Quartz and Silicas

  • Lilian P. Davila
  • Subhash H. Risbud
  • James F. Shackelford

Silica is the most ubiquitous mineral in the earth’s crust, existing in a wide variety of crystalline and noncrystalline forms due to the flexibility of the linkage among SiO4 tetrahedra. The thermodynamically stable, room temperature form of silica is quartz, which is itself a widely available mineral and ingredient in many commercial ceramics and glasses. In addition to historically abundant raw material sources, crystalline and noncrystalline silicas can be produced by a wide range of synthetic routes. For example, synthetic quartz can be produced by hydrothermal growth in an autoclave, and synthetic vitreous silica can be produced from silicon tetrachloride by oxidation or hydrolysis in a methane–oxygen flame. Pure silicas serve as model systems in the study of ceramics and glasses, but at the same time, are used in a wide and steadily increasing variety of sophisticated technological applications, from piezoelectric crystals to optical fibers to waveguides in femtosecond lasers. Increased understanding of these ubiquitous materials is aided by improved experimental tools such as new neutron scattering facilities and increasingly sophisticated computer simulation methods.


Boron Carbide Crystalline Silica Bravais Lattice Knoop Hardness Vitreous Silica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.F. Shackelford, Introduction to Materials Science for Engineers, 6th edn., Prentice-Hall, Upper Saddle River, NJ, 2005.Google Scholar
  2. 2.
    P.J. Heaney, C.T. Prewitt, and G.V. Gibbs (eds.), Silica: Physical Behavior, Geochemistry and Materials Applications, Reviews in Mineralogy, Vol. 29, Mineralogical Society of America, Washington, DC, 1994.Google Scholar
  3. 3.
    J.W. Chan, T.R. Huser, S.H. Risbud, and D.M. Krol, Modification of the fused silica network associated with waveguide fabrication using femtosecond laser pulses, Appl. Phys. A, 76, 367–372 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    C. Klein and C.S. Hurlbut, Jr., Manual of Mineralogy, 21st edn., John Wiley, NY, 1993, p. 527.Google Scholar
  5. 5.
    Y.M. Chiang, D.P. Birnie, III, and W.D. Kingery, Physical Ceramics: Principles of Ceramic Science and Engineering, John Wiley, New York, 1997.Google Scholar
  6. 6.
    R.B. King, Inorganic Chemistry of Main Group Elements, VCH, Berlin, 1995.Google Scholar
  7. 7.
    R.W.G. Wyckoff, Crystal Structures, Interscience, New York, 1957 and 1959.Google Scholar
  8. 8.
    E. Parthe, Crystal Chemistry of Tetrahedral Structures, Gordon and Breach, New York, 1964.Google Scholar
  9. 9.
    F. Liebau, Structural Chemistry of Silicates, Springer, Berlin, 1985.Google Scholar
  10. 10.
    R.B. Sosman, The Phases of Silica, Rutgers University Press, Piscataway, NJ, 1965.Google Scholar
  11. 11.
    L.P. Davila, Computer modeling studies of the interstitial structure of selected silica polymorphs, M.S. Thesis, University of California, Davis, 1998.Google Scholar
  12. 12.
    P.J. Heaney, Structure and chemistry of the low-pressure silica polymorphs, in Silica: Physical Behavior, Geochemistry and Materials Applications, Reviews in Mineralogy, Vol. 29, by P.J. Heaney, C.T. Prewitt, and G.V. Gibbs (eds.), Mineralogical Society of America, Washington, DC, 1994, pp. 1–40.Google Scholar
  13. 13.
    L.P. Davila, S.H. Risbud, and J.F. Shackelford, Quantifying the interstitital structure of non-crystalline Solids, Recent Res. Devel. Non-Cryst. Solids, 1, 73–84 (2001).Google Scholar
  14. 14.
    F.A. Cotton and G. Wilkinson, Adv. Inorganic Chem., 4th (edn.), John Wiley, New York, 1980.Google Scholar
  15. 15.
    W.H. Zachariasen, The atomic arrangement in glass, J. Am. Chem. Soc. 54, 3841–3851 (1932).CrossRefGoogle Scholar
  16. 16.
    B.E. Warren et al., Fourier analysis of X-ray patterns of vitreous SiO2 and B2O3, J. Am. Chem. Soc. 19, 202–206 (1936).Google Scholar
  17. 17.
    R.L. Mozzi and B.E. Warren, The structure of vitreous silica, J. Appl. Cryst. 2, 164–172 (1969).CrossRefGoogle Scholar
  18. 18.
    R.J. Bell and P. Dean, The structure of vitreous silica: validity of the random network theory, Phil. Mag. 25, 1381–1398 (1972).ADSCrossRefGoogle Scholar
  19. 19.
    J.R.G. da Silva, et al., A refinement of the structure of vitreous silica, Phil. Mag. 31, 713–717 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    P.G. Coombs et al., The nature of the Si−O−Si bond angle distribution in vitreous silica, Phil. Mag. 51, L39–L42 (1985).Google Scholar
  21. 21.
    J.T. Randall, H.P. Rooksby, and B.S. Cooper, X-ray diffraction and the structure of vitreous solids–I, Z. Krist. 75, 196–214 (1930).Google Scholar
  22. 22.
    A.C. Wright, R.A. Hulme, D.I. Grimley, R.N. Sinclair, S.W. Martin, D.L. Price, and F.L. Galeener, The structure of some simple amorphous network solids revisited, J. Non-Cryst. Sol. 129, 213–232 (1991).ADSCrossRefGoogle Scholar
  23. 23.
    P.H. Gaskell, M.C. Eckersley, A.C. Barnes, and P. Chieux, Medium-range order in the cation distribution of a calcium silicate glass, Nature 350, 675–677 (1991).ADSCrossRefGoogle Scholar
  24. 24.
    M.C. Abramo, C. Caccamo, and G. Pizzimenti, Structural properties and medium-range order in calcium-metasilicate (CaSiO3) glass: a molecular dynamics study, J. Chem. Phys. 96, 9083–9091 (1992).ADSCrossRefGoogle Scholar
  25. 25.
    B.P. Fueston and S.H. Garofalini, Empirical three-body potential for vitreous silica, J. Chem. Phys. 89, 5818–5824 (1988).ADSCrossRefGoogle Scholar
  26. 26.
    L.P. Davila, Atomistic-scale simulations of vitreous silica under high pressure: structure and properties, Ph.D. Dissertation, University of California, Davis, 2005.Google Scholar
  27. 27.
    G.H. Beall, Industrial applications of silica, in Silica: Physical Behavior, Geochemistry and Materials Applications, Reviews in Mineralogy, Vol. 29, P.J.Heaney, C.T. Prewitt, and G.V. Gibbs (eds.), Mineralogical Society of America, Washington, DC, 1994, pp. 469–505.Google Scholar
  28. 28.
    C.J. Simmons and O.H. El-Bayoumi, Experimental Techniques of Glass Science, The American Ceramic Society, Westerville, OH, 1993.Google Scholar
  29. 29.
    R.J. Hemley, C.T. Prewitt, and K.J. Kingma, High-pressure behavior of silica, in Silica: Physical Behavior, Geochemistry and Materials Applications, Reviews in Mineralogy, Vol. 29, P.J.Heaney, C.T. Prewitt, and G.V. Gibbs (eds.), Mineralogical Society of America, Washington, DC, 1994, pp. 41–81.Google Scholar
  30. 30.
    J.F. Shackelford and J.S. Masaryk, The interstitial structure of vitreous silica, J. Non-Cryst. Solids 30, 127–139 (1978).ADSCrossRefGoogle Scholar
  31. 31.
    J.F. Shackelford and B.D. Brown, Triangle rafts – extended Zachariasen schematics for structure modeling, J. Non-Cryst. Solids, 49, 19–28 (1982).ADSCrossRefGoogle Scholar
  32. 32.
    J.F. Shackelford and W. Alexander, Materials Science and Engineering Handbook, 3rd edn., CRC Press, Boca Raton, FL, 2001.Google Scholar
  33. 33.
    R. Bruckner, Mechanical properties of glasses, in Glasses and Amorphous Materials, R.W. Cahn, P. Haasen, and E.J. Kramer (eds.), VCH, New York, 1991, pp. 665–713.Google Scholar
  34. 34.
    W.D. Kingery, Introduction to Ceramics, John Wiley, New York, 1960.Google Scholar
  35. 35.
    C.H. Chen and J. Lewin, Silicon as a nutrient element for Equisetum Arvense, Can. J. Bot. 47, 125–131 (1969).CrossRefGoogle Scholar
  36. 36.
    P. Danielson, Vitreous silica, in Encyclopedia of Chemical Technology, Vol. 20, John Wiley, New York, 1982, pp. 782–817.Google Scholar
  37. 37.
    F.P. Kapron, D.B. Keck, and R.D. Maurer, Radiation loss in glass optical waveguide, Appl. Phys. Lett. 17, 423–425 (1970).ADSCrossRefGoogle Scholar
  38. 38.
    D.B. Keck, R.D. Maurer, and P.C. Schultz, On the lower limit of attenuation in glass optical waveguides, Appl. Phys. Lett. 22, 307–309 (1973).ADSCrossRefGoogle Scholar
  39. 39.
    J. Zarzycki, Glasses and the vitreous state, in Cambridge Solid State Science Series, R.W. Cahn, E.A. Davies, and I.M. Ward (eds.), Cambridge University Press, Cambridge, UK, 1991, pp. 194–196.Google Scholar
  40. 40.
    T.P. Dolley, Materials review: sand and gravel (industrial), Am. Ceram. Soc. Bull., 84, 24 (2005).Google Scholar
  41. 41.
    L.P. Davila et al. Transformations in the medium-range order of fused silica under high pressure, Phys. Rev. Lett. 91, 205501–1–205501–4 (2003).MathSciNetADSGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Lilian P. Davila
    • 1
  • Subhash H. Risbud
    • 1
  • James F. Shackelford
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations