Aluminates form in binary systems with alkali, alkaline earth or rare-earth oxides and share the high melting point and resistance to chemical attack of the pure Al2O3 end-member. This means that these ceramics have a variety of applications as cements, castable ceramics, bioceramics, and electroceramics. Calcium aluminate cements are used for example in specialist applications as diverse as lining sewers and as dental restoratives.

Ceramics in aluminate systems are usually formed from cubic crystal systems and this includes spinel and garnet. Rare earth aluminate garnets include the phase YAG (yttrium aluminium garnet), which is an important laser host when doped with Nd(III) and more recently Yb(III). Associated applications include applications as scintillators and phosphors.

Aluminate glasses are transparent in the infrared region and these too have specialist applications, although the glass-forming ability is poor. Recently, rare earth aluminate glasses have been developed commercially in optical applications as alternatives to sapphire for use in, for example, infrared windows.

Aluminates are refractory materials and their synthesis often simply involves solid-state growth of mixtures of purified oxides. Alternative synthesis routes are also used in specialist applications, for example in production of materials with controlled porosity and these invariably involve sol–gel methods. For glasses, one notable, commercially important method of production is container-less synthesis, which is necessary because of the non-Arrhenius (fragile) viscosity of aluminate liquids.


Portland Cement Yttrium Aluminum Garnet Calcium Aluminate Lithium Aluminate Calcium Aluminate Cement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.L. Scrivener, J.L. Cabiron, and R. Letourneux, High-performance concretes from calcium aluminate cements. Cement Concrete Res. 29(8), 1215–1223 (1999).CrossRefGoogle Scholar
  2. 2.
    K.L. Scrivener, Historical and present day applcaiitons of calcium aluminate cements, in Calcium and Calcium Aluminate Cements, R.J. Mangabhai and F.P. Glasser (eds.), London IOM Communications, (2001).Google Scholar
  3. 3.
    Bensted, J., High alumina cement–present state of knowledge. Zement-Kalk-Gips, 46(9), 560–566 (1993).Google Scholar
  4. 4.
    Y. Liu et al., Behaviour of composite ca/p bioceramics in simulated body fluid. Mate. Sci. Technol 14(6), 533–537 (1998).Google Scholar
  5. 5.
    H. Engqvist et al., Transmittance of a bioceramic dental restorative material based on calcium aluminate. J. Biomed. Mater. Res. B-Appl. Biomater. 69B(1), 94–98 (2004).CrossRefGoogle Scholar
  6. 6.
    H. Engqvist et al., Chemical and biological integration of a mouldable bioactive ceramic material capable of forming apatite in vivo in teeth. Biomaterials, 25(14), 2781–2787 (2004).PubMedCrossRefGoogle Scholar
  7. 7.
    J. Loof et al., Mechanical properties of a permanent dental restorative material based on calcium aluminate. J. Mater. Sci.-Mater. Med. 14(12), 1033–1037 (2003).PubMedCrossRefGoogle Scholar
  8. 8.
    S.H. Oh et al., Preparation of calcium aluminate cement for hard tissue repair: Effects of lithium fluoride and maleic acid on setting behavior, compressive strength, and biocompatibility. J. Biomed. Mater. Res. 62(4), 593–599 (2002).PubMedCrossRefGoogle Scholar
  9. 9.
    M.K. Cinibulk et al., Porous yttrium aluminum garnet fiber coatings for oxide composites. J. Am. Ceram. Soc. 85(11), 2703–2710 (2002).CrossRefGoogle Scholar
  10. 10.
    M.K. Cinibulk, K.A. Keller, and T.I. Mah, Effect of yttrium aluminum garnet additions on alumina-fiber-reinforced porous-alumina-matrix composites. J. Am. Ceram. Soc. 87(5), 881–887 (2004).CrossRefGoogle Scholar
  11. 11.
    L.V. Soboleva and A.P. Chirkin, Y2O3-Al2O3-Nd2O3 phase diagram and the growth of (Y, Nd)(3) Al5O12 single crystals. Crystallog. Rep. 48(5), 883–887 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    E.M. Nunes et al., A volume radiation heat transfer model for Czochralski crystal growth processes. J. Cryst. Growth 236(4), 596–608 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    J.K.R. Weber et al., Aero-acoustic levitation - a method for containerless liquid-phase processing at high temperatures. Rev. Sci. Instrum. 65(2), 456–465 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    Y.H. Zhou et al., Preparation of Y3Al5O12: Eu phosphors by citric-gel method and their luminescent properties. Opt. Mater. 2002. 20(1), 13–20 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    X.L. Pan et al., Mesoporous spinel MgAl2O4 prepared by in situ modification of boehmite sol particle surface: I Synthesis and characterization of the unsupported membranes. Colloids Surf. A-Physicochem. Eng. Asp. 179(2–3), 163–169 (2001).CrossRefGoogle Scholar
  16. 16.
    K.E. Sickafus, J.M. Wills, and N.W. Grimes, Structure of spinel. J. Am. Ceram. Soc. 82(12), 3279–3292 (1999).CrossRefGoogle Scholar
  17. 17.
    C.J. Howard, B.J. Kennedy, and B.C. Chakoumakos, Neutron powder diffraction study of rhombohedral rare-earth aluminates and the rhombohedral to cubic phase transition. J. Phys.-Conden. Matter. 12(4), 349–365 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    L. Vasylechko et al., Crystal structure of GdFeO3-type rare earth gallates and aluminates. J. Alloys Comp. 291(1–2), 57–65 (1999).CrossRefGoogle Scholar
  19. 19.
    C.E. Johnson, K. Noda, and N. Roux, Ceramic breeder materials: status and needs. J. Nucl. Mater. 263(Part A) 140–148 (1998).CrossRefGoogle Scholar
  20. 20.
    M. Poulain, Advanced glasses. Annales de Chimie-Science des Materiaux. 28(2), 87–94 (2003).CrossRefGoogle Scholar
  21. 21.
    W.A. King, and J.E. Shelby, Strontium calcium aluminate glasses. Phys. Chem. Glasses 37(1), 1–3 (1996).Google Scholar
  22. 22.
    A.G. Holterhoff, Calcium aluminate cements. Am. Ceram. Soc. Bull. 73(6), 90–91 (1994).Google Scholar
  23. 23.
    A.G. Holterhoff, Calcium aluminate cements. Am. Ceram. Soc. Bull. 74(6), 117–118 (1995).Google Scholar
  24. 24.
    A.K. Chatterjee, An update on the binary aluminates appearing in aluminous cements, in Calcium and Calcium Aluminate Cements, R.J. Mangabhai and F.P. Glasser (eds.), London, IOM Communications, (2001).Google Scholar
  25. 25.
    D.A. Jerebtsov and G.G. Mikhailov, Phase diagram of CaO-Al2O3 system. Ceram. Int. 27(1) 25–28 (2001).CrossRefGoogle Scholar
  26. 26.
    B. Hallstedt, Assessment of the Cao-Al2O3 system. J. Am. Ceram. Soc. 73(1), 15–23 (1990).CrossRefGoogle Scholar
  27. 27.
    H. Pollmann, Mineralogy and crystal chemistry of calcium aluminate cement, in Calcium and Calcium Aluminate Cements, R.J. Mangabhai and F.P. Glasser, (eds.), London, IOM Communications (2001).Google Scholar
  28. 28.
    D.A. Brosnan and H.D. Leigh, Rehydration of castable refractories. Can. Ceram. Q.-J. Can. Ceram. Soc. 64(2), 122–126 (1995).Google Scholar
  29. 29.
    W.E. Lee. et al., Castable refractory concretes. Int. Mater. Rev 46(3), 145–167 (2001).CrossRefGoogle Scholar
  30. 30.
    K. Konradsson, and J.W.V. van Dijken, Effect of a novel ceramic filling material on plaque formation and marginal gingiva. Acta Odontol Scand. 60(6), 370–374 (2002).PubMedCrossRefGoogle Scholar
  31. 31.
    S.J. Kalita, et al., Porous calcium aluminate ceramics for bone-graft applications. J. Mater. Res. 17(12), 3042–3049 (2002).MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    I.N. Chakraborty, and A.K. Chattopadhyay, Manufacture of high alumina cement, an indian experience, in Calcium and Calcium Aluminate Cements, R.J. Mangabhai and F.P. Glasser (eds.), London, IOM Communications, 2001.Google Scholar
  33. 33.
    D.A. Fumo, M.R. Morelli, and A.M. Segadaes, Combustion synthesis of calcium aluminates. Mater. Res. Bull. 31(10), 1243–1255 (1996).CrossRefGoogle Scholar
  34. 34.
    Singh, V.K., Sintering of calcium aluminate mixes. Br. Ceram. Trans. 98(4), 187–191 (1999).CrossRefGoogle Scholar
  35. 35.
    M. Uberoi, and S.H. Risbud, Processing of Amorphous Calcium Aluminate Powders at Less-Than 900-Degrees-C. J. Am. Ceram. Soc. 73(6), 1768–1770 (1990).CrossRefGoogle Scholar
  36. 36.
    A. Varma, and A.S. Mukasyan, Combustion synthesis of advanced materials: Fundamentals and applications. Korean J. Chem. Eng. 21(2), 527–536 (2004).CrossRefGoogle Scholar
  37. 37.
    T. Aitasalo, et al., EU2+doped calcium aluminates prepared by alternative low temperature routes. Opt. Mater. 26(2), 113–116 (2004).ADSCrossRefGoogle Scholar
  38. 38.
    J.A. Sampaio, and S. Gama, EXAFS investigation of local structure of Er3+ and Yb3+ in low-silica calcium aluminate glasses - art. no. 104203. Phys. Rev. B 6910(10), 4203 (2004).Google Scholar
  39. 39.
    P.F. Paradis, et al., Contactless density measurement of liquid Nd-doped 50%CaO-50%Al2O3. J. Am. Ceram. Soc. 86(12), 2234–2236 (2003).CrossRefGoogle Scholar
  40. 40.
    C.J. Benmore, et al., A neutron and x-ray diffraction study of calcium aluminate glasses. J. Phys. Conden Matter 15(31), S2413–S2423 (2003).ADSCrossRefGoogle Scholar
  41. 41.
    M.S.F. Da Rocha, et al., Radiation-induced defects in calcium aluminate glasses. Radiat. Eff.Defects Solids 158(1–6), 363–368 (2003).ADSCrossRefGoogle Scholar
  42. 42.
    W.J. Chung and J. Heo, Energy transfer process for the glue up-conversion in calcium aluminate glasses doped with Tm3+ and Nd3+. J. Am. Ceram. Soc. 84(2), 348–352 (2001).CrossRefGoogle Scholar
  43. 43.
    D.F. de Sousa et al., Energy transfer and the 2.8-mu m emission of Er3+- and Yb3+-doped low silica content calcium aluminate glasses. Phys. Rev. B 62(5), 3176–3180 (2000).ADSCrossRefGoogle Scholar
  44. 44.
    W.Y. Li, and B.S. Mitchell, Nucleation and crystallization in calcium aluminate glasses. J. Non-Cryst. Solids 255(2–3), 199–207 (1999).ADSCrossRefGoogle Scholar
  45. 45.
    P.F. McMillan, et al., A structural investigation of cao-al2o2 glasses via al-27 mas-nmr. J. Non-Cryst. Solids 195(3), 261–271 (1996).ADSCrossRefGoogle Scholar
  46. 46.
    E.V. Uhlmann, et al., Spectroscopic properties of rare-earth-doped calcium-aluminate-based glasses. J. Non Cryst Solids. 178, 15–22 (1994).ADSCrossRefGoogle Scholar
  47. 47.
    C.A. Angell, Glass forming liquids with microscopic to macroscopic two-state complexity. Progress Theor. Phys. Suppl. 126, 1–8 (1997).ADSCrossRefGoogle Scholar
  48. 48.
    A.C. Hannon, and J.M. Parker, The structure of aluminate glasses by neutron diffraction. J. Non-Cryst. 274(1–3), 102–109 (2000).ADSCrossRefGoogle Scholar
  49. 49.
    J.K.R. Weber, et al., Novel synthesis of calcium oxide-aluminum oxide glasses. Japanese J. App.Phys. 1-Regul. Pap. Short Notes Rev Pap. 41(5A), 3029–3030 (2002).Google Scholar
  50. 50.
    S. Mukhopadhyay, et al., In situ spinel bonded refractory castable in relation to co-precipitation and sol-gel derived spinel forming agents. Ceram. Int. 29(8), 857–868 (2003).CrossRefGoogle Scholar
  51. 51.
    C.J. Ting, and H.Y. Lu, Hot-pressing of magnesium aluminate spinel- I. Kinetics and densification mechanism. Acta Mater. 47(3), 817–830 (1999).CrossRefGoogle Scholar
  52. 52.
    C.J. Ting, and H.Y. Lu, Hot-pressing of magnesium aluminate spinel- II. Microstructure development. Acta Mater. 47(3), 831–840 (1999).CrossRefGoogle Scholar
  53. 53.
    M.W. Vance, et al., Influence of spinel additives on high-alumina spinel castables. Am. Ceram. Soc. Bull. 73(11), 70–74 (1994).Google Scholar
  54. 54.
    J.W. Lee, and J.G. Duh, High-temperature MgO-C-Al refractories-metal reactions in high-aluminum-content alloy steels. J. Mater. Res. 18(8), 1950–1959 (2003).ADSCrossRefGoogle Scholar
  55. 55.
    A. Ghosh, et al., Effect of spinel content on the properties of magnesia-spinel composite refractory. J. Eur. Ceram. Soc. 24(7), 2079–2085 (2004).CrossRefGoogle Scholar
  56. 56.
    K. Goto, B.B. Argent, and W.E. Lee, Corrosion of mgo-mgal2o4 spinel refractory bricks by calcium aluminosilicate slag. J. Am. Ceram. Soc. 80(2), 461–471 (1997).CrossRefGoogle Scholar
  57. 57.
    A.H. De Aza, et al., Corrosion of a high alumina concrete with synthetic spinel addition by ladle slag. Boletin de la Sociedad Espanola de Ceramica y Vidrio 42(6), 375–378 (2003).Google Scholar
  58. 58.
    B. Hallstedt, The magnesium-oxygen system. Calphad-Comp. Coupling Phase Diagrams Thermochem. 17(3), 281–286 (1993).Google Scholar
  59. 59.
    B. Hallstedt, Thermodynamic assessment of the system Mgo-Al2O3. J. Am. Ceram. Soc. 75(6), 1497–1507 (1992).CrossRefGoogle Scholar
  60. 60.
    H.S.C. Oneill, and A. Navrotsky, Cation distributions and thermodynamic properties of binary spinel solid-solutions. Am. Mineral. 69(7–8), 733–753 (1984).Google Scholar
  61. 61.
    F.C. Klaassen, et al., Post irradiation examination of irradiated americium oxide and uranium dioxide in magnesium aluminate spinel. J. Nucl. Mater. 319, 108–117 (2003).ADSCrossRefGoogle Scholar
  62. 62.
    G.P. Pells, Radiation effects in ceramics. MRS Bulle. 22(4), 22–28 (1997).Google Scholar
  63. 63.
    I. Ganesh, et al., An efficient MgAl2O4 spinel additive for improved slag erosion and penetration resistance of high-Al2O3 and MgO-C refractories. Ceram. Int. 28(3), 245–253 (2002).MathSciNetCrossRefGoogle Scholar
  64. 64.
    V.T. Gritsyna, et al., Neutron irradiation effects in magnesium-aluminate spinel doped with transition metals. J. Nucl. Mater. 283(Part B), 927–931 (2000).ADSCrossRefGoogle Scholar
  65. 65.
    S.E. Enescu, et al., High-temperature annealing behavior of ion-implanted spinel single crystals. J. Mater. Res. 19(12), 3463–3473 (2004).ADSCrossRefGoogle Scholar
  66. 66.
    Y.W. Lee, et al., Study on the mechanical properties and thermal conductivity of silicon carbide-, zirconia- and magnesia aluminate-based simulated inert matrix nuclear fuel materials after cyclic thermal shock. J. Nucl. Mater. 319, 15–23 (2003).ADSCrossRefGoogle Scholar
  67. 67.
    T. Wiss, and H. Matzke, Heavy ion induced damage in MgAl2O4, an inert matrix candidate for the transmutation of minor actinides. Radiat. Meas. 31(1–6), 507–514 (1999).CrossRefGoogle Scholar
  68. 68.
    K. Yasuda, C. Kinoshita, and R. Morisaki, Role of irradiation spectrum in the microstructural evolution of magnesium aluminate spinel. Philos. Mag. A-Phys. Condens. Matter Struct. Defects Mechani. Properties, 78(3), 583–598 (1998).ADSGoogle Scholar
  69. 69.
    A.A. El-Kheshen, and M.F. Zawrah, Sinterability, microstructure and properties of glass/ceramic composites. Ceram. Int. 29(3), 251–257 (2003).CrossRefGoogle Scholar
  70. 70.
    A.M. Alper, et al., The system MgO-MgAl2O4. J. Am. Ceram. Soc. 45(6), 263–268 (1962).CrossRefGoogle Scholar
  71. 71.
    M. Ishimaru, et al., Atomistic structures of metastable and amorphous phases in ion-irradiated magnesium aluminate spinel. J. Phys.-Condens. Matter 14(6), 1237–1247 (2002).ADSCrossRefGoogle Scholar
  72. 72.
    R.E. Carter, Mechanism of solid state reaction between magnesium oxide and aluminum oxide and between magnesium oxide and ferric oxide. J. Am. Ceram. Soc. 44(3), 116–120 (1960).CrossRefGoogle Scholar
  73. 73.
    H. Reveron, et al., Chemical synthesis and thermal evolution of MgAl2O4 spinel precursor prepared from industrial gibbsite and magnesia powder. Mater. Lett. 56(1–2), 97–101 (2002).CrossRefGoogle Scholar
  74. 74.
    E.A. Vasil’eva, et al., A porous ceramic based on aluminomagnesium spinel. Russ. J. Appl. Chem. 75(6), 878–882 (2002).CrossRefGoogle Scholar
  75. 75.
    E.A. Vasil’eva, et al., Specific features of the synthesis of porous materials based on a magnesium-aluminum spinel. Glass Phys. and Chem. 29(5), 490–493 (2003).CrossRefGoogle Scholar
  76. 76.
    F. Oksuzomer, et al., Preparation of MgAl2O4 by modified sol-gel method, in Euro Ceramics Viii, Parts 1–3. 2004, pp. 367–370.Google Scholar
  77. 77.
    Y.X. Pan, M.M. Wu, and Q. Su, Comparative investigation on synthesis and photoluminescence of YAG: Ce phosphor. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 106(3), 251–256 (2004).Google Scholar
  78. 78.
    L.M. Carrera, et al., Tritium recovery from nanostructured LiAlO2. J. Nucl. Mater. 299(3), 242–249 (2001).ADSCrossRefGoogle Scholar
  79. 79.
    C.E. Johnson, K. Noda, and N. Roux, Ceramic breeder materials: status and needs. J. Nucl. Mater. 263, 140–148 (1998).CrossRefGoogle Scholar
  80. 80.
    O. Renoult, et al., Sol-gel lithium aluminate ceramics and tritium extraction mechanisms. J. Nucl. Mater. 219, 233–239 (1995).ADSCrossRefGoogle Scholar
  81. 81.
    T. Kawagoe, et al., Surface inventory of tritium on Li2TiO3. J. Nucl. Mater. 297(1), 27–34 (2001).ADSCrossRefGoogle Scholar
  82. 82.
    V.S. Batra, et al., Development of alpha lithium aluminate matrix for molten carbonate fuel cell. J. Power Sources 112(1), 322–325 (2002).CrossRefGoogle Scholar
  83. 83.
    K. Nakagawa, et al., Allotropic phase transformation of lithium aluminate in MCFC electrolyte plates. Denki Kagaku 65(3), 231–235 (1997).Google Scholar
  84. 84.
    S. Sokolov, and A. Stein, Preparation and characterization of macroporous gamma-LiAlO2. Mater. Lett. 57(22–23), 3593–3597 (2003).CrossRefGoogle Scholar
  85. 85.
    M.A. Valenzuela, et al., Solvent effect on the sol-gel synthesis of lithium aluminate. Mate. Lett. 47(4–5), 252–257 (2001).CrossRefGoogle Scholar
  86. 86.
    M.A. Valenzuela, et al., Sol-gel synthesis of lithium aluminate. J. Am. Ceram. Soc. 79(2), 455–460 (1996).CrossRefGoogle Scholar
  87. 87.
    F. Oksuzomer, et al., Effect of solvents on the preparation of lithium aluminate by sol-gel method. Mater. Res. Bulle. 39(4–5), 715–724 (2004).CrossRefGoogle Scholar
  88. 88.
    J.E. Geusic, H.M. Marcos, and V.U. L.G., Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium, and gadolinium garnets. App. Phys. Lett. 4, 182–184 (1964).ADSCrossRefGoogle Scholar
  89. 89.
    E. Zych, C. Brecher, and J. Glodo, Kinetics of cerium emission in a YAG: Ce single crystal: the role of traps. J. Phys. Condens. Matter. 12(8), 1947–1958 (2000).ADSCrossRefGoogle Scholar
  90. 90.
    J.R. Lu, et al., Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics – a new generation of solid state laser and optical materials. J. Alloys Compd. 341(1–2), 220–225 (2002).CrossRefGoogle Scholar
  91. 91.
    E. Zych, and C. Brecher, Temperature dependence of Ce-emission kinetics in YAG: Ce optical ceramic. J. Alloys Compd. 300, 495–499 (2000).CrossRefGoogle Scholar
  92. 92.
    E. Zych, et al., Luminescence properties of ce-activated yag optical ceramic scintillator materials. J. Luminescence 75(3), 193–203 (1997.ADSCrossRefGoogle Scholar
  93. 93.
    Y. Kanke, and A. Navrotsky, A calorimetric study of the lanthanide aluminum oxides and the lanthanide gallium oxides: stability of the perovskites and the garnets. J. Solid State Chem. 141(2), 424–436 (1998).ADSCrossRefGoogle Scholar
  94. 94.
    M. Medraj, et al., High temperature neutron diffraction study of the Al2O3–Y2O3 system. J. Eur. Ceram. Soc. 26(16), 3515–3524 (2006).CrossRefGoogle Scholar
  95. 95.
    O. Fabrichnaya, et al., The assessment of thermodynamic parameters in the Al2O3–Y2O3 system and phase relations in the Y-Al-O system. Scand. J. Metall. 30(3), 175–183 (2001).Google Scholar
  96. 96.
    J.L. Caslavsky, and D. Viechnicki, Phase-equilibria studies in the ternary-system Al2O3/Y2O3/Nd2O3 using odta. Am. Ceram. Soc. Bulle. 61(8), 808–808 (1982).Google Scholar
  97. 97.
    J.L. Caslavsky, and D. Viechnicki, Melt Growth of Nd - Y3al5o12 (Nd-Yag) Using the Heat-Exchange Method (Hem). J. Cryst. Growth. 46(5), 601–606 (1979).ADSCrossRefGoogle Scholar
  98. 98.
    J.L. Caslavsky, and D.J. Viechnicki, Melting behavior and metastability of yttrium aluminum garnet (Yag) and YAlO3 determined by optical differential thermal-analysis. J. Mater. Sci. 15(7), 1709–1718 (1980).ADSCrossRefGoogle Scholar
  99. 99.
    P. Florian et al., A multi-nuclear multiple-field nuclear magnetic resonance study of the Y2O3-Al2O3 phase diagram. J. Phys. Chem. B. 105(2), 379–391 (2001).MathSciNetCrossRefGoogle Scholar
  100. 100.
    I. Zvereva et al., Complex aluminates RE2SrAl2O7 (RE = La, Nd, Sm-Ho): Cation ordering and stability of the double perovskite slab-rocksalt layer P-2/RS intergrowth. Solid State Sci. 5(2), 343–349 (2003).ADSCrossRefGoogle Scholar
  101. 101.
    O. Fabrichnaya et al., Phase equilibria and thermodynamics in the Y2O3-Al2O3-SO2-system. Zeitschrift fur Metallkunde 92(9), 1083–1097 (2001).Google Scholar
  102. 102.
    B. Cockayne, and B. Lent, A complexity in the solidification behavior of molten Y3Al5O12. J. Cryst. Growth. 46, 371–378 (1979).ADSCrossRefGoogle Scholar
  103. 103.
    B.R. Johnson, and W.M. Kriven, Crystallization kinetics of yttrium aluminum garnet (Y3Al5O12). J. Mater. Res. 16(6), 1795–1805 (2001).ADSCrossRefGoogle Scholar
  104. 104.
    M. Gervais et al., Crystallization of y3al5o12 garnet from deep undercooled melt effect of the al-ga substitution. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 45(1–3), 108–113 (1997).Google Scholar
  105. 105.
    J.K.R. Weber et al., Growth and crystallization of YAG- and mullite-composition glass fibers. J. Eur. Ceram. Soc. 19(13–14), 2543–2550 (1999).CrossRefGoogle Scholar
  106. 106.
    J.K.R. Weber et al., Structure of liquid Y3Al5O12 (YAG). Phys. Rev. Lett. 84(16), 3622–3625 (2000).PubMedADSCrossRefGoogle Scholar
  107. 107.
    J.K.R. Weber et al., Glass formation and polyamorphism in rare-earth oxide-aluminum oxide compositions. J. Am. Ceram. Soc. 83(8), 1868–1872 (2000).CrossRefGoogle Scholar
  108. 108.
    S. Aasland, and P.F. McMillan, Density-driven liquid-liquid phase separation in the system al2o3–y2o3. Nature 369(6482), 633–636 (1994).ADSCrossRefGoogle Scholar
  109. 109.
    K. Nagashio, and K. Kuribayashi, Spherical yttrium aluminum garnet embedded in a glass matrix. J. Am. Ceram. Soc. 85(9), 2353–2358 (2002).CrossRefGoogle Scholar
  110. 110.
    A. Douy, Polyacrylamide gel: an efficient tool for easy synthesis of multicomponent oxide precursors of ceramics and glasses. Int. J. Inorg. Mater. 3(7), 699–707 (2001).CrossRefGoogle Scholar
  111. 111.
    J.J. Zhang et al., Low-temperature synthesis of single-phase nanocrystalline YAG: Eu phosphor. J. Mater. Sci. Lett. 22(1), 13–14 (2003).CrossRefGoogle Scholar
  112. 112.
    J. Marchal et al., Yttrium aluminum garnet nanopowders produced by liquid-feed flame spray pyrolysis (LF-FSP) of metalloorganic precursors. Chem. Mater. 16(5), 822–831 (2004).CrossRefGoogle Scholar
  113. 113.
    S.D. Parukuttyamma et al., Yttrium aluminum garnet (YAG) films through a precursor plasma spraying technique. J. Am. Ceram. Soc. 84(8), 1906–1908 (2001).CrossRefGoogle Scholar
  114. 114.
    S. Ramanthan et al., Processing and characterization of combustion synthesized YAG powders. Ceram. Int. 29(5), 477–484 (2003).CrossRefGoogle Scholar
  115. 115.
    M.C. Wilding, and P.F. McMillan, Polyamorphic transitions in yttria-alumina liquids. J. Non Cryst. Solids 293, 357–365 (2001).ADSCrossRefGoogle Scholar
  116. 116.
    M.C. Wilding, P.F. McMillan, and A. Navrotsky, Calorimetric study of glasses and liquids in the polyamorphic system Y2O3-Al2O3. Phys. Chem. Glasses 43(6), 306–312 (2003).Google Scholar
  117. 117.
    M.C. Wilding, P.F. McMillan, and A. Navrotsky, Thermodynamic and structural aspects of the polyamorphic transition in yttrium and other rare-earth aluminate liquids. Phys. Stat. Mech. Appl. 314(1–4), 379–390 (2002).CrossRefGoogle Scholar
  118. 118.
    J.K.R. Weber et al., Glass fibres of pure and erkium- or neodymium-doped yttria-alumina compositions. Nature 393(6687), 769–771 (1998).ADSCrossRefGoogle Scholar
  119. 119.
    M.C. Wilding, C.J. Benmore, and P.F. McMillan, A neutron diffraction study of yttrium- and lanthanum-aluminate glasses. J. Non-Cryst. Solids 297(2–3), 143–155 (2002).ADSCrossRefGoogle Scholar
  120. 120.
    J.K.R. Weber, US patent 6, 482, 758; Single phase rare earth oxide aluminum oxide glasses. 2002: US.Google Scholar
  121. 121.
    T.E. Day, and D.E. Day, Manufacturing RadSpheres. Am. Ceram. Soc. Bull. 83(8), 21–21 (2004).Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Martin C. Wilding
    • 1
  1. 1.Institute of Mathematical and Physical SciencesUniversity of WalesAberystwythUK

Personalised recommendations