Thermal and Mechanical Properties of Fuel Cell Polymeric Membranes: Structure—Property Relationships

  • Ibnelwaleed A. Hussein
  • S. M. Javaid Zaidi


Fuel cells provide pollution-free clean energy and are extremely efficient. The most important component of fuel cell is the proton conductive membrane which transports proton from the anode to the cathode of the fuel cell, and also separates the fuel and the oxidant. Therefore, desirable properties of proton exchange membrane (PEM) include high proton conductivity, high resistance to electrons, impermeability to fuel and oxidants to avoid diffusion and leakage, long-term chemical and thermal stability, and good mechanical properties. In this chapter, effort has been made to highlight the response of thermal and mechanical properties with variation of different parameters characteristic of a typical fuel cell environment. These parameters include: water, solvent, temperature, degree of sulfonation, and filler. A detailed literature review has also been made regarding the studies conducted worldwide related to novel membrane development and property associated with these new materials. This review highlights the structure-property relationships in polymeric membranes.


Differential Scanning Calorimetry Fuel Cell Thermo Gravimetric Analysis Heat Exchange Phase Transition Temperature 


  1. 1.
    Valencia, A. R., S. Kaliaguine, and M. Bousmina, “Tensile mechanical properties of sulfonated poly(ether ether ketone) (SPEEK) and BPO4/SPEEK membranes”, J. Appl. Poly. Sci. 98 (2005) 2380–2393.CrossRefGoogle Scholar
  2. 2.
    Savadogo, O., “Emerging membranes for electrochemical systems Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications”, J. Power Sources, 127 (2004) 135–161.CrossRefGoogle Scholar
  3. 3.
    Jalani, N. H., K. Dunn, and R. Datta, “Synthesis and characterization of Nafion — MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells”, Electrochim. Acta, 51 (2005) 553–560.CrossRefGoogle Scholar
  4. 4.
    Smitha, B., S. Sridhar, and A. A. Khan, “Chitosan-sodium alginate polyion complexes as fuel cell membranes”, Eur. Polym. J., 41 (2005) 1859–1866.CrossRefGoogle Scholar
  5. 5.
    Yin, Y., S. Hayashi, O. Yamada, H. Kita, and K. Okamoto, “Branched/crosslinked sulfonated polyimide membranes for polymer electrolyte fuel cells”, Macromol. Rapid Commun., 26, 2005, 696–700.CrossRefGoogle Scholar
  6. 6.
    Yin, Y., J. Fang, Y. Cui, K. Tanaka, H. Kita, and K. Okamoto, “Synthesis, proton conductivity and methanol permeability of a novel sulfonated polyimide from 3-(2',4'-diaminophenoxy) propane sulfonic acid”, Polymer, 44 (2003) 4509–4518.CrossRefGoogle Scholar
  7. 7.
    Won, J., S. K. Chae, J. H. Kim, H. H. Park, Y. S. Kang, and H. S. Kim, “Self-assembled DNA composite membranes”, J. Membr Sci., 249 (2005) 113–117.CrossRefGoogle Scholar
  8. 8.
    Kawano, Y., Y. Wang, R. A. Palmer, and S. R. Aubuchon, “Stress-strain curves of Nafion membranes in acid and salt forms”, Polímeros, 12(2) (2002) 96–101.Google Scholar
  9. 9.
    Collier, A., H. Wang, X. Z. Yuan, J. Zhang, and D. P. Wilkinson, “Degradation of polymer electrolyte membranes”, Int. J. Hydrogen Energy, 31 (2006) 1838–1854.CrossRefGoogle Scholar
  10. 10.
    Chang, H. Y., R. Thangamuthu, and C. W. Lin, “Structure-property relationships in PEG-SiO2 based proton conducting hybrid membranes — A 29Si CP/MAS solid state NMR study”, J. Membr. Sci., 228 (2004) 217–226.CrossRefGoogle Scholar
  11. 11.
    Chikashige, Y., Y. Chikyu, K. Miyatake, and M. Watanabe, “Poly(arylene ether) ionomers containing sulfofluorenyl groups for fuel cell applications”, Macromolecules, 38 (2005) 7121–7126.CrossRefGoogle Scholar
  12. 12.
    Yasuda, T. K., M. M. Hirai, M. Nanasawa, and M. Watanabe, “Synthesis and properties of polyimide ionomers containing sulfoalkoxy and fluorenyl groups, J. Polym Sci. A: Polym. Chem, 43 (2005) 4439–4445.CrossRefGoogle Scholar
  13. 13.
    Kundu, S., L. C. Simon, M. Fowler, and S. Grot, “Mechanical properties of Nafion™ electrolytic membranes under hydrated conditions”, Polymer 46 (2005) 11707–11715.CrossRefGoogle Scholar
  14. 14.
    Ladewig, B. P., D. J. Martin, J. C. Diniz da Costa, and G. Q. Lu, “Nanocomposite Nafion/silica membranes for high power density direct methanol fuel cells”, 5th International Membrane Science and Technology Conference (IMSTEC 03) (ed. Technology, U. C. f. M. S. a.) paper 115 pp. 1–5 (Sydney NSW, Australia, 2003).Google Scholar
  15. 15.
    Rodriguez, F., “Principles of Polymer Systems”, 4th Ed., Philadelphia, PA, Taylor & Francis, 1989.Google Scholar
  16. 16.
    Kaliaguine, S., Mikhailenko, S., and S. M. J. Zaidi, “Composite electrolyte membranes for fuel cells and methods of making same”, US Patents 6, (2004) 548–716.Google Scholar
  17. 17.
    Yen, S. S., S. R. Narayanan, G. Halpert, E. Graham, and A. Yavrouian, “Polymer material for electrolytic membranes in fuel cells”, US Patents 5, (1998) 496–795.Google Scholar
  18. 18.
    Kurano, M. R., P. G. M. Kannan, A. Nadar, and T. K. Milton, III, “Composite electrolyte with crosslinking agents”, US Patents 6, (2005) 959–962.Google Scholar
  19. 19.
    Xiao, L., H. Zhang, T. Jana, E. Scanlon, R. Chen, E. W. Choe, L. S. Ramanathan, S. Yu, and B. C. Benicewicz, “Synthesis and characterization of pyridine-based of polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applications”, Fuel Cells 5(2) (2005) 287–295.CrossRefGoogle Scholar
  20. 20.
    Qing, S., W. Huang, and D. Yan, “Synthesis and characterization of thermally stable sulfonated polybenzimidazoles”, Eur. Polym. J., 41 (2005) 1589–1595.CrossRefGoogle Scholar
  21. 21.
    Xue, S. and G. Yin, “Proton exchange membranes based on modified sulfonated poly(ether ether ketone) membranes with chemically in situ polymerized polypyrrole”, Electrochem. Acta, 52 (2006) 847–853.CrossRefGoogle Scholar
  22. 22.
    Hill, M. L., Y. S. Kim, B. R. Einsla, and J. E. McGrath, “Zirconium hydrogen phosphate /disulfonated poly(arylene ether sulfone) copolymer composite membranes for proton exchange membrane fuel cells”, J. Membr. Sci., 283 (2006) 102–108.CrossRefGoogle Scholar
  23. 23.
    Smitha, B., S. Sridhar, and A. A. Khan, “Chitosan — poly(vinyl pyrrolidone) blends as membranes for direct methanol fuel cell applications”, J. Power Sources, 159 (2006) 846–854.CrossRefGoogle Scholar
  24. 24.
    Tian, S. H., D. Shu, Y. L. Chen, M. Xiao, and Y. Z. Meng, “Preparation and properties of novel sulfonated poly(phthalazinone ether ketone) based PEM for PEM fuel cell application”, J. Power Sources, 158 (2006) 88–93.CrossRefGoogle Scholar
  25. 25.
    Loyens, W., F. H. J. Maurer, and P. Jannasch, “Melt-compounded salt-containing poly(ethylene oxide)/clay nanocomposites for polymer electrolyte membrane”, Polymer, 46 (2005) 7334–7345.CrossRefGoogle Scholar
  26. 26.
    Nam, S. E., S. A. Song, S. G. Kim, S. M. Park, Y. Kang, J. W. Lee, and K. H. Lee, “Preparation of organic-inorganic nanocomposite membranes as proton exchange membranes for direct dimethyl ether fuel cell application”, Desalination, 200 (2006) 584–585.CrossRefGoogle Scholar
  27. 27.
    Su, Y. H., Y. L. Liu, Y. M. Sun, J. Y. Lai, M. D. Guiver, and Y. Gao, “Using silica nanoparticles for modifying sulfonated poly(phthalazinone ether ketone) membrane for direct methanol fuel cell: A significant improvement on cell performance”, J. Power Sources, 155 (2006) 111–117.Google Scholar
  28. 28.
    Jung, D. H., S. Y. Cho, D. H. Peck, D. R. Shin, and J. S. Kim, “Preparation and performance of a Nafion/montmorillonite nanocomposite membrane for direct methanol fuel cell”, J. Power Sources, 118 (2006) 205–211.CrossRefGoogle Scholar
  29. 29.
    Yamazaki, Y., M. Y. Jang, and T. Taniyama, “Proton conductivity of zirconium tricarboxybutylphosphonate/PBI nanocomposite membrane”, Sci. Tech. Adv. Mat., 5 (2004) 455–459.CrossRefGoogle Scholar
  30. 30.
    Chen, S. L., A. B. Bokarsly, and J. Benziger, “Nafion-layered sulfonated polysulfone fuel cell membranes”, J. Power Sources, 152 (2005) 27–33.CrossRefGoogle Scholar
  31. 31.
    Yu, J., B. Yi, D. Xing, F. Liu, Z. Shao, Y. Fu, and H. Zhang, “Degradation mechanism of polysterene sulfonic acid membrane and application of its composite membranes in fuel cells”, Phys. Chem. Chem. Phys., 5 (2003) 611–615.CrossRefGoogle Scholar
  32. 32.
    Silva, V. S., B. Ruffmann, H. Silva, A. Gallego, A. Mendes, M. Madeira, and S. P. Nunes, “Proton electrolyte membrane properties and direct methanol fuel cell performance. Characterization of hybrid sulfonated poly(ether ether ketone)/zirconium oxide membranes”, J. Power Sources, 140 (2005) 34–40.CrossRefGoogle Scholar
  33. 33.
    Zhang, X., L. P. Filho, C. Torras, and R. Gracia-Valls, “Experimental and computational study of proton and methanol permeabilities through composite membranes”, J. Power Sources, 145 (2005) 223–230.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ibnelwaleed A. Hussein
  • S. M. Javaid Zaidi

There are no affiliations available

Personalised recommendations