Genetics of Inflammatory Bowel Diseases

  • Nancy McGreal
  • Judy H. Cho


Inflammatory Bowel Disease Ulcerative Colitis Crohn Disease NOD2 Mutation Amino Acid Polymorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hugot JP, Laurent-Puig P, Gower-Rousseau C, et al. Mapping of a susceptibility locus for Crohn disease on chromosome 16. Nature 1996;379(6568):821–3.PubMedCrossRefGoogle Scholar
  2. 2.
    Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn disease. Nature 2001;411(6837):599–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn disease. Nature 2001;411(6837):603–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Duerr RH. The genetics of inflammatory bowel disease. Gastroenterology clinics of North America 2002;31(1):63–76.PubMedCrossRefGoogle Scholar
  5. 5.
    Basu D, Lopez I, Kulkarni A, Sellin JH. Impact of race and ethnicity on inflammatory bowel disease. The American Journal of Gastroenterology 2005;100(10):2254–1.PubMedCrossRefGoogle Scholar
  6. 6.
    Weinstein TA, Levine M, Pettei MJ, Gold DM, Kessler BH, Levine JJ. Age and family history at presentation of pediatric inflammatory bowel disease. Journal of pediatric gastroenterology and nutrition 2003;37(5):609–3.PubMedCrossRefGoogle Scholar
  7. 7.
    Laharie D, Debeugny S, Peeters M, et al. Inflammatory bowel disease in spouses and their offspring. Gastroenterology 2001;120(4):816–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Orholm M, Fonager K, Sorensen HT. Risk of ulcerative colitis and Crohn disease among offspring of patients with chronic inflammatory bowel disease. The American Journal of Gastroenterology 1999;94(11):3236–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Orholm M, Binder V, Sorensen TI, Rasmussen LP, Kyvik KO. Concordance of inflammatory bowel disease among Danish twins. Results of a nationwide study. Scandinavian Journal of Gastroenterology 2000;35(10):1075–1.PubMedCrossRefGoogle Scholar
  10. 10.
    Thompson NP, Driscoll R, Pounder RE, Wakefield AJ. Genetics versus environment in inflammatory bowel disease: results of a British twin study. BMJ 1996;312(7023):95–6.PubMedGoogle Scholar
  11. 11.
    Tysk C, Lindberg E, Jarnerot G, Floderus-Myrhed B. Ulcerative colitis and Crohn disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut 1988;29(7):990–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Russell RK, Satsangi J. IBD: a family affair. Best practice & research 2004;18(3):525–39.Google Scholar
  13. 13.
    Lesage S, Zouali H, Cezard JP, et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. American Journal of Human Genetics 2002;70(4):845–57.PubMedCrossRefGoogle Scholar
  14. 14.
    Pauleau AL, Murray PJ. Role of nod2 in the response of macrophages to toll-like receptor agonists. Molecular and Cellular Biology 2003;23(21):7531–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Kobayashi KS, Chamaillard M, Ogura Y, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005;307(5710):731–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Economou M, Trikalinos TA, Loizou KT, Tsianos EV, Ioannidis JP. Differential effects of NOD2 variants on Crohn disease risk and phenotype in diverse populations: a metaanalysis. The American Journal of Gastroenterology 2004;99(12):2393–04.PubMedCrossRefGoogle Scholar
  17. 17.
    Cummings JR, Jewell DP. Clinical implications of inflammatory bowel disease genetics on phenotype. Inflammatory Bowel Diseases 2005;11(1):56–1.PubMedCrossRefGoogle Scholar
  18. 18.
    Kugathasan S, Loizides A, Babusukumar U, et al. Comparative phenotypic and CARD15 mutational analysis among African American, Hispanic, and White children with Crohn disease. Inflammatory Bowel Diseases 2005;11(7):631–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Weiss B, Shamir R, Bujanover Y, et al. NOD2/CARD15 mutation analysis and genotype-phenotype correlation in Jewish pediatric patients compared with adults with Crohn disease. The Journal of Pediatrics 2004;145(2):208–2.PubMedCrossRefGoogle Scholar
  20. 20.
    Latiano A, Palmieri O, Valvano RM, et al. Contribution of IBD5 locus to clinical features of IBD patients. The American Journal of Gastroenterology 2006;101(2):318–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Noble CL, Nimmo ER, Drummond H, et al. The contribution of OCTN1/2 variants within the IBD5 locus to disease susceptibility and severity in Crohn disease. Gastroenterology 2005;129(6):1854–64.PubMedCrossRefGoogle Scholar
  22. 22.
    Yamazaki K, Takazoe M, Tanaka T, et al. Association analysis of SLC22A4, SLC22A5 and DLG5 in Japanese patients with Crohn disease. Journal of human genetics 2004;49(12):664–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Newman B, Gu X, Wintle R, et al. A risk haplotype in the Solute Carrier Family 22A4/22A5 gene cluster influences phenotypic expression of Crohn disease. Gastroenterology 2005;128(2):260–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Peltekova VD, Wintle RF, Rubin LA, et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 2004;36(5):471–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Pierik M, Yang H, Barmada MM, et al. The IBD international genetics consortium provides further evidence for linkage to IBD4 and shows gene-environment interaction. Inflamm Bowel Dis 2005;11(1):1–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Armuzzi A, Ahmad T, Ling KL, et al. Genotype-phenotype analysis of the Crohn disease susceptibility haplotype on chromosome 5q31. Gut 2003;52(8):1133–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Torok HP, Glas J, Tonenchi L, et al. Polymorphisms in the DLG5 and OCTN cation transporter genes in Crohn disease. Gut 2005;54(10):1421–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Palmieri O, Latiano A, Valvano R, et al. Variants of OCTN1–2 cation transporter genes are associated with both Crohn disease and ulcerative colitis. Alimentary Pharmacology & Therapeutics 2006;23(4):497–6.CrossRefGoogle Scholar
  29. 29.
    Russell RK, Drummond HE, Nimmo ER, et al. Analysis of the influence of OCTN1/2 variants within the IBD5 locus on disease susceptibility and growth indices in early onset inflammatory bowel disease. Gut 2006;55(8):1114–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Babusukumar U, Wang T, McGuire E, Broeckel U, Kugathasan S. Contribution of OCTN variants within the IBD5 locus to pediatric onset Crohn disease. The American Journal of Gastroenterology 2006;101(6):1354–1.PubMedCrossRefGoogle Scholar
  31. 31.
    Silverberg MS, Duerr RH, Brant SR, et al. Refined genomic localization and ethnic differences observed for the IBD5 association with Crohn disease. European Journal of Human Genetics 2007;15(3):328–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Stoll M, Corneliussen B, Costello CM, et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nature genetics 2004;36(5):476–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Buning C, Geerdts L, Fiedler T, et al. DLG5 variants in inflammatory bowel disease. The American Journal of Gastroenterology 2006;101(4):786–92.PubMedCrossRefGoogle Scholar
  34. 34.
    Ahmad T, Marshall S, Jewell D. Genotype-based phenotyping heralds a new taxonomy for inflammatory bowel disease. Current Opinion in Gastroenterology 2003;19(4):327–35.PubMedCrossRefGoogle Scholar
  35. 35.
    Stokkers PC, Reitsma PH, Tytgat GN, van Deventer SJ. HLA-DR and -DQ phenotypes in inflammatory bowel disease: a meta- analysis. Gut 1999;45(3):395–1.PubMedCrossRefGoogle Scholar
  36. 36.
    Silverberg MS, Mirea L, Bull SB, et al. A population- and family-based study of Canadian families reveals association of HLA DRB1*0103 with colonic involvement in inflammatory bowel disease. Inflammatory Bowel Diseases 2003;9(1):1–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Orchard TR, Chua CN, Ahmad T, Cheng H, Welsh KI, Jewell DP. Uveitis and erythema nodosum in inflammatory bowel disease: clinical features and the role of HLA genes. Gastroenterology 2002;123(3):714–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Orchard TR, Thiyagaraja S, Welsh KI, Wordsworth BP, Hill Gaston JS, Jewell DP. Clinical phenotype is related to HLA genotype in the peripheral arthropathies of inflammatory bowel disease. Gastroenterology 2000;118(2):274–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Yap LM, Ahmad T, Jewell DP. The contribution of HLA genes to IBD susceptibility and phenotype. Best Practice & Research 2004;18(3):577–96.Google Scholar
  40. 40.
    Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006;314(5804):1461–3.PubMedCrossRefGoogle Scholar
  41. 41.
    Van Limbergen JE, Russell RK, Nimmo ER, et al. IL23R Arg381Gln is associated with childhood onset inflammatory bowel disease in Scotland. Gut 2007.Google Scholar
  42. 42.
    Libioulle C, Louis E, Hansoul S, et al. A novel susceptibility locus for Crohn disease identified by whole genome association maps to a gene desert on chromosome 5p13.1 and modulates the level of expression of the prostaglandin receptor EP4. Plos Genetics 2007.Google Scholar
  43. 43.
    Parham C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. Journal of Immunology 2002;168(11):5699–8.Google Scholar
  44. 44.
    Hue S, Ahern P, Buonocore S, et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. The Journal of Experimental Medicine 2006;203(11):2473–83.PubMedCrossRefGoogle Scholar
  45. 45.
    Kullberg MC, Jankovic D, Feng CG, et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. The Journal of Experimental Medicine 2006;203(11):2485–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Uhlig HH, McKenzie BS, Hue S, et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 2006;25(2):309–18.PubMedCrossRefGoogle Scholar
  47. 47.
    Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. The Journal of Clinical Investigation 2006;116(5):1310–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003;421(6924):744–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Cargill M, Schrodi SJ, Chang M, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. American Journal of Human Genetics 2007;80(2):273–90.PubMedCrossRefGoogle Scholar
  50. 50.
    Mannon PJ, Fuss IJ, Mayer L, et al. Anti-interleukin-12 antibody for active Crohn disease. The New England Journal of Medicine 2004;351(20):2069–79.PubMedCrossRefGoogle Scholar
  51. 51.
    McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23-IL-17 immune pathway. Trends in immunology 2006;27(1):17–3.PubMedCrossRefGoogle Scholar
  52. 52.
    Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nature Genetics 2007;39(2):207–11.PubMedCrossRefGoogle Scholar
  53. 53.
    Rioux JD, Xavier RJ, Taylor KD, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nature Genetics 2007.Google Scholar
  54. 54.
    Kabashima K, Saji T, Murata T, et al. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. The Journal of Clinical Investigation 2002;109(7):883–93.PubMedCrossRefGoogle Scholar
  55. 55.
    Carter MJ, Di Giovine FS, Cox A, et al. The interleukin 1 receptor antagonist gene allele 2 as a predictor of pouchitis following colectomy and IPAA in ulcerative colitis. Gastroenterology 2001;121(4):805–11.PubMedCrossRefGoogle Scholar
  56. 56.
    Carter MJ, di Giovine FS, Jones S, et al. Association of the interleukin 1 receptor antagonist gene with ulcerative colitis in Northern European Caucasians. Gut 2001;48(4):461–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Craggs A, West S, Curtis A, et al. Absence of a genetic association between IL-1RN and IL-1B gene polymorphisms in ulcerative colitis and Crohn disease in multiple populations from northeast England. Scandinavian Journal of Gastroenterology 2001;36(11):1173–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Panwala CM, Jones JC, Viney JL. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. Journal of Immunology 1998;161(10):5733–44.Google Scholar
  59. 59.
    Langmann T, Moehle C, Mauerer R, et al. Loss of detoxification in inflammatory bowel disease: dysregulation of pregnane X receptor target genes. Gastroenterology 2004;127(1):26–40.PubMedCrossRefGoogle Scholar
  60. 60.
    Schwab M, Schaeffeler E, Marx C, et al. Association between the C3435T MDR1 gene polymorphism and susceptibility for ulcerative colitis. Gastroenterology 2003;124(1):26–33.PubMedCrossRefGoogle Scholar
  61. 61.
    Borm ME, van Bodegraven AA, Mulder CJ, Kraal G, Bouma G. A NFKB1 promoter polymorphism is involved in susceptibility to ulcerative colitis. International Journal of Immunogenetics 2005;32(6):401–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Achkar JP, Dassopoulos T, Silverberg MS, et al. Phenotype-stratified genetic linkage study demonstrates that IBD2 is an extensive ulcerative colitis locus. The American Journal of Gastroenterology 2006;101(3):572–80.PubMedCrossRefGoogle Scholar
  63. 63.
    Tomer G, Ceballos C, Concepcion E, Benkov KJ. NOD2/CARD15 variants are associated with lower weight at diagnosis in children with Crohn disease. The American Journal of Gastroenterology 2003;98(11):2479–84.PubMedCrossRefGoogle Scholar
  64. 64.
    Kugathasan S, Collins N, Maresso K, et al. CARD15 gene mutations and risk for early surgery in pediatric-onset Crohn disease. Clinical Gastroenterology and Hepatology 2004;2(11):1003–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Sun L, Roesler J, Rosen-Wolff A, et al. CARD15 genotype and phenotype analysis in 55 pediatric patients with Crohn disease from Saxony, Germany. Journal of Pediatric Gastroenterology and Nutrition 2003;37(4):492–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Meinzer U, Idestrom M, Alberti C, et al. Ileal involvement is age dependent in pediatric Crohn disease. Inflammatory Bowel Diseases 2005;11(7):639–44.PubMedCrossRefGoogle Scholar
  67. 67.
    Wine E, Reif SS, Leshinsky-Silver E, et al. Pediatric Crohn disease and growth retardation: the role of genotype, phenotype, and disease severity. Pediatrics 2004;114(5):1281–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Russell RK, Drummond HE, Nimmo EE, et al. Genotype-phenotype analysis in childhood-onset Crohn disease: NOD2/CARD15 variants consistently predict phenotypic characteristics of severe disease. Inflammatory Bowel Diseases 2005;11(11):955–64.PubMedCrossRefGoogle Scholar
  69. 69.
    Roesler J, Thurigen A, Sun L, et al. Influence of CARD15 mutations on disease activity and response to therapy in 65 pediatric Crohn patients from Saxony, Germany. Journal of Pediatric Gastroenterology and Nutrition 2005;41(1):27–32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nancy McGreal
  • Judy H. Cho
    • 1
  1. 1.Inflammatory Bowel Disease CenterYale UniversityNew HavenUSA

Personalised recommendations