts, S. D., Gervasio, D., Zeller, R. L., and Savinell, R. F., 1991, Investigation of H2 gas transport in recast Nafion films coated on platinum in hydrogen saturated 85% phosphoric acid, J. Electrochem. Soc. 138: 3345–3349.CrossRefGoogle Scholar
  64. 64.
    Heinzel, A., and Barragan, V. M., 1999, A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells, J. Power Sources 84: 70–74.CrossRefGoogle Scholar
  65. 65.
    Bibler, N. E., and Orebaugh, E. G., 1976, Iron-catalyzed dissolution of polystyrenesulfonate cation-exchange resin in hydrogen peroxide, Ind. Eng. Chem. Prod. Res. Dev. 15: 136–138.CrossRefGoogle Scholar
  66. 66.
    Lufrano, F., Gatto, I., Staiti, P., Antonucci, V., and Passalacqua, E., 2001, Sulfonated polysulfone ionomer membranes for fuel cells, Solid State Ionics 145: 47–51.CrossRefGoogle Scholar
  67. 67.
    Wang, F., Hickner, M., Kim, Y. S., Zawodzinski, T. A., and McGrath, J. E., 2002, Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes, J. Membr. Sci. 197: 231–242.CrossRefGoogle Scholar
  68. 68.
    Mukerjee, S., Zhang, L., and Chengsong, M., 2004, Oxygen reduction and transport characteristics at platinum and alternative proton conducting membrane interface, J. Electroanal. Chem. 568: 273–291.CrossRefGoogle Scholar
  69. 69.
    McGrath, J. E., Zawodzinski, T. A., Kim, Y. S., Dong, L., and Pivovar, B. S., 2002, Processing induced morphological development in hydrated sulfonated poly(arylene ether sulfone) copolymer membranes, Polymer 44: 5729–5736.Google Scholar
  70. 70.
    McGrath, J. E., Zawodzinski, T. A., Kim, Y. S., Wang, F., Hickner, M. A., McCartney, S., Hong, Y. T., and Harrison, W., 2003, Effect of acidification treatment and morphological stability of sulfonated poly(arylene ether sulfone) copolymer proton-exchange membranes for fuel-cell use above 100°C, J. Polym. Sci., Part B: Polym. Phys. 41: 2816–2828.CrossRefGoogle Scholar
  71. 71.
    McGrath, J. E., Kim, Y. S., Hickner, M. A., Dong, L., and Pivovar, B. S., 2004a, Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: composition and morphology effects on the methanol permeability, J. Membr. Sci. 243: 317–326.CrossRefGoogle Scholar
  72. 72.
    McGrath, J. E., Sumner, M. J., Harrison, W. L., Weyers, R. M., Kim, Y. S., Riffle, J. S., Brink, A., and Brink, M. H., 2004b, Novel proton conducting sulfonated poly(arylene ether) copolymers containing aromatic nitriles, J. Membr. Sc. 239: 199–211.CrossRefGoogle Scholar
  73. 73.
    Kobayashi, T., Rikukawa, M., Sanui, K., and Ogata, N., 1998, Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1,4-phenylene), Solid State Ionics 106: 219–225.CrossRefGoogle Scholar
  74. 74.
    Xing, P., Robertson, G. P., Guiver, M. D., Mikhailenko, S. D., Wang, K., and Kaliaguine, S., 2004, Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes, J. Membr. Sci. 229: 95–106.CrossRefGoogle Scholar
  75. 75.
    Swier, S., Ramani, V., Fenton, J. M., Kunz, H. R., Shaw, M. T., and Weiss, R. A., 2005, Polymer blends based on sulfonated poly(ether ketone ketone) and poly(ether sulfone) as proton exchange membranes for fuel cells, J. Membr. Sc. 256: 122–133.Google Scholar
  76. 76.
    Yin, Y., Fang, J., Cui, Y., Tanaka, K., Kita, H., and Okamoto, K., 2003, Synthesis, proton conductivity and methanol permeability of a novel sulfonated polyimide from 3-(2′,4′-diaminophenoxy)propane sulfonic acid, Polymer 44: 4509–4518.CrossRefGoogle Scholar
  77. 77.
    Woo, Y., Oh, S., Kang, Y., and Jung, B., 2003, Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell, J. Membr. Sci. 220: 31–45.CrossRefGoogle Scholar
  78. 78.
    Genies, C., Mercier, R., Sillion, B., Cornet, N., Gebel, G., and Pineri, M., 2001, Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes, Polymer 42: 359–373.CrossRefGoogle Scholar
  79. 79.
    Gao, Y., Robertson, G. P., Guiver, M. D., Jian, X., Mikhailenko, K., and Wang, K., 2003, Sulfonation of poly(phthalazinones) with fuming sulfuric acid mixtures for proton exchange membrane materials, J. Membr. Sci. 227: 39–50.CrossRefGoogle Scholar
  80. 80.
    Jones, D. J., and Rozière, J., 2001, Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications, J. Membr. Sci. 185: 4158.CrossRefGoogle Scholar
  81. 81.
    Staiti, P., Lufrano, F., Aricò, A. S., Passalacqua, E., and Antonucci, V., 2001a, Sulfonated polybenzimidazole membranes — preparation and physico-chemical characterization, J. Membr. Sci. 188: 71–78.CrossRefGoogle Scholar
  82. 82.
    Staiti, P., Aricò, A., Baglio, V., Lufrano, F., Passalacqua, E., and Antonucci, V., 2001b, Hybrid Nafion—silica membranes doped with heteropolyacids for application in direct methanol fuel cells, Solid State Ionics 145: 101–107.CrossRefGoogle Scholar
  83. 83.
    Guo, Q., Pintauro, P. N., Tang, H., and O’Connor, S., 1999, Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes, J. Membr. Sci. 154: 175–181.CrossRefGoogle Scholar
  84. 84.
    Kreuer, K. D., 2001, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J. Membr. Sci. 185: 29–39.CrossRefGoogle Scholar
  85. 85.
    Kerres, J. A., 2001, Development of ionomer membranes for fuel cells, J. Membr. Sci., 185: 3–27.CrossRefGoogle Scholar
  86. 86.
    Alberti, G., Casciola, M., Massinelli, L., and Bauer, B., 2001, Polymeric proton conducting membranes for medium temperature fuel cells (110–160°C), J. Membr. Sci. 185: 73–81.CrossRefGoogle Scholar
  87. 87.
    Zaidi, S. M. J., Mikhailenko, S. D., Robertson, G. P., Guiver, M. D., and Kaliaguine, S., 2000, Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications, J. Membr. Sci. 173: 17–34.CrossRefGoogle Scholar
  88. 88.
    Genova-Dimitrova, P., Baradie, B., Foscallo, D., Poinsignon, C., and Sanchez, J. Y., 2001, Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid, J. Membr. Sci. 185: 59–71.CrossRefGoogle Scholar
  89. 89.
    Kim, Y., Wang, F., Hickner, M., Zawodzinski, T., and McGrath, J., 2003, Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications, J. Membr. Sci. 212: 263–282.CrossRefGoogle Scholar
  90. 90.
    Ise, M., Kreuer, K. D., and Maier, F., 1999, Electroosmotic drag in polymer electrolyte membranes: an electrophoretic NMR study, Solid State Ionics 125: 213–223.CrossRefGoogle Scholar
  91. 91.
    Yeo, R. S., 1980, Dual cohesive energy densities of perfluorosulphonic acid (Nafion) membrane, Polymer 21: 432–435.CrossRefGoogle Scholar
  92. 92.
    Florjanczyk, Z., Wielgus-Barry, E., and Poltarzewski, Z., 2001, Radiation-modified Nafion membranes for methanol fuel cells, Solid State Ionics 145: 119–126.CrossRefGoogle Scholar
  93. 93.
    Kreuer, K. D., 1996, Proton conductivity: materials and applications, Chem. Mater. 8: 610–641.CrossRefGoogle Scholar
  94. 94.
    Wainright, J. S., Litt, M. H., and Savinell, R. F., 2001, High-temperature membranes, 2003, in: Handbook of Fuel Cells, Volume 3, W. Vielstichm, A. Lamm, and H. A. Gasteiger, eds., John Wiley & Sons Ltd., New York, pp. 436–446.Google Scholar
  95. 95.
    Choi, W. C., Kim, J. D., and Woo, S. I., 2001, Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell, J. Power Sources 96: 411–414.CrossRefGoogle Scholar
  96. 96.
    Wasmus, S., and Kuever, A., 1999, Methanol oxidation and direct methanol fuel cells: a selective review, J. Electroanal. Chem. 461: 14–31.CrossRefGoogle Scholar
  97. 97.
    Li, Q., He, R., Berg, R., Hjuler, H. A., and Bjerrum, N. J., 2004, Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells, Solid State Ionics 168: 177–185.CrossRefGoogle Scholar
  98. 98.
    Frank, G., 2003, Proceedings of the 2nd European PEFC Forum, Lucerne, Switzerland; pp. 749–752.Google Scholar
  99. 99.
    Bogdanovic, B., and Schwickardi, M., 1997, Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials, J. Alloys Compd. 253–254: 1–9.CrossRefGoogle Scholar
  100. 100.
    Li, Q., He, R., Gao, J., Jensen, J. O., and Bjerrum, N. J., 2003, The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C, J. Electrochem. Soc. 150: A1599–A1605.CrossRefGoogle Scholar
  101. 101.
    Yang, C., Srinivasan, S., Arico, A. S., Creti, P., Baglio, V., and Antonucci, V., 2001, Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature, Electrochem. Solid-State Lett. 4: A31–A34.CrossRefGoogle Scholar
  102. 102.
    Kerres, J., Ullrich, A., Meier, F., and Häring, T., 1999, Synthesis and characterization of novel acid—base polymer blends for application in membrane fuel cells, Solid State Ionics 125: 243–249.CrossRefGoogle Scholar
  103. 103.
    Guo, Q., Fang, J., Watari, T., Tanaka, K., Kita, H., and Okamoto, K., 2002, Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 2. Synthesis and proton conductivity of polyimides from 9,9-Bis(4-aminophenyl)fluorene-2,7-disulfonic acid, Macromolecules 35: 6707–6713.CrossRefGoogle Scholar
  104. 104.
    Fang, J., Guo, X., Harada, S., Watari, T., Tanaka, K., Kita, H., and Okamoto, K., 2002, Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 1. Synthesis, proton conductivity, and water stability of polyimides from 4,4′-diaminodiphenyl ether-2,2′-disulfonic acid, Macromolecules 35: 9022–9028.CrossRefGoogle Scholar
  105. 105.
    Savinell, R., Yeager, E., Tryk, D., Landau, U., Wainright, J., Weng, D., Lux, K., Litt, M., and Rogers, C., 1994, A polymer electrolyte for operation at temperatures up to 200°C, J. Electrochem. Soc. 141: L46–L48.CrossRefGoogle Scholar
  106. 106.
    Wasmus, S., Valeriu, A., Mateescu, G., Tryk, D., and Savinell, R. F., 1995, Characterization of H3PO4-equilibrated Nafion® 117 membranes using 1H and 31P NMR spectroscopy, Solid State Ionics 80: 87–92.CrossRefGoogle Scholar
  107. 107.
    Wang, J., Savinell, R. F., Wainright, J., Litt, M., and Yu, H., 1996, A H 2/O 2 fuel cell using acid doped polybenzimidazole as polymer electrolyte, Electrochim. Acta 41: 193–197.CrossRefGoogle Scholar
  108. 108.
    He, R., Li, Q., Xiao, G., Bjerrum, N. J., 2003, Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors, J. Membr. Sci. 226: 169–184.CrossRefGoogle Scholar
  109. 109.
    Samms, S. R., Wasmus, S., and Savinell, R. F., 1996, Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments, J. Electrochem. Soc. 143: 1225–1232.CrossRefGoogle Scholar
  110. 110.
    Wainright, J. S., Wang, J. T., Weng, D., Savinell, R. F., and Litt, M., 1995, Acid-doped polybenzimidazoles: a new polymer electrolyte, J. Electrochem. Soc. 142: L121–L123.CrossRefGoogle Scholar
  111. 111.
    Wainright, J. S., Savinell, R. F., and Litt, M., 1997, Acid doped polybenzimidazole as a polymer electrolyte for methanol fuel cells, in: Proceedings of the Second International Symposium on New Materials for Fuel Cells and Modern Battery Systems, O. Savadogo, and P. R. Roberge, eds., Montreal, Canada pp. 808–811.Google Scholar
  112. 112.
    Benicewicz, B. C., Duke, J. R., Hoisington, M. A., and Langlois, D. A., 1998, High temperature properties of poly(styreneco-alkylmaleimide) foams prepared by high internal phase emulsion polymerization, Polymer 39: 4369–4378.CrossRefGoogle Scholar
  113. 113.
    Lobato, J., Rodrigo, M. A., Linares, J. J., and Scott, K., 2006, Effect of the catalytic ink preparation method on the performance of high temperature polymer electrolyte membrane fuel cells, J. Power Sources 157: 284–292.CrossRefGoogle Scholar
  114. 114.
    Xing, B., and Savadogo, O., 2000, Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI), Electrochem. Commun. 2: 697–702.CrossRefGoogle Scholar
  115. 115.
    Bozkurt, A., Ise, M., Kreuer, K. D., Meyer, W. H., and Wegner, G., 1999, Proton-conducting polymer electrolytes based on phosphoric acid, Solid State Ionics 125: 225–233.CrossRefGoogle Scholar
  116. 116.
    Rogriguez, D., Jegat, T., Trinquet, O., Grondin, J., and Lassegues, J. C., 1993, Proton conduction in poly (acrylamide)-acid blends, Solid State Ionics 61: 195–202.CrossRefGoogle Scholar
  117. 117.
    Stevens, J. R., and Raducha, D., 1997, Proton conducting gel/H3PO4 electrolytes, Solid State Ionics 97: 347–358.CrossRefGoogle Scholar
  118. 118.
    Pyo, M., and Bard, A. J., 1997, Scanning electrochemical microscopy. 35. Determination of diffusion coefficients and concentrations of Ru(NH3)6 3+ and methylene blue in polyacrylamide films by chronoamperometry at ultramicrodisk electrodes, Electrochim. Acta 42: 3077–3083.CrossRefGoogle Scholar
  119. 119.
    Donoso, P., Gorecki, W., Berthier, C., Defendini, F., Poinsignon, C., and Armand, M. B., 1988, NMR, conductivity and neutron scattering investigation of ionic dynamics in the anhydrous polymer protonic conductor PEO(H3PO4)x), Solid State Ionics 28–30: 969–974.CrossRefGoogle Scholar
  120. 120.
    Tanaka, R., Yamamoto, H., Shono, A., Kubo, K., and Sakurai, M., 2000, Proton conducting behavior in non-crosslinked and crosslinked polyethylenimine with excess phosphoric acid, Electrochim. Acta 45: 1385–1389.CrossRefGoogle Scholar
  121. 121.
    Cakmak, M., and Bicakci, S., 2002, Kinetics of rapid structural changes during eat setting of preoriented PEEK/PEI blend films as followed by spectral birefringence technique, Polymer 43: 2737–2746.CrossRefGoogle Scholar
  122. 122.
    Petty-Weeks, S., Zupancic, J. J., and Swedo, J. R., 1988, Proton conducting interpenetrating polymer networks, Solid State Ionics 31: 117–125.CrossRefGoogle Scholar
  123. 123.
    Wieczorek, W., and Stevens, J. R., 1996, Proton transport in polyacrylamide based hydrogels doped with H3PO4 or H2SO4, Polymer 38: 2057–2065.CrossRefGoogle Scholar
  124. 124.
    Lassegues, J. C., Grondin, J., Hernandez, M., and Maree, B., 2001, Proton conducting polymer blends and hybrid organic inorganic materials, Solid State Ionics 145: 37–45.CrossRefGoogle Scholar
  125. 125.
    Litster, S., and McLean, G., 2004, PEM fuel cell electrodes, J. Power Sources 130: 61–76.CrossRefGoogle Scholar
  126. 126.
    Ticianelli, E. A., Derouin, C. R., Redondo, A., and Srinivasan, S., 1988, Methods to advance technology of proton exchange membrane fuel cells, J. Electrochem. Soc. 135: 2209–2214.CrossRefGoogle Scholar
  127. 127.
    Murphy, O. J., Hitchens, G. D., and Manko, D. J., 1994, High power density proton-exchange membrane fuel cells, J. Power Sources 47: 353–368.CrossRefGoogle Scholar
  128. 128.
    Cheng, X., Yi, B., Han, M., Zhang, J., Qiao, Y., and Yu, J., 1999, Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells, J. Power Sources 79: 75–81.CrossRefGoogle Scholar
  129. 129.
    Lee, S. J., Mukerjee, S., McBreen, J., Rho, Y. W., Kho, Y. T., and Lee, T. H., 1998, Effects of Nafion impregnation on performances of PEMFC electrodes, Electrochim. Acta 43: 3693–3701.CrossRefGoogle Scholar
  130. 130.
    Chun, Y. G., Kim, C. S., Peck, D. H., and Shin, D. R., 1998, Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes, J. Power Sources 71: 174–178.CrossRefGoogle Scholar
  131. 131.
    Cha, S. Y., and Lee, W. M., 1999, Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of ultrathin platinum on the membrane surface, J. Electrochem. Soc. 146: 4055–4060.CrossRefGoogle Scholar
  132. 132.
    O’Hayre, R., Lee, S. J., Cha, S. W., and Prinz, F. B., 2002, A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading, J. Power Sources 109: 483–493.CrossRefGoogle Scholar
  133. 133.
    Vilambi-Reddy, N. R. K., Anderson, E. B., and Taylor, E. J., 1992, High utilization supported catalytic metal-containing gas-diffusion electrode, process for making it, and cells utilizing it, US Patent No. 5,084,144.Google Scholar
  134. 134.
    Kocha, S. S., Principles of MEA preparation, 2003, in: Handbook of Fuel Cells, Volume 3, W. Vielstichm, A. Lamm, and H. A., Gasteiger, eds., John Wiley & Sons Ltd., New York, pp. 538–565.Google Scholar
  135. 135.
    Wilson, M. S., Valerio, J. A., and Gottesfeld, S., 1995, Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers, Electrochim. Acta 40: 355–363.CrossRefGoogle Scholar
  136. 136.
    Moore, R. B., Cable, K. M., and Croley, T. L., 1992, Barriers to flow in semicrystalline ionomers. A procedure for preparing melt-processed perfluorosulfonate ionomer films and membranes, J. Membr. Sci., 75: 7–14.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Panagiotis Trogadas
    • 1
  • Vijay Ramani
  1. 1.Department of Chemical and Environmental EngineeringIllinois Institute of TechnologyChicagoUSA

Personalised recommendations