Skip to main content

Cytokines and Inflammatory Bowel Disease

  • Chapter
Pediatric Inflammatory Bowel Disease

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neurath, M.F., et al., Experimental granulomatous colitis in mice is abrogated by induction of TGF-beta-mediated oral tolerance. J Exp Med, 1996. 183(6): pp. 2605–16.

    Article  PubMed  CAS  Google Scholar 

  2. Reinecker, H.C., et al., Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn disease. Clin Exp Immunol, 1993. 94(1): pp. 174–81.

    Article  PubMed  CAS  Google Scholar 

  3. Camoglio, L., et al., Altered expression of interferon-gamma and interleukin-4 in inflammatory bowel disease. Inflamm Bowel Dis, 1998. 4(4): pp. 285–90.

    Article  PubMed  CAS  Google Scholar 

  4. Boirivant, M., et al., Oxazolone colitis: A murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med, 1998. 188(10): pp. 1929–39.

    Article  PubMed  CAS  Google Scholar 

  5. Shetty, A. and A. Forbes, Pharmacogenomics of response to anti-tumor necrosis factor therapy in patients with Crohn disease. Am J Pharmacogenomics, 2002. 2(4): pp. 215–21.

    Article  PubMed  CAS  Google Scholar 

  6. Strober, W., et al., Reciprocal IFN-gamma and TGF-beta responses regulate the occurrence of mucosal inflammation. Immunol Today, 1997. 18(2): pp. 61–4.

    Article  PubMed  CAS  Google Scholar 

  7. Neurath, M.F., et al., Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol, 1997. 27(7): pp. 1743–50.

    Article  PubMed  CAS  Google Scholar 

  8. Murch, S.H., et al., Serum concentrations of tumour necrosis factor alpha in childhood chronic inflammatory bowel disease. Gut, 1991. 32(8): pp. 913–7.

    Article  PubMed  CAS  Google Scholar 

  9. Reimund, J.M., et al., Mucosal inflammatory cytokine production by intestinal biopsies in patients with ulcerative colitis and Crohn disease. J Clin Immunol, 1996. 16(3): pp. 144–50.

    Article  PubMed  CAS  Google Scholar 

  10. Targan, S.R., et al., A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn disease. Crohn Disease cA2 Study Group. N Engl J Med, 1997. 337(15): pp. 1029–35.

    Article  PubMed  CAS  Google Scholar 

  11. Hanauer, S.B., et al., Maintenance infliximab for Crohn disease: the ACCENT I randomised trial. Lancet, 2002. 359(9317): pp. 1541–9.

    Article  PubMed  CAS  Google Scholar 

  12. Bruewer, M., et al., Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol, 2003. 171(11): pp. 6164–72.

    PubMed  CAS  Google Scholar 

  13. Strober, W., I.J. Fuss, and R.S. Blumberg, The immunology of mucosal models of inflammation. Annu Rev Immunol, 2002. 20: pp. 495–549.

    Article  PubMed  CAS  Google Scholar 

  14. Reinisch, W., et al., A dose escalating, placebo controlled, double blind, single dose and multidose, safety and tolerability study of fontolizumab, a humanised anti-interferon gamma antibody, in patients with moderate to severe Crohn disease. Gut, 2006. 55(8): pp. 1138–44.

    Article  PubMed  CAS  Google Scholar 

  15. Hommes, D.W., et al., Fontolizumab, a humanised anti-interferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn disease. Gut, 2006. 55(8): pp. 1131–7.

    Article  PubMed  CAS  Google Scholar 

  16. Cominelli, F. and T.T. Pizarro, Interleukin-1 and interleukin-1 receptor antagonist in inflammatory bowel disease. Aliment Pharmacol Ther, 1996. 10 Suppl 2: p. 49–53; discussion 54.

    PubMed  CAS  Google Scholar 

  17. Mahida, Y.R., K. Wu, and D.P. Jewell, Enhanced production of interleukin 1-beta by mononuclear cells isolated from mucosa with active ulcerative colitis of Crohn disease. Gut, 1989. 30(6): pp. 835–8.

    Article  PubMed  CAS  Google Scholar 

  18. Van Assche, G., et al., A pilot study on the use of the humanized anti-interleukin-2 receptor antibody daclizumab in active ulcerative colitis. Am J Gastroenterol, 2003. 98(2): pp. 369–76.

    Article  PubMed  Google Scholar 

  19. Van Assche, G., et al., Daclizumab, a humanised monoclonal antibody to the interleukin 2 receptor (CD25), for the treatment of moderately to severely active ulcerative colitis: a randomised, double blind, placebo controlled, dose ranging trial. Gut, 2006. 55(11): pp. 1568–74.

    Article  PubMed  CAS  Google Scholar 

  20. Cantor, M.J., P. Nickerson, and C.N. Bernstein, The role of cytokine gene polymorphisms in determining disease susceptibility and phenotype in inflammatory bowel disease. Am J Gastroenterol, 2005. 100(5): pp. 1134–42.

    Article  PubMed  CAS  Google Scholar 

  21. Atreya, R. and M.F. Neurath, Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer. Clin Rev Allergy Immunol, 2005. 28(3): pp. 187–96.

    Article  PubMed  CAS  Google Scholar 

  22. Ito, H., et al., A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn disease. Gastroenterology, 2004. 126(4): pp. 989–96; discussion 947.

    Article  PubMed  CAS  Google Scholar 

  23. Bouma, G. and W. Strober, The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol, 2003. 3(7): pp. 521–33.

    Article  PubMed  CAS  Google Scholar 

  24. Fuss, I.J., et al., Both IL-12p70 and IL-23 are synthesized during active Crohn disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm Bowel Dis, 2006. 12(1): pp. 9–15.

    Article  PubMed  Google Scholar 

  25. Mannon, P.J., et al., Anti-interleukin-12 antibody for active Crohn disease. N Engl J Med, 2004. 351(20): pp. 2069–79.

    Article  PubMed  CAS  Google Scholar 

  26. Fuss, I.J., et al., Anti-interleukin 12 treatment regulates apoptosis of Th1 T cells in experimental colitis in mice. Gastroenterology, 1999. 117(5): pp. 1078–88.

    Article  PubMed  CAS  Google Scholar 

  27. Harrington, L.E., et al., Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol, 2005. 6(11): pp. 1123–32.

    Article  PubMed  CAS  Google Scholar 

  28. Langrish, C.L., et al., IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med, 2005. 201(2): pp. 233–40.

    Article  PubMed  CAS  Google Scholar 

  29. Mangan, P.R., et al., Transforming growth factor-beta induces development of the T(H)17 lineage. Nature, 2006. 441(7090): pp. 231–4.

    Article  PubMed  CAS  Google Scholar 

  30. Bettelli, E., et al., Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature, 2006. 441(7090): pp. 235–8.

    Article  PubMed  CAS  Google Scholar 

  31. Duerr, R.H., et al., A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science, 2006. 314(5804): pp. 1461–3.

    Article  PubMed  CAS  Google Scholar 

  32. Hue, S., et al., Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med, 2006. 203(11): pp. 2473–83.

    Article  PubMed  CAS  Google Scholar 

  33. Fujino, S., et al., Increased expression of interleukin 17 in inflammatory bowel disease. Gut, 2003. 52(1): pp. 65–70.

    Article  PubMed  CAS  Google Scholar 

  34. Kullberg, M.C., et al., IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J Exp Med, 2006. 203(11): pp. 2485–94.

    Article  PubMed  CAS  Google Scholar 

  35. Kolls, J.K. and A. Linden, Interleukin-17 family members and inflammation. Immunity, 2004. 21(4): pp. 467–76.

    Article  PubMed  CAS  Google Scholar 

  36. Pizarro, T.T., et al., IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn disease: expression and localization in intestinal mucosal cells. J Immunol, 1999. 162(11): pp. 6829–35.

    PubMed  CAS  Google Scholar 

  37. Reuter, B.K. and T.T. Pizarro, Commentary: the role of the IL-18 system and other members of the IL-1R/TLRsuperfamily in innate mucosal immunity and the pathogenesis of inflammatory bowel disease: friend or foe?Eur J Immunol, 2004. 34(9): pp. 2347–55.

    Article  PubMed  CAS  Google Scholar 

  38. Okamura, H., et al., Regulation of interferon-gamma production by IL-12 and IL-18. Curr Opin Immunol, 1998. 10(3): pp. 259–64.

    Article  PubMed  CAS  Google Scholar 

  39. Nakanishi, K., et al., Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor Rev, 2001. 12(1): pp. 53–72.

    Article  PubMed  CAS  Google Scholar 

  40. Fuss, I.J., et al., Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest, 2004. 113(10): pp. 1490–7.

    Article  PubMed  CAS  Google Scholar 

  41. Heller, F., et al., Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology, 2005. 129(2): pp. 550–64.

    Article  PubMed  CAS  Google Scholar 

  42. Powrie, F., et al., A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med, 1996. 183(6): pp. 2669–74.

    Article  PubMed  CAS  Google Scholar 

  43. Duchmann, R. and M. Zeitz, T regulatory cell suppression of colitis: the role of TGF-beta. Gut, 2006. 55(5): pp. 604–6.

    Article  PubMed  CAS  Google Scholar 

  44. Maul, J., et al., Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology, 2005. 128(7): pp. 1868–78.

    Article  PubMed  CAS  Google Scholar 

  45. Bamias, G., et al., Proinflammatory effects of TH2 cytokines in a murine model of chronic small intestinal inflammation. Gastroenterology, 2005. 128(3): pp. 654–66.

    Article  PubMed  CAS  Google Scholar 

  46. Dohi, T., et al., T helper type-2 cells induce ileal villus atrophy, goblet ell metaplasia, and wasting disease in T cell-deficient mice. Gastroenterology, 2003. 124(3): pp. 672–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zoeten, E.F.d., J. Fuss, I. (2008). Cytokines and Inflammatory Bowel Disease. In: Mamula, P., Markowitz, J.E., Baldassano, R.N. (eds) Pediatric Inflammatory Bowel Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73481-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73481-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-73480-4

  • Online ISBN: 978-0-387-73481-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics