Bone Health Assessment in Pediatric Inflammatory Bowel Disease

  • Meena Thayu
  • Edisio Semeao
  • Mary B. Leonard


Bone Mineral Density Inflammatory Bowel Disease Fracture Risk Crohn Disease Volumetric Bone Mineral Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA 1999 A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res 14(10):1672–9.PubMedCrossRefGoogle Scholar
  2. 2.
    NIH 2000 Osteoporosis Prevention, Diagnosis, and Therapy. NIH Consensus Statement 17(1):1–36.Google Scholar
  3. 3.
    Semeao EJ, Stallings VA, Peck SN, Piccoli DA 1997 Vertebral compression fractures in pediatric patients with Crohn’s disease. Gastroenterology 112(5):1710–3.PubMedCrossRefGoogle Scholar
  4. 4.
    Lucarelli S, Borrelli O, Paganelli M, Capocaccia P, Frediani T, Ferri F, Cucchiara S 2006 Vertebral fractures and increased sensitivity to corticosteroids in a child with ulcerative colitis: successful use of pamidronate. J Pediatr Gastroenterol Nutr 43(4):533–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Thearle M, Horlick M, Bilezikian JP, Levy J, Gertner JM, Levine LS, Harbison M, Berdon W, Oberfield SE 2000 Osteoporosis: an unusual presentation of childhood Crohn’s disease. J Clin Endocrinol Metab 85(6):2122–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Sylvester FA 2004 Cracking the risk of fractures in Crohn disease. J Pediatr Gastroenterol Nutr 38(1):113–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Burnham JM, Shults J, Semeao E, Foster B, Zemel BS, Stallings VA, Leonard MB 2004 Whole body BMC in pediatric Crohn disease: independent effects of altered growth, maturation, and body composition. J Bone Miner Res 19(12):1961–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Garnero P, Darte C, Delmas PD 1999 A model to monitor the efficacy of alendronate treatment in women with osteoporosis using a biochemical marker of bone turnover. Bone 24(6):603–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Prestwood KM, Pilbeam CC, Burleson JA, Woodiel FN, Delmas PD, Deftos LJ, Raisz LG 1994 The short-term effects of conjugated estrogen on bone turnover in older women. J Clin Endocrinol Metab 79(2):366–71.PubMedCrossRefGoogle Scholar
  10. 10.
    Rudge S, Hailwood S, Horne A, Lucas J, Wu F, Cundy T 2005 Effects of once-weekly oral alendronate on bone in children on glucocorticoid treatment. Rheumatology (Oxford) 44(6):813–8.CrossRefGoogle Scholar
  11. 11.
    Baron R 2003 General Principles of Bone Biology. In: Favus M (ed.) Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 5 ed. Lippincott Williams & Wilkins, Philadelphia, pp 1–8.Google Scholar
  12. 12.
    Gilsanz V, Roe TF, Mora S, Costin G, Goodman WG 1991 Changes in vertebral bone density in black girls and white girls during childhood and puberty. N Engl J Med 325(23):1597–600.PubMedCrossRefGoogle Scholar
  13. 13.
    Gilsanz V, Kovanlikaya A, Costin G, Roe TF, Sayre J, Kaufman F 1997 Differential effect of gender on the sizes of the bones in the axial and appendicular skeletons. J Clin Endocrinol Metab 82(5):1603–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Gilsanz V, Gibbens DT, Roe TF, Carlson M, Senac MO, Boechat MI, Huang HK, Schulz EE, Libanati CR, Cann CC 1988 Vertebral bone density in children: effect of puberty. Radiology 166(3):847–50.PubMedGoogle Scholar
  15. 15.
    Han ZH, Palnitkar S, Rao DS, Nelson D, Parfitt AM 1996 Effect of ethnicity and age or menopause on the structure and geometry of iliac bone. J Bone Miner Res 11(12):1967–75.PubMedCrossRefGoogle Scholar
  16. 16.
    Seeman E 2002 Pathogenesis of bone fragility in women and men. Lancet 359:1841–50.PubMedCrossRefGoogle Scholar
  17. 17.
    Burr DB, Turner CH 2003 Biomechanics of Bone. In: Flavus MJ (ed.) Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 5 ed. Lippincott Williams & Wilkins, Philadelphia, pp 58–64.Google Scholar
  18. 18.
    Duan Y, Beck TJ, Wang XF, Seeman E 2003 Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res 18(10):1766–74.PubMedCrossRefGoogle Scholar
  19. 19.
    Duan Y, Turner CH, Kim BT, Seeman E 2001 Sexual dimorphism in vertebral fragility is more the result of gender differences in age-related bone gain than bone loss. J Bone Miner Res 16(12):2267–75.PubMedCrossRefGoogle Scholar
  20. 20.
    Garnero P, Hausherr E, Chapuy MC, Marcelli C, Grandjean H, Muller C, Cormier C, Breart G, Meunier PJ, Delmas PD 1996 Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res 11(10):1531–8.PubMedGoogle Scholar
  21. 21.
    Black DM, Bilezikian JP, Ensrud KE, Greenspan SL, Palermo L, Hue T, Lang TF, McGowan JA, Rosen CJ 2005 One year of alendronate after one year of parathyroid hormone (1–84) for osteoporosis. N Engl J Med 353(6):555–65.PubMedCrossRefGoogle Scholar
  22. 22.
    Schonau E, Rauch F 2003 Biochemical Markers of Bone Metabolism. In: Glorieux FH (ed.) Pediatric Bone: Biology and Diseases. Academic Press, San Diego, pp 339–357.Google Scholar
  23. 23.
    Szulc P, Seeman E, Delmas PD 2000 Biochemical measurements of bone turnover in children and adolescents. Osteoporos Int 11:281–94.PubMedCrossRefGoogle Scholar
  24. 24.
    Gokhale R, Favus MJ, Karrison T, Sutton MM, Rich B, Kirschner BS 1998 Bone mineral density assessment in children with inflammatory bowel disease. Gastroenterology 114(5):902–11.PubMedCrossRefGoogle Scholar
  25. 25.
    Fries W, Dinca M, Luisetto G, Peccolo F, Bottega F, Martin A 1998 Calcaneal ultrasound bone densitometry in inflammatory bowel disease–a comparison with double x-ray densitometry of the lumbar spine. American Journal of Gastroenterology 93(12):2339–44.PubMedGoogle Scholar
  26. 26.
    Pollak RD, Karmeli F, Eliakim R, Ackerman Z, Tabb K, Rachmilewitz D 1998 Femoral neck osteopenia in patients with inflammatory bowel disease. Am J Gastroenterol 93(9):1483–90.PubMedCrossRefGoogle Scholar
  27. 27.
    Bischoff SC, Herrmann A, Goke M, Manns MP, von zur Muhlen A, Brabant G 1997 Altered bone metabolism in inflammatory bowel disease. Am J Gastroenterol 92(7):1157–63.PubMedGoogle Scholar
  28. 28.
    Hyams JS, Wyzga N, Kreutzer DL, Justinich CJ, Gronowicz GA 1997 Alterations in bone metabolism in children with inflammatory bowel disease: an in vitro study. J Pediatr Gastroenterol Nutr 24(3):289–95.PubMedCrossRefGoogle Scholar
  29. 29.
    Semeao EJ, Jawad AF, Zemel BS, Neiswender KM, Piccoli DA, Stallings VA 1999 Bone mineral density in children and young adults with Crohn’s disease. Inflamm Bowel Dis 5(3):161–6.PubMedCrossRefGoogle Scholar
  30. 30.
    van Staa TP, Cooper C, Brusse LS, Leufkens H, Javaid MK, Arden NK 2003 Inflammatory bowel disease and the risk of fracture. Gastroenterology 125(6):1591–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Klaus J, Armbrecht G, Steinkamp M, Bruckel J, Rieber A, Adler G, Reinshagen M, Felsenberg D, von Tirpitz C 2002 High prevalence of osteoporotic vertebral fractures in patients with Crohn’s disease. Gut 51(5):654–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Vestergaard P, Krogh K, Rejnmark L, Laurberg S, Mosekilde L 2000 Fracture risk is increased in Crohn’s disease, but not in ulcerative colitis. Gut 46(2):176–81.PubMedCrossRefGoogle Scholar
  33. 33.
    Bernstein CN, Blanchard JF, Leslie W, Wajda A, Yu BN 2000 The incidence of fracture among patients with inflammatory bowel disease. A population-based cohort study. Ann Intern Med 133(10):795–9.PubMedGoogle Scholar
  34. 34.
    Loftus EV, Jr., Crowson CS, Sandborn WJ, Tremaine WJ, O’Fallon WM, Melton LJ, 3rd 2002 Long-term fracture risk in patients with Crohn’s disease: a population-based study in Olmsted County, Minnesota. Gastroenterology 123(2):468–75.PubMedCrossRefGoogle Scholar
  35. 35.
    Baldassano RN, Piccoli DA 1999 Inflammatory bowel disease in pediatric and adolescent patients. Gastroenterol Clin North Am 28(2):445–58.PubMedCrossRefGoogle Scholar
  36. 36.
    Hildebrand H, Karlberg J, Kristiansson B 1994 Longitudinal growth in children and adolescents with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 18(2):165–73.PubMedCrossRefGoogle Scholar
  37. 37.
    Sentongo TA, Semeao EJ, Piccoli DA, Stallings VA, Zemel BS 2000 Growth, body composition, and nutritional status in children and adolescents with Crohn’s disease. J Pediatr Gastroenterol Nutr 31(1):33–40.PubMedCrossRefGoogle Scholar
  38. 38.
    Kleinman RE, Baldassano RN, Caplan A, Griffiths AM, Heyman MB, Issenman RM, Lake AM 2004 Nutrition support for pediatric patients with inflammatory bowel disease: a clinical report of the North American Society for Pediatric Gastroenterology, Hepatology And Nutrition. J Pediatr Gastroenterol Nutr 39(1):15–27.PubMedCrossRefGoogle Scholar
  39. 39.
    von Scheven E, Gordon CM, Wypij D, Wertz M, Gallagher KT, Bachrach L 2006 Variable deficits of bone mineral despite chronic glucocorticoid therapy in pediatric patients with inflammatory diseases: a Glaser Pediatric Research Network study. J Pediatr Endocrinol Metab 19(6):821–30.Google Scholar
  40. 40.
    Pappa HM, Gordon CM, Saslowsky TM, Zholudev A, Horr B, Shih MC, Grand RJ 2006 Vitamin D status in children and young adults with inflammatory bowel disease. Pediatrics 118(5):1950–61.PubMedCrossRefGoogle Scholar
  41. 41.
    Sentongo TA, Semaeo EJ, Stettler N, Piccoli DA, Stallings VA, Zemel BS 2002 Vitamin D status in children, adolescents, and young adults with Crohn disease. Am J Clin Nutr 76(5):1077–81.PubMedGoogle Scholar
  42. 42.
    Pappa HM, Grand RJ, Gordon CM 2006 Report on the vitamin D status of adult and pediatric patients with inflammatory bowel disease and its significance for bone health and disease. Inflamm Bowel Dis 12(12):1162–1174.PubMedCrossRefGoogle Scholar
  43. 43.
    Parfitt AM 1994 The two faces of growth: benefits and risks to bone integrity. Osteoporos Int 4(6):382–98.PubMedCrossRefGoogle Scholar
  44. 44.
    Janz KF 1994 Validation of the CSA accelerometer for assessing children’s physical activity. Med Sci Sports Exerc 26(3):369–75.PubMedGoogle Scholar
  45. 45.
    Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A, Seeman E 1998 Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. Journal of Bone & Mineral Research 13(3):500–7.CrossRefGoogle Scholar
  46. 46.
    Bass SL, Saxon L, Daly RM, Turner CH, Robling AG, Seeman E, Stuckey S 2002 The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res 17(12):2274–80.PubMedCrossRefGoogle Scholar
  47. 47.
    Bass S, Pearce G, Young N, Seeman E 1994 Bone mass during growth: the effects of exercise. Exercise and mineral accrual. Acta Universitatis Carolinae - Medica 40(1–4):3–6.PubMedGoogle Scholar
  48. 48.
    Lloyd T, Petit MA, Lin HM, Beck TJ 2004 Lifestyle factors and the development of bone mass and bone strength in young women. J Pediatr 144(6):776–82.PubMedGoogle Scholar
  49. 49.
    Lloyd T, Chinchilli VM, Johnson-Rollings N, Kieselhorst K, Eggli DF, Marcus R 2000 Adult female hip bone density reflects teenage sports-exercise patterns but not teenage calcium intake. Pediatrics 106:40–4.Google Scholar
  50. 50.
    Frost HM, Schonau E 2000 The “muscle-bone unit” in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab 13(6):571–90.PubMedGoogle Scholar
  51. 51.
    Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ 2002 A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res 17(3):363–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Specker B, Binkley T 2003 Randomized trial of physical activity and calcium supplementation on bone mineral content in 3- to 5-year-old children. J Bone Miner Res 18(5):885–92.PubMedCrossRefGoogle Scholar
  53. 53.
    Burnham JM, Shults J, Semeao E, Foster BJ, Zemel BS, Stallings VA, Leonard MB 2005 Body-composition alterations consistent with cachexia in children and young adults with Crohn disease. Am J Clin Nutr 82(2):413–20.PubMedGoogle Scholar
  54. 54.
    Harpavat M, Greenspan SL, O’Brien C, Chang CC, Bowen A, Keljo DJ 2005 Altered bone mass in children at diagnosis of Crohn disease: a pilot study. J Pediatr Gastroenterol Nutr 40(3):295–300.PubMedCrossRefGoogle Scholar
  55. 55.
    Canalis E, Bilezikian JP, Angeli A, Giustina A 2004 Perspectives on glucocorticoid-induced osteoporosis. Bone 34(4):593–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Pereira RC, Delany AM, Canalis E 2002 Effects of cortisol and bone morphogenetic protein-2 on stromal cell differentiation: correlation with CCAAT-enhancer binding protein expression. Bone 30(5):685–91.PubMedCrossRefGoogle Scholar
  57. 57.
    Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC 1998 Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 102(2):274–82.PubMedCrossRefGoogle Scholar
  58. 58.
    Delany AM, Gabbitas BY, Canalis E 1995 Cortisol downregulates osteoblast alpha 1 (I) procollagen mRNA by transcriptional and posttranscriptional mechanisms. J Cell Biochem 57(3):488–94.PubMedCrossRefGoogle Scholar
  59. 59.
    Giustina A, Bussi AR, Jacobello C, Wehrenberg WB 1995 Effects of recombinant human growth hormone (GH) on bone and intermediary metabolism in patients receiving chronic glucocorticoid treatment with suppressed endogenous GH response to GH-releasing hormone. J Clin Endocrinol Metab 80(1):122–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Kwan Tat S, Padrines M, Theoleyre S, Heymann D, Fortun Y 2004 IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev 15(1):49–60.PubMedCrossRefGoogle Scholar
  61. 61.
    Dempster DW, Moonga BS, Stein LS, Horbert WR, Antakly T 1997 Glucocorticoids inhibit bone resorption by isolated rat osteoclasts by enhancing apoptosis. J Endocrinol 154(3):397–406.PubMedCrossRefGoogle Scholar
  62. 62.
    Ikeda S, Morishita Y, Tsutsumi H, Ito M, Shiraishi A, Arita S, Akahoshi S, Narusawa K, Nakamura T 2003 Reductions in bone turnover, mineral, and structure associated with mechanical properties of lumbar vertebra and femur in glucocorticoid-treated growing minipigs. Bone 33(5):779–87.PubMedCrossRefGoogle Scholar
  63. 63.
    Ortoft G, Andreassen TT, Oxlund H 1999 Growth hormone increases cortical and cancellous bone mass in young growing rats with glucocorticoid-induced osteopenia. J Bone Miner Res 14(5):710–21.PubMedCrossRefGoogle Scholar
  64. 64.
    Podolsky DK 2002 Inflammatory bowel disease. N Engl J Med 347(6):417–29.PubMedCrossRefGoogle Scholar
  65. 65.
    Itonaga I, Sabokbar A, Sun SG, Kudo O, Danks L, Ferguson D, Fujikawa Y, Athanasou NA 2004 Transforming growth factor-beta induces osteoclast formation in the absence of RANKL. Bone 34(1):57–64.PubMedCrossRefGoogle Scholar
  66. 66.
    Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA 2003 Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 32(1):1–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Kudo O, Fujikawa Y, Itonaga I, Sabokbar A, Torisu T, Athanasou NA 2002 Proinflammatory cytokine (TNFalpha/IL-1alpha) induction of human osteoclast formation. J Pathol 198(2):220–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Gilbert L, He X, Farmer P, Rubin J, Drissi H, van Wijnen AJ, Lian JB, Stein GS, Nanes MS 2002 Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J Biol Chem 277(4):2695–701.PubMedCrossRefGoogle Scholar
  69. 69.
    WHO 1994 The WHO Study Group: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis., Geneva, Switzerland.Google Scholar
  70. 70.
    Khosla S, Melton LJ, 3rd, Dekutoski MB, Achenbach SJ, Oberg AL, Riggs BL 2003 Incidence of childhood distal forearm fractures over 30 years: a population-based study. Jama 290(11):1479–85.PubMedCrossRefGoogle Scholar
  71. 71.
    Faulkner RA, Davison KS, Bailey DA, Mirwald RL, Baxter-Jones AD 2006 Size-corrected BMD decreases during peak linear growth: implications for fracture incidence during adolescence. J Bone Miner Res 21(12):1864–70.PubMedCrossRefGoogle Scholar
  72. 72.
    Chan GM, Hess M, Hollis J, Book LS 1984 Bone mineral status in childhood accidental fractures. Am J Dis Child 138(6):569–70.PubMedGoogle Scholar
  73. 73.
    Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ 1998 Bone mineral density in girls with forearm fractures. J Bone Miner Res 13(1):143–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ 2001 Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr 139(4):509–15.PubMedCrossRefGoogle Scholar
  75. 75.
    Goulding A, Jones IE, Taylor RW, Manning PJ, Williams SM 2000 More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res 15(10):2011–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Ma D, Jones G 2003 The association between bone mineral density, metacarpal morphometry, and upper limb fractures in children: a population-based case-control study. J Clin Endocrinol Metab 88(4):1486–91.PubMedCrossRefGoogle Scholar
  77. 77.
    Ma DQ, Jones G 2002 Clinical risk factors but not bone density are associated with prevalent fractures in prepubertal children. J Paediatr Child Health 38(5):497–500.PubMedCrossRefGoogle Scholar
  78. 78.
    Cook SD, Harding AF, Morgan EL, Doucet HJ, Bennett JT, O’Brien M, Thomas KA 1987 Association of bone mineral density and pediatric fractures. J Pediatr Orthop 7(4):424–7.Google Scholar
  79. 79.
    Skaggs DL, Loro ML, Pitukcheewanont P, Tolo V, Gilsanz V 2001 Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures. J Bone Miner Res 16(7):1337–42.PubMedCrossRefGoogle Scholar
  80. 80.
    Ma D, Jones G 2003 Television, computer, and video viewing; physical activity; and upper limb fracture risk in children: a population-based case control study. J Bone Miner Res 18(11):1970–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Clark EM, Ness AR, Bishop NJ, Tobias JH 2006 Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res 21(9):1489–95.PubMedCrossRefGoogle Scholar
  82. 82.
    Gafni RI, Baron J 2004 Overdiagnosis of osteoporosis in children due to misinterpretation of dual-energy x-ray absorptiometry (DEXA). J Pediatr 144(2):253–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Stephens M, Batres LA, Ng D, Baldassano R 2001 Growth failure in the child with inflammatory bowel disease. Semin Gastrointest Dis 12(4):253–62.PubMedGoogle Scholar
  84. 84.
    Carter DR, Bouxsein ML, Marcus R 1992 New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7(2):137–45.Google Scholar
  85. 85.
    Kroger H, Vainio P, Nieminen J, Kotaniemi A 1995 Comparison of different models for interpreting bone mineral density measurements using DXA and MRI technology. Bone 17(2):157–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Molgaard C, Thomsen BL, Prentice A, Cole TJ, Michaelsen KF 1997 Whole body bone mineral content in healthy children and adolescents. Arch Dis Child 76(1):9–15.PubMedGoogle Scholar
  87. 87.
    Ellis KJ, Shypailo RJ, Hardin DS, Perez MD, Motil KJ, Wong WW, Abrams SA 2001 Z score prediction model for assessment of bone mineral content in pediatric diseases. J Bone Miner Res 16(9):1658–64.PubMedCrossRefGoogle Scholar
  88. 88.
    Leonard MB, Shults J, Elliott DM, Stallings VA, Zemel BS 2004 Interpretation of whole body dual energy X-ray absorptiometry measures in children: comparison with peripheral quantitative computed tomography. Bone 34(6):1044–52.PubMedCrossRefGoogle Scholar
  89. 89.
    Kroger H, Kotaniemi A, Kroger L, Alhava E 1993 Development of bone mass and bone density of the spine and femoral neck–a prospective study of 65 children and adolescents. Bone & Mineral 23(3):171–82.Google Scholar
  90. 90.
    Kroger H, Kotaniemi A, Vainio P, Alhava E 1992 Bone densitometry of the spine and femur in children by dual-energy x-ray absorptiometry. Bone Miner 17:75–85.Google Scholar
  91. 91.
    Wren TA, Liu X, Pitukcheewanont P, Gilsanz V 2005 Bone acquisition in healthy children and adolescents: comparisons of dual-energy x-ray absorptiometry and computed tomography measures. J Clin Endocrinol Metab 90(4):1925–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Binkley TL, Specker BL, Wittig TA 2002 Centile curves for bone densitometry measurements in healthy males and females ages 5–22 yr. J Clin Densitom 5(4):343–53.Google Scholar
  93. 93.
    Hannan WJ, Tothill P, Cowen SJ, Wrate RM 1998 Whole body bone mineral content in healthy children and adolescents. Arch Dis Child 78(4):396–7.PubMedGoogle Scholar
  94. 94.
    Maynard LM, Guo SS, Chumlea WC, Roche AF, Wisemandle WA, Zeller CM, Towne B, Siervogel RM 1998 Total-body and regional bone mineral content and areal bone mineral density in children aged 8–18 y: the Fels Longitudinal Study. Am J Clin Nutr 68(5):1111–7.PubMedGoogle Scholar
  95. 95.
    van der Sluis IM, de Ridder MA, Boot AM, Krenning EP, de Muinck Keizer-Schrama SM 2002 Reference data for bone density and body composition measured with dual energy x ray absorptiometry in white children and young adults. Arch Dis Child 87(4):341–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Southard RN, Morris JD, Mahan JD, Hayes JR, Torch MA, Sommer A, Zipf WB 1991 Bone mass in healthy children: measurement with quantitative DXA. Radiology 179(3):735–8.PubMedGoogle Scholar
  97. 97.
    Henderson RC, Madsen CD 1996 Bone density in children and adolescents with cystic fibrosis. J Pediatr 128(1):28–34.PubMedCrossRefGoogle Scholar
  98. 98.
    Faulkner RA, Bailey DA, Drinkwater DT, McKay HA, Arnold C, Wilkinson AA 1996 Bone densitometry in Canadian children 8–17 years of age. Calcif Tissue Int 59(5):344–51.PubMedCrossRefGoogle Scholar
  99. 99.
    Glastre C, Braillon P, David L, Cochat P, Meunier PJ, Delmas PD 1990 Measurement of bone mineral content of the lumbar spine by dual energy x-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab 70(5):1330–3.PubMedGoogle Scholar
  100. 100.
    Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R 1991 Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 73(3):555–63.PubMedGoogle Scholar
  101. 101.
    del Rio L, Carrascosa A, Pons F, Gusinye M, Yeste D, Domenech FM 1994 Bone mineral density of the lumbar spine in white Mediterranean Spanish children and adolescents: changes related to age, sex, and puberty. Pediatr Res 35(3):362–6.PubMedGoogle Scholar
  102. 102.
    Plotkin H, Nunez M, Alvarez Filgueira ML, Zanchetta JR 1996 Lumbar spine bone density in Argentine children. Calcif Tissue Int 58(3):144–9.PubMedGoogle Scholar
  103. 103.
    Braillon PM, Cochat P 1998 Analysis of dual energy X-ray absorptiometry whole body results in children, adolescents and young adults. Appl Radiat Isot 49(5–6):623–4.PubMedCrossRefGoogle Scholar
  104. 104.
    Leonard MB, Propert KJ, Zemel BS, Stallings VA, Feldman HI 1999 Discrepancies in pediatric bone mineral density reference data: potential for misdiagnosis of osteopenia. J Pediatr 135(2 Pt 1):182–8.PubMedGoogle Scholar
  105. 105.
    Leonard MB, Feldman HI, Zemel BS, Berlin JA, Barden EM, Stallings VA 1998 Evaluation of low density spine software for the assessment of bone mineral density in children. J Bone Miner Res 13(11):1687–90.PubMedCrossRefGoogle Scholar
  106. 106.
    Gilsanz V 1998 Bone density in children: a review of the available techniques and indications. Eur J Radiol 26(2):177–82.PubMedCrossRefGoogle Scholar
  107. 107.
    Ferretti JL 1995 Perspectives of pQCT technology associated to biomechanical studies in skeletal research employing rat models. Bone 17(4 Suppl):353S–364S.PubMedGoogle Scholar
  108. 108.
    Leonard MB, Zemel BS 2002 Current concepts in pediatric bone disease. Pediatr Clin North Am 49(1):143–73.PubMedCrossRefGoogle Scholar
  109. 109.
    Walther F, Fusch C, Radke M, Beckert S, Findeisen A 2006 Osteoporosis in pediatric patients suffering from chronic inflammatory bowel disease with and without steroid treatment. J Pediatr Gastroenterol Nutr 43(1):42–51.PubMedCrossRefGoogle Scholar
  110. 110.
    Ahmed SF, Horrocks IA, Patterson T, Zaidi S, Ling SC, McGrogan P, Weaver LT 2004 Bone mineral assessment by dual energy X-ray absorptiometry in children with inflammatory bowel disease: evaluation by age or bone area. J Pediatr Gastroenterol Nutr 38(3):276–80.PubMedCrossRefGoogle Scholar
  111. 111.
    Herzog D, Bishop N, Glorieux F, Seidman EG 1998 Interpretation of bone mineral density values in pediatric Crohn’s disease. Inflamm Bowel Dis 4(4):261–7.Google Scholar
  112. 112.
    Gupta A, Paski S, Issenman R, Webber C 2004 Lumbar spine bone mineral density at diagnosis and during follow-up in children with IBD. J Clin Densitom 7(3):290–5.Google Scholar
  113. 113.
    Sylvester FA, Davis PM, Wyzga N, Hyams JS, Lerer T 2006 Are activated T cells regulators of bone metabolism in children with Crohn disease? J Pediatr 148(4):461–6.Google Scholar
  114. 114.
    Mentzel HJ, Blume J, Boettcher J, Lehmann G, Tuchscherer D, Pfeil A, Kramer A, Malich A, Kauf E, Hein G, Kaiser WA 2006 The potential of digital X-ray radiogrammetry (DXR) in the assessment of osteopenia in children with chronic inflammatory bowel disease. Pediatr Radiol 36(5):415–20.PubMedCrossRefGoogle Scholar
  115. 115.
    Bernstein CN, Leslie WD, Taback SP 2003 Bone density in a population-based cohort of premenopausal adult women with early onset inflammatory bowel disease. Am J Gastroenterol 98(5):1094–100.PubMedCrossRefGoogle Scholar
  116. 116.
    Mitchell MJ, Baz MA, Fulton MN, Lisor CF, Braith RW 2003 Resistance training prevents vertebral osteoporosis in lung transplant recipients. Transplantation 76(3):557–62.PubMedCrossRefGoogle Scholar
  117. 117.
    Cadogan J, Eastell R, Jones N, Barker ME 1997 Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. Bmj 315(7118):1255–60.PubMedGoogle Scholar
  118. 118.
    Chan GM, Hoffman K, McMurry M 1995 Effects of dairy products on bone and body composition in pubertal girls. J Pediatr 126(4):551–6.PubMedCrossRefGoogle Scholar
  119. 119.
    Johnston CC, Jr., Miller JZ, Slemenda CW, Reister TK, Hui S, Christian JC, Peacock M 1992 Calcium supplementation and increases in bone mineral density in children. N Engl J Med 327(2):82–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Lee WT, Leung SS, Wang SH, Xu YC, Zeng WP, Lau J, Oppenheimer SJ, Cheng JC 1994 Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium diet. Am J Clin Nutr 60(5):744–50.PubMedGoogle Scholar
  121. 121.
    Lloyd T, Andon MB, Rollings N, Martel JK, Landis JR, Demers LM, Eggli DF, Kieselhorst K, Kulin HE 1992 Calcium supplementation and bone mineral density in adolescent children. N Engl J Med 327:82–87.Google Scholar
  122. 122.
    Bonjour JP, Carrie AL, Ferrari S, Clavien H, Slosman D, Theintz G, Rizzoli R 1997 Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest 99(6):1287–94.PubMedGoogle Scholar
  123. 123.
    NIH 1994 NIH Consensus Development Panel on Optimal Calcium Intake. JAMA 272:1942–1948.Google Scholar
  124. 124.
    1997 Food and Nutrition Board, Institute of Medicine: Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academy Press, Washington, DC.Google Scholar
  125. 125.
    Alaimo K, McDowell MA, Briefel RR, Bischof AM, Caughman CR, Loria CM, Johnson CL 1994 Dietary intake of vitamins, minerals, and fiber of persons ages 2 months and over in the United States: Third National Health and Nutrition Examination Survey, Phase 1, 1988–91. Adv Data (258):1–28.Google Scholar
  126. 126.
    Stauffer JQ 1977 Hyperoxaluria and intestinal disease. The role of steatorrhea and dietary calcium in regulating intestinal oxalate absorption. Am J Dig Dis 22(10):921–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Worcester EM 2002 Stones from bowel disease. Endocrinol Metab Clin North Am 31(4):979–99.PubMedCrossRefGoogle Scholar
  128. 128.
    Heaney RP 2003 Long-latency deficiency disease: insights from calcium and vitamin D. Am J Clin Nutr 78(5):912–9.PubMedGoogle Scholar
  129. 129.
    Heaney RP 2004 Functional indices of vitamin D status and ramifications of vitamin D deficiency. Am J Clin Nutr 80(6 Suppl):1706S–9S.PubMedGoogle Scholar
  130. 130.
    Heaney RP, Davies KM, Chen TC, Holick MF, Barger-Lux MJ 2003 Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr 77(1):204–10.PubMedGoogle Scholar
  131. 131.
    Armas LA, Hollis BW, Heaney RP 2004 Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab 89(11):5387–91.PubMedCrossRefGoogle Scholar
  132. 132.
    Weaver CM, Fleet JC 2004 Vitamin D requirements: current and future. Am J Clin Nutr 80(6 Suppl):1735S–9S.PubMedGoogle Scholar
  133. 133.
    Calvo MS, Whiting SJ, Barton CN 2004 Vitamin D fortification in the United States and Canada: current status and data needs. Am J Clin Nutr 80(6 Suppl):1710S–6S.PubMedGoogle Scholar
  134. 134.
    Calvo MS, Whiting SJ 2003 Prevalence of vitamin D insufficiency in Canada and the United States: importance to health status and efficacy of current food fortification and dietary supplement use. Nutr Rev 61(3):107–13.PubMedCrossRefGoogle Scholar
  135. 135.
    Looker AC, Dawson-Hughes B, Calvo MS, Gunter EW, Sahyoun NR 2002 Serum 25-hydroxyvitamin D status of adolescents and adults in two seasonal subpopulations from NHANES III. Bone 30(5):771–7.PubMedCrossRefGoogle Scholar
  136. 136.
    Vieth R 1999 Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr 69(5):842–56.PubMedGoogle Scholar
  137. 137.
    Heaney RP 2000 Vitamin D: how much do we need, and how much is too much? Osteoporos Int 11(7):553–5.Google Scholar
  138. 138.
    Valentine JF, Sninsky CA 1999 Prevention and treatment of osteoporosis in patients with inflammatory bowel disease. Am J Gastroenterol 94(4):878–83.PubMedCrossRefGoogle Scholar
  139. 139.
    Rauch F, Plotkin H, Zeitlin L, Glorieux FH 2003 Bone mass, size, and density in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate therapy. J Bone Miner Res 18(4):610–4.PubMedCrossRefGoogle Scholar
  140. 140.
    Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R 1998 Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med 339(14):947–52.PubMedCrossRefGoogle Scholar
  141. 141.
    Glorieux FH 2000 Bisphosphonate therapy for severe osteogenesis imperfecta. J Pediatr Endocrinol Metab 13(2 Suppl):989–92.PubMedGoogle Scholar
  142. 142.
    Marini JC 2003 Do bisphosphonates make children’s bones better or brittle? N Engl J Med 349(5):423–6.Google Scholar
  143. 143.
    Whyte MP, Wenkert D, Clements KL, McAlister WH, Mumm S 2003 Bisphosphonate-induced osteopetrosis. N Engl J Med 349(5):457–63.PubMedCrossRefGoogle Scholar
  144. 144.
    Glorieux FH, Rauch F, Shapiro JR 2003 Bisphosphonates in children with bone diseases. N Engl J Med 349(21):2068–71; author reply 2068–71.PubMedCrossRefGoogle Scholar
  145. 145.
    Steelman J, Zeitler P 2003 Treatment of symptomatic pediatric osteoporosis with cyclic single-day intravenous pamidronate infusions. J Pediatr 142(4):417–23.PubMedCrossRefGoogle Scholar
  146. 146.
    Gandrud LM, Cheung JC, Daniels MW, Bachrach LK 2003 Low-dose intravenous pamidronate reduces fractures in childhood osteoporosis. J Pediatr Endocrinol Metab 16(6):887–92.PubMedGoogle Scholar
  147. 147.
    Cimaz R, Gattorno M, Sormani MP, Falcini F, Zulian F, Lepore L, Bardare M, Chiesa S, Corona F, Dubini A, Lenhardt A, Martini G, Masi L, Bianchi ML 2002 Changes in markers of bone turnover and inflammatory variables during alendronate therapy in pediatric patients with rheumatic diseases. J Rheumatol 29(8):1786–92.PubMedGoogle Scholar
  148. 148.
    Acott PD, Wong JA, Lang BA, Crocker JF 2005 Pamidronate treatment of pediatric fracture patients on chronic steroid therapy. Pediatr Nephrol 20(3):368–73.PubMedCrossRefGoogle Scholar
  149. 149.
    Stewart WA, Acott PD, Salisbury SR, Lang BA 2003 Bone mineral density in juvenile dermatomyositis: assessment using dual x-ray absorptiometry. Arthritis Rheum 48(8):2294–8.PubMedCrossRefGoogle Scholar
  150. 150.
    Rodd C 2001 Bisphosphonates in dialysis and transplantation patients: efficacy and safety issues. Perit Dial Int 21(3 Suppl):S256–60.PubMedGoogle Scholar
  151. 151.
    Klein GL, Wimalawansa SJ, Kulkarni G, Sherrard DJ, Sanford AP, Herndon DN 2005 The efficacy of acute administration of pamidronate on the conservation of bone mass following severe burn injury in children: a double-blind, randomized, controlled study. Osteoporos Int 16(6):631–5.PubMedCrossRefGoogle Scholar
  152. 152.
    Ringuier B, Leboucher B, Leblanc M, Troussier F, Duveau E, Audran M, Ginies JL 2004 Effect of oral biphosphonates in patients with cystic fibrosis and low bone mineral density. Arch Pediatr 11(12):1445–9.PubMedCrossRefGoogle Scholar
  153. 153.
    Hawker GA, Ridout R, Harris VA, Chase CC, Fielding LJ, Biggar WD 2005 Alendronate in the treatment of low bone mass in steroid-treated boys with Duchennes muscular dystrophy. Arch Phys Med Rehabil 86(2):284–8.PubMedCrossRefGoogle Scholar
  154. 154.
    Gordon CM 2006 Bone loss in children with Crohn disease: Evidence of “osteoimmune” alterations. J Pediatr 148(4):429–32.PubMedCrossRefGoogle Scholar
  155. 155.
    Cole JH, Scerpella TA, van der Meulen MC 2005 Fan-beam densitometry of the growing skeleton: are we measuring what we think we are? J Clin Densitom 8(1):57–64.Google Scholar
  156. 156.
    McKay HA, Petit MA, Bailey DA, Wallace WM, Schutz RW, Khan KM 2000 Analysis of proximal femur DXA scans in growing children: comparisons of different protocols for cross-sectional 8-month and 7-year longitudinal data. J Bone Miner Res 15(6):1181–8.PubMedCrossRefGoogle Scholar
  157. 157.
    Shypailo RJ, Ellis KJ 2005 Bone assessment in children: comparison of fan-beam DXA analysis. J Clin Densitom 8(4):445–53.Google Scholar
  158. 158.
    Koo WW, Hammami M, Shypailo RJ, Ellis KJ 2004 Bone and body composition measurements of small subjects: discrepancies from software for fan-beam dual energy X-ray absorptiometry. J Am Coll Nutr 23(6):647–50.PubMedGoogle Scholar
  159. 159.
    Katzman DK, Bachrach LK, Carter DR, Marcus R 1991 Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73(6):1332–9.PubMedCrossRefGoogle Scholar
  160. 160.
    Prentice A, Parsons TJ, Cole TJ 1994 Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr 60(6):837–42.PubMedGoogle Scholar
  161. 161.
    Bianchi ML, Cimaz R, Bardare M, Zulian F, Lepore L, Boncompagni A, Galbiati E, Corona F, Luisetto G, Giuntini D, Picco P, Brandi ML, Falcini F 2000 Efficacy and safety of alendronate for the treatment of osteoporosis in diffuse connective tissue diseases in children: a prospective multicenter study. Arthritis Rheum 43(9):1960–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Meena Thayu
  • Edisio Semeao
  • Mary B. Leonard
    • 1
    • 2
  1. 1.Department of PediatricsThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Department of Biostatistics and EpidemiologyUniversity of Pennsylvania School of MedicinePhiladelphia

Personalised recommendations