Cytokines and Inflammatory Bowel Disease

  • Edwin F. de Zoeten
  • Ivan J. Fuss


Inflammatory Bowel Disease Ulcerative Colitis Proinflammatory Cytokine Intestinal Inflammation Crohn Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Neurath, M.F., et al., Experimental granulomatous colitis in mice is abrogated by induction of TGF-beta-mediated oral tolerance. J Exp Med, 1996. 183(6): pp. 2605–16.PubMedCrossRefGoogle Scholar
  2. 2.
    Reinecker, H.C., et al., Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn disease. Clin Exp Immunol, 1993. 94(1): pp. 174–81.PubMedCrossRefGoogle Scholar
  3. 3.
    Camoglio, L., et al., Altered expression of interferon-gamma and interleukin-4 in inflammatory bowel disease. Inflamm Bowel Dis, 1998. 4(4): pp. 285–90.PubMedCrossRefGoogle Scholar
  4. 4.
    Boirivant, M., et al., Oxazolone colitis: A murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med, 1998. 188(10): pp. 1929–39.PubMedCrossRefGoogle Scholar
  5. 5.
    Shetty, A. and A. Forbes, Pharmacogenomics of response to anti-tumor necrosis factor therapy in patients with Crohn disease. Am J Pharmacogenomics, 2002. 2(4): pp. 215–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Strober, W., et al., Reciprocal IFN-gamma and TGF-beta responses regulate the occurrence of mucosal inflammation. Immunol Today, 1997. 18(2): pp. 61–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Neurath, M.F., et al., Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol, 1997. 27(7): pp. 1743–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Murch, S.H., et al., Serum concentrations of tumour necrosis factor alpha in childhood chronic inflammatory bowel disease. Gut, 1991. 32(8): pp. 913–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Reimund, J.M., et al., Mucosal inflammatory cytokine production by intestinal biopsies in patients with ulcerative colitis and Crohn disease. J Clin Immunol, 1996. 16(3): pp. 144–50.PubMedCrossRefGoogle Scholar
  10. 10.
    Targan, S.R., et al., A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn disease. Crohn Disease cA2 Study Group. N Engl J Med, 1997. 337(15): pp. 1029–35.PubMedCrossRefGoogle Scholar
  11. 11.
    Hanauer, S.B., et al., Maintenance infliximab for Crohn disease: the ACCENT I randomised trial. Lancet, 2002. 359(9317): pp. 1541–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Bruewer, M., et al., Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol, 2003. 171(11): pp. 6164–72.PubMedGoogle Scholar
  13. 13.
    Strober, W., I.J. Fuss, and R.S. Blumberg, The immunology of mucosal models of inflammation. Annu Rev Immunol, 2002. 20: pp. 495–549.PubMedCrossRefGoogle Scholar
  14. 14.
    Reinisch, W., et al., A dose escalating, placebo controlled, double blind, single dose and multidose, safety and tolerability study of fontolizumab, a humanised anti-interferon gamma antibody, in patients with moderate to severe Crohn disease. Gut, 2006. 55(8): pp. 1138–44.PubMedCrossRefGoogle Scholar
  15. 15.
    Hommes, D.W., et al., Fontolizumab, a humanised anti-interferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn disease. Gut, 2006. 55(8): pp. 1131–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Cominelli, F. and T.T. Pizarro, Interleukin-1 and interleukin-1 receptor antagonist in inflammatory bowel disease. Aliment Pharmacol Ther, 1996. 10 Suppl 2: p. 49–53; discussion 54.PubMedGoogle Scholar
  17. 17.
    Mahida, Y.R., K. Wu, and D.P. Jewell, Enhanced production of interleukin 1-beta by mononuclear cells isolated from mucosa with active ulcerative colitis of Crohn disease. Gut, 1989. 30(6): pp. 835–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Van Assche, G., et al., A pilot study on the use of the humanized anti-interleukin-2 receptor antibody daclizumab in active ulcerative colitis. Am J Gastroenterol, 2003. 98(2): pp. 369–76.PubMedCrossRefGoogle Scholar
  19. 19.
    Van Assche, G., et al., Daclizumab, a humanised monoclonal antibody to the interleukin 2 receptor (CD25), for the treatment of moderately to severely active ulcerative colitis: a randomised, double blind, placebo controlled, dose ranging trial. Gut, 2006. 55(11): pp. 1568–74.PubMedCrossRefGoogle Scholar
  20. 20.
    Cantor, M.J., P. Nickerson, and C.N. Bernstein, The role of cytokine gene polymorphisms in determining disease susceptibility and phenotype in inflammatory bowel disease. Am J Gastroenterol, 2005. 100(5): pp. 1134–42.PubMedCrossRefGoogle Scholar
  21. 21.
    Atreya, R. and M.F. Neurath, Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer. Clin Rev Allergy Immunol, 2005. 28(3): pp. 187–96.PubMedCrossRefGoogle Scholar
  22. 22.
    Ito, H., et al., A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn disease. Gastroenterology, 2004. 126(4): pp. 989–96; discussion 947.PubMedCrossRefGoogle Scholar
  23. 23.
    Bouma, G. and W. Strober, The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol, 2003. 3(7): pp. 521–33.PubMedCrossRefGoogle Scholar
  24. 24.
    Fuss, I.J., et al., Both IL-12p70 and IL-23 are synthesized during active Crohn disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm Bowel Dis, 2006. 12(1): pp. 9–15.PubMedCrossRefGoogle Scholar
  25. 25.
    Mannon, P.J., et al., Anti-interleukin-12 antibody for active Crohn disease. N Engl J Med, 2004. 351(20): pp. 2069–79.PubMedCrossRefGoogle Scholar
  26. 26.
    Fuss, I.J., et al., Anti-interleukin 12 treatment regulates apoptosis of Th1 T cells in experimental colitis in mice. Gastroenterology, 1999. 117(5): pp. 1078–88.PubMedCrossRefGoogle Scholar
  27. 27.
    Harrington, L.E., et al., Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol, 2005. 6(11): pp. 1123–32.PubMedCrossRefGoogle Scholar
  28. 28.
    Langrish, C.L., et al., IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med, 2005. 201(2): pp. 233–40.PubMedCrossRefGoogle Scholar
  29. 29.
    Mangan, P.R., et al., Transforming growth factor-beta induces development of the T(H)17 lineage. Nature, 2006. 441(7090): pp. 231–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Bettelli, E., et al., Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature, 2006. 441(7090): pp. 235–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Duerr, R.H., et al., A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science, 2006. 314(5804): pp. 1461–3.PubMedCrossRefGoogle Scholar
  32. 32.
    Hue, S., et al., Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med, 2006. 203(11): pp. 2473–83.PubMedCrossRefGoogle Scholar
  33. 33.
    Fujino, S., et al., Increased expression of interleukin 17 in inflammatory bowel disease. Gut, 2003. 52(1): pp. 65–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Kullberg, M.C., et al., IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J Exp Med, 2006. 203(11): pp. 2485–94.PubMedCrossRefGoogle Scholar
  35. 35.
    Kolls, J.K. and A. Linden, Interleukin-17 family members and inflammation. Immunity, 2004. 21(4): pp. 467–76.PubMedCrossRefGoogle Scholar
  36. 36.
    Pizarro, T.T., et al., IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn disease: expression and localization in intestinal mucosal cells. J Immunol, 1999. 162(11): pp. 6829–35.PubMedGoogle Scholar
  37. 37.
    Reuter, B.K. and T.T. Pizarro, Commentary: the role of the IL-18 system and other members of the IL-1R/TLRsuperfamily in innate mucosal immunity and the pathogenesis of inflammatory bowel disease: friend or foe?Eur J Immunol, 2004. 34(9): pp. 2347–55.PubMedCrossRefGoogle Scholar
  38. 38.
    Okamura, H., et al., Regulation of interferon-gamma production by IL-12 and IL-18. Curr Opin Immunol, 1998. 10(3): pp. 259–64.PubMedCrossRefGoogle Scholar
  39. 39.
    Nakanishi, K., et al., Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor Rev, 2001. 12(1): pp. 53–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Fuss, I.J., et al., Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest, 2004. 113(10): pp. 1490–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Heller, F., et al., Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology, 2005. 129(2): pp. 550–64.PubMedCrossRefGoogle Scholar
  42. 42.
    Powrie, F., et al., A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med, 1996. 183(6): pp. 2669–74.PubMedCrossRefGoogle Scholar
  43. 43.
    Duchmann, R. and M. Zeitz, T regulatory cell suppression of colitis: the role of TGF-beta. Gut, 2006. 55(5): pp. 604–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Maul, J., et al., Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology, 2005. 128(7): pp. 1868–78.PubMedCrossRefGoogle Scholar
  45. 45.
    Bamias, G., et al., Proinflammatory effects of TH2 cytokines in a murine model of chronic small intestinal inflammation. Gastroenterology, 2005. 128(3): pp. 654–66.PubMedCrossRefGoogle Scholar
  46. 46.
    Dohi, T., et al., T helper type-2 cells induce ileal villus atrophy, goblet ell metaplasia, and wasting disease in T cell-deficient mice. Gastroenterology, 2003. 124(3): pp. 672–82.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Edwin F. de Zoeten
    • 1
  • Ivan J. Fuss
  1. 1.Division of Gastroenterology, Hepatology and NutritionThe Children’s Hospital of PhiladelphiaPhiladelphia

Personalised recommendations