Skip to main content

Refractory Oxides

  • Chapter
Ceramic and Glass Materials

Refractory oxides encompass a broad range of unary, binary, and ternary ceramic compounds that can be used in structural, insulating, and other applications. The chemical bonds that provide cohesive energy to the crystalline solids also influence properties such as thermal expansion coefficient, thermal conductivity, elastic modulus, and heat capacity. This chapter provides a historical perspective on the use of refractory oxide materials, reviews applications for refractory oxides, overviews fundamental structure–property relations, describes typical processing routes, and summarizes the properties of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd edn., Wiley, New York, 1976.

    Google Scholar 

  2. M.W. Chase, Jr., NIST-JANAF Thermochemical Tables, 4th edn., American Institute of Physics, Woodbury, NY, 1998.

    Google Scholar 

  3. R.C. Weast and M.J. Astle (eds.), Handbook of Chemistry and Physics, 62nd edn., CRC Press, Boca Raton, 1981.

    Google Scholar 

  4. H. Ries, Clays, Their Occurrence, Properties, and Uses, 3rd edn., Wiley, New York, 1927.

    Google Scholar 

  5. F.H. Norton, Refractories, 2nd edn., McGraw-Hill, New York, 1942.

    Google Scholar 

  6. Harbison-Walker Refractories, HW Handbook of Refractory Practice, 2nd edn., Harbison-Walker Refractories, Pittsburgh, 1980.

    Google Scholar 

  7. TARJ, Refractories Handbook, The Technical Association of Refractories, Japan, Tokyo, 1998.

    Google Scholar 

  8. W.D. Kingery, Introduction to Ceramics, Wiley, New York, 1960.

    Google Scholar 

  9. The American Ceramic Society, Phase Diagrams for Ceramists, Vols. 1–13, The American Ceramic Society, Columbus/Westerville, OH, 1964–2001.

    Google Scholar 

  10. R.S. Roth, The American Ceramic Society (eds.), Phase Diagrams for Electronic Ceramics I: Dielectric Ti, Nb, and Ta Oxide Systems, The American Ceramic Society, OH, 2003.

    Google Scholar 

  11. H.M. Ondik and H.F. McMurdie (eds.), Phase Diagrams for Zirconium and Zirconia Systems, The American Ceramic Society, OH, 1998.

    Google Scholar 

  12. L. Pauling, The Nature of the Chemical Bond, 3rd edn., Cornell University Press, Ithaca, NY, 1960.

    Google Scholar 

  13. A.R. West, Basic Solid State Chemistry, 2nd edn., Wiley, Chichester, 1999.

    Google Scholar 

  14. H.L. Brown and H.E. LeMay, Jr., Chemistry: The Central Science, 2nd edn., Prentice-Hall, NJ, 1981.

    Google Scholar 

  15. C. Kittel, Introduction to Solid State Physics, 6th edn., Wiley, New York, 1986.

    Google Scholar 

  16. M. Barsoum, Fundamentals of Ceramics, McGraw Hill, New York, 1997.

    Google Scholar 

  17. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee, Thermophysical Properties of Matter Volume 13: Thermal Expansion, Non Metallic Solids, IFI Plenum, New York, 1977.

    Google Scholar 

  18. R.C. Evans, An Introduction to Crystal Chemistry, 2nd edn., University Press, Cambridge, 1964.

    Google Scholar 

  19. C. Klein and C.S. Hurlbut, Jr., Manual of Mineralogy, 21st edn., Wiley, New York, 1993.

    Google Scholar 

  20. B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, 3rd edn., Prentice-Hall, NJ, 2001, pp. 31–88.

    Google Scholar 

  21. R. Jenkins and R.L. Snyder, Introduction to X-Ray Powder Diffractometry, Wiley, New York, 1996, pp. 23–46.

    Google Scholar 

  22. F.D. Bloss, Crystallography and Crystal Chemistry; An Introduction, Holt, Rinehart, and Winston, New York, 1971.

    Google Scholar 

  23. W.D. Nesse, Introduction to Optical Mineralogy, Oxford University Press, New York, 1986.

    Google Scholar 

  24. Y.-M. Chiang, D. Birnie, III, and W.D. Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering, Wiley, New York, 1997, pp. 13–19.

    Google Scholar 

  25. F.H. Norton, Fine Ceramics, McGraw-Hill, New York, 1970, p. 40.

    Google Scholar 

  26. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Clarendon Press, Oxford, 1985.

    Google Scholar 

  27. C.G. Bergeron and S.H. Risbud, Introduction to Phase Equilibria in Ceramics, The American Ceramic Society, Columbus, OH, 1984.

    Google Scholar 

  28. F.A. Hummel, Introduction to Phase Equilibria in Ceramic Systems, Marcel Dekker, New York, 1984.

    Google Scholar 

  29. Available from the Centre for Research in Computational Thermochemistry at Ecolé Polytechnique, Box 6079, Station Downtown, Montreal, Quebec, Canada.

    Google Scholar 

  30. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, The International Research Journal for Calculation of Phase Diagrams, published quarterly by Elsevier.

    Google Scholar 

  31. E.M. Levin, C.R. Robbins, and H.F. McMurdie, Phase Diagrams for Ceramists, Vol. 1, The American Ceramic Society, Columbus, OH, 1964, Figure 192.

    Google Scholar 

  32. G.Y. Onoda and L.L. Hench (eds.), Ceramic Processing Before Firing, Wiley, New York, 1978.

    Google Scholar 

  33. C.J. Brinker, D.E. Clark, and D.R. Ulrich (eds.), Better Ceramics Through Chemistry, Materials Research Society Proceedings Volume 32, North Holland, New York, 1984.

    Google Scholar 

  34. J.S. Reed, Principles of Ceramics Processing, Wiley, New York, 1995.

    Google Scholar 

  35. R.M. German, Sintering Theory and Practice, Wiley, New York, 1996.

    Google Scholar 

  36. M.N. Rahaman, Ceramic Processing and Sintering, Marcel Dekker, New York, 1995.

    Google Scholar 

  37. M.F. Yan, Solid state sintering, in Ceramics and Glasses: Engineered Materials Handbook, Vol. 4, ASM International, Materials Park, OH, 1991, pp. 270–284.

    Google Scholar 

  38. M.P. Harmer, Science of sintering as related to ceramic powder processing, in Ceramic Powder Science II, Ceramic Transactions, Vol. 1, G.L. Messing, E.R. Fuller, Jr., and H. Hausner (eds.), The American Ceramic Society, Westerville, OH, 1988, pp. 824–839.

    Google Scholar 

  39. F.J. Klug, S. Prochazka, and R.H. Doremus, Alumina-silica phase diagram in the mullite region, J. Ame. Ceram. Soc. 70(10) 750–759 (1987).

    Article  CAS  Google Scholar 

  40. W.G. Fahrenholtz, Particle size and mixing effects on the crystallization and densification of sol-gel mullite, Ph.D. Thesis, University of New Mexico, 1992.

    Google Scholar 

  41. W.G. Fahrenholtz, D.M. Smith, and J. Cesarano III, Effect of precursor particle size on the densification and crystallization behavior of mullite, J. Am. Ceram. Soc. 76(2), 433–437 (1993).

    Article  CAS  Google Scholar 

  42. R.J. Brook, Controlled grain growth, in Ceramic Fabrication Processes: Treatise on Materials Science and Technology, Vol. 9, F.F.Y. Wang (ed.), Academic Press, New York, 1976, pp. 331–364.

    Google Scholar 

  43. K.A. Berry and M.P. Harmer, Effect of MgO solute on microstructure development in Al2O3, J. Am. Ceram Soc. 69(2), 143–149 (1986).

    Article  CAS  Google Scholar 

  44. F.H. Norton, Fine Ceramics, McGraw-Hill, New York, 1970, pp. 258–280.

    Google Scholar 

  45. G.W. Brindley and M. Nakahira, The kaolinite-mullite reaction series: I, a survey of outstanding problems; II, metakaolin; and III, the high temperature phases, J. Am. Ceram. Soc. 42(7), 311–324 (1959).

    Article  CAS  Google Scholar 

  46. Y. Iqbal and W.E. Lee, Microstructural evolution in triaxial porcelain, J. Am. Ceram. Soc. 83(12), 3121–3127 (2000).

    Article  CAS  Google Scholar 

  47. R.M. German, Liquid Phase Sintering, Plenum, New York, 1985.

    Google Scholar 

  48. O.-H. Kwon, Liquid phase sintering, in Ceramics and Glasses: Engineered Materials Handbook Vol. 4, ASM International, Materials Park, OH, 1991, pp. 285–290.

    Google Scholar 

  49. O.-H. Kwon and G.L. Messing, Kinetic analysis of solution-precipitation during liquid-phase sintering of alumina, J. Am. Ceram. Soc. 73(2), 275–281 (1990).

    Article  CAS  Google Scholar 

  50. E.M. Levin, C.R. Robbins, and H.F. McMurdie (eds.), Phase Diagrams for Ceramists, Vol. 1, The American Ceramic Society, Columbus, OH, 1964, Figure 630.

    Google Scholar 

  51. R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, Chap. 8, Wiley, New York, 1960.

    Google Scholar 

  52. S. Hampshire, Engineering properties of nitrides, in Ceramics and Glass: Engineered Materials Handbook, Vol. 4, ASM International, Materials Park, OH, 1991, pp. 812–820.

    Google Scholar 

  53. W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbot, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, J. Appl. Phy. 32(9), 1979–1984 (1961).

    Article  Google Scholar 

  54. T. Log and T.B. Jackson, Simple and inexpensive flash technique for determining thermal diffusivity of ceramics, J. Am. Ceram. Soc. 74(5), 941–944 (1991).

    Article  CAS  Google Scholar 

  55. Peter T.B. Shaffer, Engineering Properties of Carbides, in Ceramics and Glass: Engineered Materials Handbook, Vol. 4, ASM International, Materials Park, OH, 1991, pp. 804–811.

    Google Scholar 

  56. D.W. Richerson, Modern Ceramic Engineering, Marcel Dekker, New York, 1992.

    Google Scholar 

  57. D.V Ragone, Thermodynamics of Materials, Vol. 1, Wiley, New York, 1995, p. 12.

    Google Scholar 

  58. H.M. Rosenberg, The Solid State, 2nd edn., Chap. 5, Oxford University Press, New York, 1978.

    Google Scholar 

  59. Thermochemical and Physical Property database, Version 2.2, ESM software.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Smith, J.D., Fahrenholtz, W.G. (2008). Refractory Oxides. In: Shackelford, J.F., Doremus, R.H. (eds) Ceramic and Glass Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73362-3_6

Download citation

Publish with us

Policies and ethics