Skip to main content

Morphological Correlates of Regeneration and Repair in the Inner Ear

  • Chapter
Hair Cell Regeneration, Repair, and Protection

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 33))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler HJ, Raphael Y (1996) New hair cells arise from supporting cell conversion in the acoustically damaged chick inner ear. Neurosci Lett 205:17–20.

    Article  PubMed  CAS  Google Scholar 

  • Adler HJ, Komeda M, Raphael Y (1997) Further evidence for supporting cell conversion in the damaged avian basilar papilla. Int J Dev Neurosci 15:375–385.

    Article  PubMed  CAS  Google Scholar 

  • Assad JA, Shepherd GM, Corey DP (1991) Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7:985–994.

    Article  PubMed  CAS  Google Scholar 

  • Avallone B, Porritiello M, Esposito D, Mutone R, Balsamo G, Marmo F (2003) Evidence for hair cell regeneration in the crista ampullaris of the lizard Podarcis sicula. Hear Res 178:79–88.

    Article  PubMed  Google Scholar 

  • Baird RA, Torres MA, Schuff NR (1993) Hair cell regeneration in the bullfrog vestibular otolith organs following aminoglycoside toxicity. Hear Res 65:164–174.

    Article  PubMed  CAS  Google Scholar 

  • Baird RA, Burton MD, Fashena DS, Naeger RA (2000) Hair cell recovery in mitotically blocked cultures of the bullfrog saccule. Proc Natl Acad Sci USA 97:11722–11729.

    Article  PubMed  CAS  Google Scholar 

  • Balak KJ, Corwin JT, Jones JE (1990) Regenerated hair cells can originate from supporting cell progeny: evidence from phototoxicity and laser ablation experiments in the lateral line system. J Neurosci 10:2502–2512.

    PubMed  CAS  Google Scholar 

  • Berggren D, Liu W, Frenz D, Van De Water T (2003) Spontaneous hair-cell renewal following gentamicin exposure in postnatal rat utricular explants. Hear Res 180:114–125.

    Article  PubMed  CAS  Google Scholar 

  • Bhave SA, Stone JS, Rubel EW, Coltrera MD (1995) Cell cycle progression in gentamicin-damaged avian cochleas. J Neurosci 15:4618–4628.

    PubMed  CAS  Google Scholar 

  • Bhave SA, Oestele EC, Coltrera MD (1998) Macrophage and microglia-like cells in the avian inner ear. J Comp Neurol 398:241–256.

    Article  PubMed  CAS  Google Scholar 

  • Bilak M, Kim J, Potashner SJ, Bohne BA, Morest DK (1997) New growth of axons in the cochlear nucleus of adult chinchillas after acoustic trauma. Exp Neurol 147:256–268.

    Article  PubMed  CAS  Google Scholar 

  • Bohne BA, Harding GW (1992) Neural regeneration in the noise-damaged chinchilla cochlea. Laryngoscope 102:693–703.

    Article  PubMed  CAS  Google Scholar 

  • Bredberg G (1968) Cellular pattern and nerve supply of the human organ of Corti. Acta Otolaryngol Suppl 236:1–135.

    Google Scholar 

  • Caveda L, Martin-Padura I, Navarro P, Breviario F, Corada M, Gulino D, Lampugnani MG, Dejana E (1996) Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin-5/VE-cadherin). J Clin Invest 98:886–893.

    Article  PubMed  CAS  Google Scholar 

  • Chardin S, Romand R (1995) Regeneration and mammalian auditory hair cells. Science 267:707–711.

    Article  PubMed  CAS  Google Scholar 

  • Chardin S, Romand R (1997) Factors modulating supernumerary hair cell production in the postnatal rat cochlea in vitro. Int J Dev Neurosci 15:497–507.

    Article  PubMed  CAS  Google Scholar 

  • Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425–1428.

    Article  PubMed  CAS  Google Scholar 

  • Clark JA, Pickles JO (1996) The effects of moderate and low levels of acoustic over-stimulation on stereocilia and their tip links in the guinea pig. Hear Res 99:119–128.

    Article  PubMed  CAS  Google Scholar 

  • Corwin JT (1981) Postembryonic production and aging in inner ear hair cells in sharks. J Comp Neurol 201:541–553.

    Article  PubMed  CAS  Google Scholar 

  • Corwin JT (1983) Postembryonic growth of the macula neglecta auditory detector in the ray, Raja clavata: continual increases in hair cell number, neural convergence, and physiological sensitivity. J Comp Neurol 217:345–356.

    Article  PubMed  CAS  Google Scholar 

  • Corwin JT (1985) Perpetual production of hair cells and maturational changes in hair cell ultrastructure accompany postembryonic growth in an amphibian ear. Proc Natl Acad Sci USA 82:3911–3915.

    Article  PubMed  CAS  Google Scholar 

  • Corwin JT, Cotanche DA (1988) Regeneration of sensory hair cells after acoustic trauma. Science 240:1772–1774.

    Article  PubMed  CAS  Google Scholar 

  • Corwin JT, Jones JE, Katayama A, Kelley MW, Warchol ME (1991) Hair cell regeneration: the identities of progenitor cells, potential triggers and instructive cues. Ciba Found Symp 160:103–120; discussion 120–130.

    PubMed  CAS  Google Scholar 

  • Cotanche DA (1987) Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma. Hear Res 30:181–195.

    Article  PubMed  CAS  Google Scholar 

  • Cotanche DA, Dopyera CE (1990) Hair cell and supporting cell response to acoustic trauma in the chick cochlea. Hear Res 46:29–40.

    Article  PubMed  CAS  Google Scholar 

  • Cotanche DA, Saunders JC, Tilney LG (1987) Hair cell damage produced by acoustic trauma in the chick cochlea. Hear Res 25:267–286.

    Article  PubMed  CAS  Google Scholar 

  • Cotanche DA, Messana EP, Ofsie MS (1995) Migration of hyaline cells into the chick basilar papilla during severe noise damage. Hear Res 91:148–159.

    Article  PubMed  CAS  Google Scholar 

  • Daudet N, Vago P, Ripoll C, Humbert G, Pujol R, Lenoir M (1998) Characterization of atypical cells in the juvenile rat organ of Corti after aminoglycoside ototoxicity. J Comp Neurol 401:145–162.

    Article  PubMed  CAS  Google Scholar 

  • Daudet N, Ripoll C, Lenoir M (2002) Transforming growth factor-alpha-induced cellular changes in organotypic cultures of juvenile, amikacin-treated rat organ of corti. J Comp Neurol 442:6–22.

    Article  PubMed  CAS  Google Scholar 

  • Davies D, Magnus C, Corwin JT (2007) Developmental changes in cell-extracellular matrix interactions limit proliferation in the mammalian inner ear. Eur J Neurosci 25:985–998.

    Article  PubMed  Google Scholar 

  • Engstrom B, Flock A, Borg E (1983) Ultrastructural studies of stereocilia in noise-exposed rabbits. Hear Res 12:251–264.

    Article  PubMed  CAS  Google Scholar 

  • Ernest S, Rauch GJ, Haffter P, Geisler R, Petit C, Nicolson T (2000) Mariner is defective in myosin VIIA: a zebrafish model for human hereditary deafness. Hum Mol Genet 9:2189–2196.

    Article  PubMed  CAS  Google Scholar 

  • Fagotto F, Gumbiner BM (1996) Cell contact-dependent signaling. Dev Biol 180:445–454.

    Article  PubMed  CAS  Google Scholar 

  • Fischer AJ, Reh TA (2000) Identification of a proliferating marginal zone of retinal progenitors in postnatal chickens. Dev Biol 220:197–210.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J, Moscona A (1978) Role of cell shape in growth control. Nature 273:345–349.

    Article  PubMed  CAS  Google Scholar 

  • Forge A (1985) Outer hair cell loss and supporting cell expansion following chronic gentamicin treatment. Hear Res 19:171–182.

    Article  PubMed  CAS  Google Scholar 

  • Forge A, Li L, Corwin JT, Nevill G (1993) Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science 259:1616–1619.

    Article  PubMed  CAS  Google Scholar 

  • Forge A, Li L, Nevill G (1998) Hair cell recovery in the vestibular sensory epithelia of mature guinea pigs. J Comp Neurol 397:69–88.

    Article  PubMed  CAS  Google Scholar 

  • Fredelius L (1988) Time sequence of degeneration pattern of the organ of Corti after acoustic overstimulation. A transmission electron microscopy study. Acta Otolaryngol 106:373–385.

    CAS  Google Scholar 

  • Fredelius L, Rask-Andersen H (1990) The role of macrophages in the disposal of degene-ration products within the organ of corti after acoustic overstimulation. Acta Otolaryngol 109:76–82.

    Article  PubMed  CAS  Google Scholar 

  • Gailit J, Clark RA (1994) Wound repair in the context of extracellular matrix. Curr Opin Cell Biol 6:717–725.

    Article  PubMed  CAS  Google Scholar 

  • Gale JE, Meyers JR, Periasamy A, Corwin JT (2002) Survival of bundleless hair cells and subsequent bundle replacement in the bullfrog’s saccule. J Neurobiol 50:81–92.

    Article  PubMed  Google Scholar 

  • Geleoc GS, Holt JR (2003) Developmental acquisition of sensory transduction in hair cells of the mouse inner ear. Nat Neurosci 6:1019–1020.

    Article  PubMed  CAS  Google Scholar 

  • Girod DA, Duckert LG, Rubel EW (1989) Possible precursors of regenerated hair cells in the avian cochlea following acoustic trauma. Hear Res 42:175–194.

    Article  PubMed  CAS  Google Scholar 

  • Gu R, Marchionni M, Corwin JT (1996) Glial growth factor enhances supporting cell proliferation in rodent vestibular epithelia cultured in isolation. Soc Neurosci Abstr 21:520.

    Google Scholar 

  • Gu R, Marchionni M, Corwin JT (1997) Age-related decreases in proliferation within isolated mammalian vestibular epithelia cultured in control and glial growth factor 2 medium. Assoc Res Otolaryngol Abstr 20:98.

    Google Scholar 

  • Gu R, Montcouquiol M, Marchionni M, Corwin JT (2007) Proliferative responses to growth factors decline rapidly during postnatal maturation of mammalian hair cell epithelia. Eur J Neurosci 25:1363–1372.

    Article  PubMed  Google Scholar 

  • Hashino E, Salvi RJ (1993) Changing spatial patterns of DNA replication in the noise-damaged chick cochlea. J Cell Sci 105 (Pt 1):23–31.

    Google Scholar 

  • Hennig AK, Cotanche DA (1998) Regeneration of cochlear efferent nerve terminals after gentamycin damage. J Neurosci 18:3282–3296.

    PubMed  CAS  Google Scholar 

  • Hirose K, Discolo CM, Keasler JR, Ransohoff R (2005) Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol 489:180–194.

    Article  PubMed  Google Scholar 

  • Huang S, Ingber DE (1999) The structural and mechanical complexity of cell-growth control. Nat Cell Biol 1:E131–138.

    Article  PubMed  CAS  Google Scholar 

  • Hume CR, Kirkegaard M, Oesterle EC (2003) ErbB expression: the mouse inner ear and maturation of the mitogenic response to heregulin. J Assoc Res Otolaryngol 4:422–443.

    Article  PubMed  Google Scholar 

  • Husbands JM, Steinberg SA, Kurian R, Saunders JC (1999) Tip-link integrity on chick tall hair cell stereocilia following intense sound exposure. Hear Res 135:135–145.

    Article  PubMed  CAS  Google Scholar 

  • Itoh M, Chitnis AB (2001) Expression of proneural and neurogenic genes in the zebrafish lateral line primordium correlates with selection of hair cell fate in neuromasts. Mech Dev 102:263–266.

    Article  PubMed  CAS  Google Scholar 

  • Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF, Brough DE, Raphael Y (2005) Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 11:271–276.

    Article  PubMed  CAS  Google Scholar 

  • Johns PR (1977) Growth of the adult goldfish eye. III. Source of the new retinal cells. J Comp Neurol 176:343–357.

    Article  PubMed  CAS  Google Scholar 

  • Johnston LA, Edgar BA (1998) Wingless and Notch regulate cell-cycle arrest in the developing Drosophila wing. Nature 394:82–84.

    Article  PubMed  CAS  Google Scholar 

  • Jones JE, Corwin JT (1993) Replacement of lateral line sensory organs during tail regeneration in salamanders: identification of progenitor cells and analysis of leukocyte activity. J Neurosci 13:1022–1034.

    PubMed  CAS  Google Scholar 

  • Jones JE, Corwin JT (1996) Regeneration of sensory cells after laser ablation in the lateral line system: hair cell lineage and macrophage behavior revealed by time-lapse video microscopy. J Neurosci 16:649–662.

    PubMed  CAS  Google Scholar 

  • J⊝rgensen JM, Mathiesen C (1988) The avian inner ear. Continuous production of hair cells in vestibular sensory organs, but not in the auditory papilla. Naturwissenschaften 75:319–320.

    Article  Google Scholar 

  • J⊝rgensen JM, Flock Å (1976) Non-innervated sense organs of the lateral line: development in the regenerating tail of the salamander Ambystoma mexicanum. J Neurocytol 5:33–41.

    Google Scholar 

  • Kaltenbach JA, Falzarano PR (1994) Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti. J Comp Neurol 340:87–97.

    Article  PubMed  CAS  Google Scholar 

  • Kaltenbach JA, Falzarano PR, Simpson TH (1994) Postnatal development of the hamster cochlea. II. Growth and differentiation of stereocilia bundles. J Comp Neurol 350:187–198.

    Article  PubMed  CAS  Google Scholar 

  • Katayama A, Corwin JT (1989) Cell production in the chicken cochlea. J Comp Neurol 281:129–135.

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto K, Ishimoto S, Minoda R, Brough DE, Raphael Y (2003) Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci 23:4395–4400.

    PubMed  CAS  Google Scholar 

  • Kelley MW, Xu XM, Wagner MA, Warchol ME, Corwin JT (1993) The developing organ of Corti contains retinoic acid and forms supernumerary hair cells in response to exogenous retinoic acid in culture. Development 119:1041–1053.

    PubMed  CAS  Google Scholar 

  • Kil J, Warchol ME, Corwin JT (1997) Cell death, cell proliferation, and estimates of hair cell life spans in the vestibular organs of chicks. Hear Res 114:117–126.

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Usui-Ishihara A, Usui K (1997) G2 arrest of cell cycle ensures a determination process of sensory mother cell formation in g. Dev Genes Evol 207:199–202.

    Article  CAS  Google Scholar 

  • Kirkegaard M, J⊝rgensen JM (2001) The inner ear macular sensory epithelia of the Daubenton’s bat. J Comp Neurol 438:433–444.

    Article  PubMed  CAS  Google Scholar 

  • Lambert PR, Gu R, Corwin JT (1997) Analysis of small hair bundles in the utricles of mature guinea pigs. Am J Otol 18:637–643.

    PubMed  CAS  Google Scholar 

  • Lanford PJ, Presson JC, Popper AN (1996) Cell proliferation and hair cell addition in the ear of the goldfish, Carassius auratus. Hear Res 100:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Lawner BE, Harding GW, Bohne BA (1997) Time course of nerve-fiber regeneration in the noise-damaged mammalian cochlea. Int J Dev Neurosci 15:601–617.

    Article  PubMed  CAS  Google Scholar 

  • Ledent V (2002) Postembryonic development of the posterior lateral line in zebrafish. Development 129:597–604.

    PubMed  CAS  Google Scholar 

  • Lefebvre PP, Malgrange B, Staecker H, Moonen G, Van de Water TR (1993) Retinoic acid stimulates regeneration of mammalian auditory hair cells. Science 260:692–695.

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre PP, Malgrange B, Thiry M, Van De Water TR, Moonen G (2000) Epidermal growth factor upregulates production of supernumerary hair cells in neonatal rat organ of corti explants. Acta Otolaryngol 120:142–145.

    Article  PubMed  CAS  Google Scholar 

  • Lenoir M, Vago P (1997) Does the organ of Corti attempt to differentiate new hair cells after antibiotic intoxication in rat pups? Int J Dev Neurosci 15:487–495.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER, Li CW (1973) Evidence concerning the morphogenesis of saccular receptors in the bullfrog (Rana catesbeiana). J Morphol 139:351–361.

    Article  PubMed  CAS  Google Scholar 

  • Li CW, Lewis ER (1979) Structure and development of vestibular hair cells in the larval bullfrog. Ann Otol Rhinol Laryngol 88:427–437.

    PubMed  CAS  Google Scholar 

  • Li H, Liu H, Heller S (2003) Pluripotent stem cells from the adult mouse inner ear. Nat Med 9:1293–1299.

    Article  PubMed  CAS  Google Scholar 

  • Li L, Forge A (1997) Morphological evidence for supporting cell to hair cell conversion in the mammalian utricular macula. Int J Dev Neurosci 15:433–446.

    Article  PubMed  CAS  Google Scholar 

  • Li L, Nevill G, Forge A (1995) Two modes of hair cell loss from the vestibular sensory epithelia of the guinea pig inner ear. J Comp Neurol 355:405–417.

    Article  PubMed  CAS  Google Scholar 

  • Lippe WR, Westbrook EW, Ryals BM (1991) Hair cell regeneration in the chicken cochlea following aminoglycoside toxicity. Hear Res 56:203–210.

    Article  PubMed  CAS  Google Scholar 

  • Lombarte A, Popper AN (1994) Quantitative analyses of postembryonic hair cell addition in the otolithic endorgans of the inner ear of the European hake, Merluccius merluccius (Gadiformes, Teleostei). J Comp Neurol 345:419–428.

    Article  PubMed  CAS  Google Scholar 

  • Lombarte A, Yan HY, Popper AN, Chang JS, Platt C (1993) Damage and regeneration of hair cell ciliary bundles in a fish ear following treatment with gentamicin. Hear Res 64:166–174.

    Article  PubMed  CAS  Google Scholar 

  • Marsh RR, Xu LR, Moy JP, Saunders JC (1990) Recovery of the basilar papilla following intense sound exposure in the chick. Hear Res 46:229–237.

    Article  PubMed  CAS  Google Scholar 

  • Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276:75–81.

    Article  PubMed  CAS  Google Scholar 

  • Matsui JI, Oesterle EC, Stone JS, Rubel EW (2000) Characterization of damage and regeneration in cultured avian utricles. J Assoc Res Otolaryngol 1:46–63.

    Article  PubMed  CAS  Google Scholar 

  • Matsui JI, Ogilvie JM, Warchol ME (2002) Inhibition of caspases prevents ototoxic and ongoing hair cell death. J Neurosci 22:1218–1227.

    PubMed  CAS  Google Scholar 

  • Matsui JI, Haque A, Huss D, Messana EP, Alosi JA, Roberson DW, Cotanche DA, Dickman JD, Warchol ME (2003) Caspase inhibitors promote vestibular hair cell survival and function after aminoglycoside treatment in vivo. J Neurosci 23:6111–6122.

    PubMed  CAS  Google Scholar 

  • Mbiene JP, Sans A (1986) Differentiation and maturation of the sensory hair bundles in the fetal and postnatal vestibular receptors of the mouse: a scanning electron microscopy study. J Comp Neurol 254:271–278.

    Article  PubMed  CAS  Google Scholar 

  • Meyers JR, Corwin JT (2007) Shape change controls supporting cell proliferation in lesioned mammalian balance epithelium. J Neurosci 27:4313–4325.

    Article  PubMed  CAS  Google Scholar 

  • Montcouquiol M, Corwin JT (2001a) Brief treatments with forskolin enhance s-phase entry in balance epithelia from the ears of rats. J Neurosci 21:974–982.

    CAS  Google Scholar 

  • Montcouquiol M, Corwin JT (2001b) Intracellular signals that control cell proliferation in mammalian balance epithelia: key roles for phosphatidylinositol-3 kinase, mammalian target of rapamycin, and S6 kinases in preference to calcium, protein kinase C, and mitogen-activated protein kinase. J Neurosci 21:570–580.

    CAS  Google Scholar 

  • Nakagawa T, Yamane H, Shibata S, Takayama M, Sunami K, Nakai Y (1997) Two modes of auditory hair cell loss following acoustic overstimulation in the avian inner ear. ORL J Otorhinolaryngol Relat Spec 59:303–310.

    PubMed  CAS  Google Scholar 

  • Osborne MP, Comis SD (1990a) Action of elastase, collagenase and other enzymes upon linkages between stereocilia in the guinea-pig cochlea. Acta Otolaryngol 110:37–45.

    Article  CAS  Google Scholar 

  • Osborne MP, Comis SD (1990b) High resolution scanning electron microscopy of stereocilia in the cochlea of normal, postmortem, and drug-treated guinea pigs. J Electron Microsc Tech 15:245–260.

    Article  CAS  Google Scholar 

  • Paige GD (1992) Senescence of human visual-vestibular interactions. 1. Vestibulo-ocular reflex and adaptive plasticity with aging. J Vestib Res 2:133–151.

    PubMed  CAS  Google Scholar 

  • Pickles JO, Comis SD, Osborne MP (1984) Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res 15:103–112.

    Article  PubMed  CAS  Google Scholar 

  • Pickles JO, Comis SD, Osborne MP (1987a) The effect of chronic application of kanamycin on stereocilia and their tip links in hair cells of the guinea pig cochlea. Hear Res 29:237–244.

    Article  CAS  Google Scholar 

  • Pickles JO, Osborne MP, Comis SD (1987b) Vulnerability of tip links between stereocilia to acoustic trauma in the guinea pig. Hear Res 25:173–183.

    Article  CAS  Google Scholar 

  • Popper AN, Hoxter B (1984) Growth of a fish ear: 1. Quantitative analysis of hair cell and ganglion cell proliferation. Hear Res 15:133–142.

    Article  PubMed  CAS  Google Scholar 

  • Popper AN, Hoxter B (1990) Growth of a fish ear. II. Locations of newly proliferated sensory hair cells in the saccular epithelium of Astronotus ocellatus. Hear Res 45:33–40.

    Article  PubMed  CAS  Google Scholar 

  • Presson JC, Popper AN (1990) Possible precursors to new hair cells, support cells, and Schwann cells in the ear of a post-embryonic fish. Hear Res 46:9–21.

    Article  PubMed  CAS  Google Scholar 

  • Presson JC, Smith T, Mentz L (1995) Proliferating hair cell precursors in the ear of a postembryonic fish are replaced after elimination by cytosine arabinoside. J Neurobiol 26:579–584.

    Article  PubMed  CAS  Google Scholar 

  • Presson JC, Lanford PJ, Popper AN (1996) Hair cell precursors are ultrastructurally indistinguishable from mature support cells in the ear of a postembryonic fish. Hear Res 100:10–20.

    Article  PubMed  CAS  Google Scholar 

  • Puel JL, Pujol R, Tribillac F, Ladrech S, Eybalin M (1994) Excitatory amino acid antagonists protect cochlear auditory neurons from excitotoxicity. J Comp Neurol 341:241–256.

    Article  PubMed  CAS  Google Scholar 

  • Raphael Y (1992) Evidence for supporting cell mitosis in response to acoustic trauma in the avian inner ear. J Neurocytol 21:663–671.

    Article  PubMed  CAS  Google Scholar 

  • Ricci AJ, Kachar B, Gale J, Van Netten SM (2006) Mechano-electrical transduction: new insights into old ideas.J Membr Biol 209:71–88.

    Article  PubMed  CAS  Google Scholar 

  • Roberson DF, Weisleder P, Bohrer PS, Rubel EW (1992) Ongoing production of sensory cells in the vestibular epithelium of the chick. Hear Res 57:166–174.

    Article  PubMed  CAS  Google Scholar 

  • Roberson DW, Kreig CS, Rubel EW (1996) Light microscopic evidence that direct transdifferentiation gives rise to new hair cells in regenerating avian auditory epithelium. Audit Neurosci 2:195–205.

    Google Scholar 

  • Roberson DW, Alosi JA, Cotanche DA (2004) Direct transdifferentiation gives rise to the earliest new hair cells in regenerating avian auditory epithelium. J Neurosci Res 78:461–471

    Article  PubMed  CAS  Google Scholar 

  • Romand R, Chardin S, Le Calvez S (1996) The spontaneous appearance of hair cell-like cells in the mammalian cochlea following aminoglycoside ototoxicity. NeuroReport 8:133–137.

    Article  PubMed  CAS  Google Scholar 

  • Rosenhall U (1972) Vestibular macular mapping in man. Ann Otol Rhinol Laryngol 81:339–351.

    PubMed  CAS  Google Scholar 

  • Rosenhall U (1973) Degenerative patterns in the aging human vestibular neuro-epithelia. Acta Otolaryngol 76:208–220.

    Article  PubMed  CAS  Google Scholar 

  • Ruben RJ (1967) Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol:Suppl 220:221–244.

    Google Scholar 

  • Ryals BM, Rubel EW (1988) Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science 240:1774–1776.

    Article  PubMed  CAS  Google Scholar 

  • Ryals BM, Westbrook EW (1990) Hair cell regeneration in senescent quail. Hear Res 50:87–96.

    Article  PubMed  CAS  Google Scholar 

  • Ryals BM, Westbrook EW (1994) TEM analysis of neural terminals on autoradiographically identified regenerated hair cells. Hear Res 72:81–88.

    Article  PubMed  CAS  Google Scholar 

  • Sage C, Huang M, Karimi K, Gutierrez G, Vollrath MA, Zhang DS, Garcia-Anoveros J, Hinds PW, Corwin JT, Corey DP, Chen ZY (2005) Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science 307:1114–1118.

    Article  PubMed  CAS  Google Scholar 

  • Sans A, Chat M (1982) Analysis of temporal and spatial patterns of rat vestibular hair cell differentiation by tritiated thymidine radioautography. J Comp Neurol 206:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Schneider ME, Belyantseva IA, Azevedo RB, Kachar B (2002) Rapid renewal of auditory hair bundles. Nature 418:837–838.

    Article  PubMed  CAS  Google Scholar 

  • Shou J, Zheng JL, Gao WQ (2003) Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of Hath1. Mol Cell Neurosci 23:169–179.

    Article  PubMed  CAS  Google Scholar 

  • Sobkowicz HM, Slapnick SM, August BK (1995) The kinocilium of auditory hair cells and evidence for its morphogenetic role during the regeneration of stereocilia and cuticular plates. J Neurocytol 24:633–653.

    Article  PubMed  CAS  Google Scholar 

  • Song J, Yan HY, Popper AN (1995) Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure. Hear Res 91:63–71.

    Article  PubMed  CAS  Google Scholar 

  • Speidel C (1947) Correlated studies of sense organs and nerves of the lateral-line in living frog tadpoles I. Regeneration of denervated organs. J Comp Neurol 87:27–55.

    Article  Google Scholar 

  • Steyger PS, Burton M, Hawkins JR, Schuff NR, Baird RA (1997) Calbindin and parvalbumin are early markers of non-mitotically regenerating hair cells in the bullfrog vestibular otolith organs. Int J Dev Neurosci 15:417–432.

    Article  PubMed  CAS  Google Scholar 

  • Stone JS, Cotanche DA (1994) Identification of the timing of S phase and the patterns of cell proliferation during hair cell regeneration in the chick cochlea. J Comp Neurol 341:50–67.

    Article  PubMed  CAS  Google Scholar 

  • Stone LS (1933) The development of lateral-line sense organs in amphibians observed in living and vital-stained preparations. J Comp Neurol 57:507–540.

    Article  Google Scholar 

  • Stone LS (1937) Further experimental studies of the development of lateral-line sense organs in amphibians observed in living preparations. J Comp Neurol 68:83–115.

    Article  Google Scholar 

  • Straznicky K, Gaze RM (1971) The growth of the retina in Xenopus laevis: an autoradiographic study. J Embryol Exp Morphol 26:67–79.

    PubMed  CAS  Google Scholar 

  • Strominger RN, Bohne BA, Harding GW (1995) Regenerated nerve fibers in the noise-damaged chinchilla cochlea are not efferent. Hear Res 92:52–62.

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Salvi RJ, Ding DL, Hashino DE, Shero M, Zheng XY (2000) Excitotoxic effect of kainic acid on chicken otoacoustic emissions and cochlear potentials. J Acoust Soc Am 107:2136–2142.

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Hashino E, Ding DL, Salvi RJ (2001) Reversible and irreversible damage to cochlear afferent neurons by kainic acid excitotoxicity. J Comp Neurol 430:172–181.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka EM, Gann AA, Gates PB, Brockes JP (1997) Newt myotubes reenter the cell cycle by phosphorylation of the retinoblastoma protein. J Cell Biol 136:155–165.

    Article  PubMed  CAS  Google Scholar 

  • Taylor RR, Forge A (2005) Hair cell regeneration in sensory epithelia from the inner ear of a urodele amphibian. J Comp Neurol 484:105–120.

    Article  PubMed  Google Scholar 

  • Tilney LG, Tilney MS, Saunders JS, DeRosier DJ (1986) Actin filaments, stereocilia, and hair cells of the bird cochlea. III. The development and differentiation of hair cells and stereocilia. Dev Biol 116:100–118.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Raphael Y (1996) Re-innervation patterns of chick auditory sensory epithelium after acoustic overstimulation. Hear Res 97:11–18.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Li H (2000) Microglia-like cells in rat organ of Corti following aminoglycoside ototoxicity. NeuroReport 11:1389–1393.

    Article  PubMed  CAS  Google Scholar 

  • Warchol ME (1995) Supporting cells in isolated sensory epithelia of avian utricles proliferate in serum-free culture. NeuroReport 6:981–984.

    Article  PubMed  CAS  Google Scholar 

  • Warchol ME (1997) Macrophage activity in organ cultures of the avian cochlea: demonstration of a resident population and recruitment to sites of hair cell lesions. J Neurobiol 33:724–734.

    Article  PubMed  CAS  Google Scholar 

  • Warchol ME (1999) Immune cytokines and dexamethasone influence sensory regeneration in the avian vestibular periphery. J Neurocytol 28:889–900.

    Article  PubMed  CAS  Google Scholar 

  • Warchol ME (2002) Cell density and N-cadherin interactions regulate cell proliferation in the sensory epithelia of the inner ear. J Neurosci 22:2607–2616.

    PubMed  CAS  Google Scholar 

  • Warchol ME, Corwin JT (1996) Regenerative proliferation in organ cultures of the avian cochlea: identification of the initial progenitors and determination of the latency of the proliferative response. J Neurosci 16:5466–5477.

    PubMed  CAS  Google Scholar 

  • Warchol ME, Lambert PR, Goldstein BJ, Forge A, Corwin JT (1993) Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science 259:1619–1622.

    Article  PubMed  CAS  Google Scholar 

  • Weisleder P, Rubel EW (1993) Hair cell regeneration after streptomycin toxicity in the avian vestibular epithelium. J Comp Neurol 331:97–110.

    Article  PubMed  CAS  Google Scholar 

  • Wetts R, Fraser SE (1988) Multipotent precursors can give rise to all major cell types of the frog retina. Science 239:1142–1145.

    Article  PubMed  CAS  Google Scholar 

  • Witte MC, Montcouquiol M, Corwin JT (2001) Regeneration in avian hair cell epithelia: identification of intracellular signals required for S-phase entry. Eur J Neurosci 14:829–838.

    Article  PubMed  CAS  Google Scholar 

  • Wright A, Davis A, Bredberg G, Ulehlova L, Spencer H (1987) Hair cell distributions in the normal human cochlea. Acta Otolaryngol Suppl 444:1–48.

    PubMed  CAS  Google Scholar 

  • Wright M (1947) Regeneration and degeneration experiments on lateral line nerves and sense organs in anurans. J Exp Zool 105:221–257.

    Article  CAS  PubMed  Google Scholar 

  • Zakir M, Dickman JD (2006) Regeneration of vestibular otolith afferents after ototoxic damage. J Neurosci 26:2881–2893.

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Yamoah EN, Gillespie PG (1996) Regeneration of broken tip links and restoration of mechanical transduction in hair cells. Proc Natl Acad Sci USA 93:15469–15474.

    Article  PubMed  CAS  Google Scholar 

  • Zheng JL, Gao WQ (2000) Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci 3:580–586.

    Article  PubMed  CAS  Google Scholar 

  • Zheng JL, Keller G, Gao WQ (1999) Immunocytochemical and morphological evidence for intracellular self-repair as an important contributor to mammalian hair cell recovery. J Neurosci 19:2161–2170.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Meyers, J.R., Corwin, J.T. (2008). Morphological Correlates of Regeneration and Repair in the Inner Ear. In: Salvi, R.J., Popper, A.N., Fay, R.R. (eds) Hair Cell Regeneration, Repair, and Protection. Springer Handbook of Auditory Research, vol 33. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73364-7_2

Download citation

Publish with us

Policies and ethics