• David J. Duval
  • Subhash H. Risbud
  • James F. Shackelford

Mullite is the only stable intermediate phase in the alumina-silica system at atmospheric pressure. Although this solid solution phase is commonly found in human-made ceramics, only rarely does it occur as a natural mineral. Yet mullite is a major component of aluminosilicate ceramics and has been found in refractories and pottery dating back millennia. As the understanding of mullite matures, new uses are being found for this ancient material in the areas of electronics and optics, as well as in high temperature structural products. Many of its high temperature properties are superior to those of most other metal oxide compounds, including alumina. The chemical formula for mullite is deceptively simple: 3Al2O3·2SiO2. However, the phase stability, crystallography, and stoichiometry of this material remain controversial. for this reason, research and development of mullite is presented in an historical perspective that may prove useful to engineers and scientists who encounter this material under nonequilibrium conditions in their work. Emphasis is placed on reviewing studies where the primary goal was to create single-phase mullite monoliths with near theoretical density.


Mullite Formation 27Al Nuclear Magnetic Resonance Mullite Ceramic Aluminum Nitrate Nonahydrate Mullite Crystallization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Schneider and K. MacKenzie, J. Eur. Ceram. Soc. 21, iii (2001).CrossRefGoogle Scholar
  2. 2.
    M. Tokonami, Y. Nakajima, and N. Morimoto, The diffraction aspect and a structural model of mullite, Al(Al1+2xSil−2x) O5−x, Acta Cryst. A36, 270–276 (1980).Google Scholar
  3. 3.
    J. L. Holm, On the energetics of the mullite solid-solution formation in the system Al2O3−SiO2, J. Mat. Sci. Lett. 21, 1551–1553 (2002).CrossRefGoogle Scholar
  4. 4.
    W.M. Kriven, M.H. Jilavi, D. Zhu, J.K.R. Weber, B. Cho, J. Felten, and P. C. Nordine, Synthesis and microstructure of mullite fibers grown from deeply undercooled melts, in Ceramic Microstructures: Control at the Atomic Level, A. P. Tomsia and A. M. Glaeser (eds.), Plenum, New York, NY, (1998) pp. 169–176.Google Scholar
  5. 5.
    M. Schmuecker and H. Schneider, Structural development of single phase (type I) mullite gels, J. Sol–Gel Sci. Tech. 15, 191–199 (1999).CrossRefGoogle Scholar
  6. 6.
    R.X. Fischer, H. Schneider, and M. Schmuecker, Crystal structure of Al-rich mullite, Am. Mineral.,79 (9–10), 983–990 (1994).Google Scholar
  7. 7.
    S. Freimann and S. Rahman, Refinement of the real structures of 2:1 and 3:2 mullite, J. Eur. Ceram. Soc. 21, 2453–2461 (2001).CrossRefGoogle Scholar
  8. 8.
    D.J. Cassidy, J.L. Woolfrey, and J.R. Bartlett, The effect of precursor chemistry on the crystallisation and densification of sol–gel derived mullite gels and powders, J. Sol–Gel Sci. Tech. 10, 19–30 (1997).CrossRefGoogle Scholar
  9. 9.
    I.M. Low and R. McPherson, The Origins of Mullite Formation, J. Mat. Sci. 24 (3), 926–936 (1989).CrossRefADSGoogle Scholar
  10. 10.
    A. Kumar Chakravorty and D. Kumar Ghosh, Synthesis and 980°C phase development of some mullite gels, J. Am. Ceram. Soc. 71 (11), 978–87 (1988).CrossRefGoogle Scholar
  11. 11.
    J.P. Pollinger and G.L. Messing, Metastable solid solution extension of mullite by rapid solidification, J. Mat. Res. 3 (2), 375–379 (1988).CrossRefADSGoogle Scholar
  12. 12.
    H. Schneider and T. Rymon-Lipinski, Occurrence of pseudotetragonal mullite, J. Am. Ceram. Soc. 71 (3), C162–C164 (1988).CrossRefGoogle Scholar
  13. 13.
    M. Sales and J. Alarcon, Synthesis and phase transformations of mullites obtained from SiO2−Al2O3 Gels J. Eur. Ceram. Soc. 16, 781–789 (1996).CrossRefGoogle Scholar
  14. 14.
    H. Schneider, R. X. Fischer, and D. Voll, Mullite with lattice constants a > b, J. Am. Ceram. Soc. 76 (7), 1879–1881 (1993).CrossRefGoogle Scholar
  15. 15.
    R.X. Fischer, H. Schneider, and D. Voll, Formation of aluminum rich 9:1 mullite and its transformation to low alumina mullite upon heating, J. Eur. Ceram. Soc. 16, 109–13 (1996).CrossRefGoogle Scholar
  16. 16.
    N. L. Bowen and J. W. Grieg, “The System Al2O3−SiO2,” J. Am. Ceram. Soc. 7, 238–54 (1924).CrossRefGoogle Scholar
  17. 17.
    E.C. Shears and W.A. Archibald, Aluminosilicate refractories, Iron Steel 27, 26–30 and 61–65 (1954).Google Scholar
  18. 18.
    N.A. Toropov and F. Ya. Galakhov, Solid solutions in the system Al2O3−SiO2, Izv. Aka. Nauk SSSR Otd. Khim. Nauk 1958, 8 (1958).Google Scholar
  19. 19.
    S. Aramaki and R. Roy, Revised equilibrium diagram for the system Al2O3, J. Am. Ceram. Soc. 45 (5), 229–222 (1962).CrossRefGoogle Scholar
  20. 20.
    I.A. Aksay and J. A. Pask, Stable and metastable phase equilibria in the system Al2O3−SiO2, J. Am. Ceram. Soc. 58 (11–12), 507–512 (1975).CrossRefGoogle Scholar
  21. 21.
    T.J. Mroz, Microstructural Evolution of Mullite Formed by Reaction Sintering of Sol-Gels, MS Thesis, Dept. of Cer. Eng., Alfred University, Alfred, NY, 1988.Google Scholar
  22. 22.
    J.C. Huling and G.L. Messing, Epitactic nucleation of spinel in aluminum silicate gels and effect on mullite crystallization, J. Am. Ceram. Soc. 74 (10), 2374–2381 (1991).CrossRefGoogle Scholar
  23. 23.
    S. Sundaresan and I.A. Aksay, Mullitization of diphasic aluminosilicate gels, J. Am. Ceram. Soc. 74 (10), 2388–2392 (1991).CrossRefGoogle Scholar
  24. 24.
    M.D. Sacks, Y.-J. Lin, G.W. Scheiffele, K. Wang, and N. Bozkurt, Effect of seeding on phase development, densification behavior, and microstructure evolution in mullite fabricated from microcomposite particles, J Am. Ceram. Soc. 78 (11), 2897–2906 (1995).CrossRefGoogle Scholar
  25. 25.
    R.F. Davis and J.A. Pask, Diffusion and reaction studies in the system Al2O3−SiO2, J. Am. Ceram. Soc. 55 (10), 525–531 (1972).CrossRefGoogle Scholar
  26. 26.
    S.H. Risbud and J.A. Pask, Mullite crystallization from SiO2−Al2O3 melts, J. Am. Ceram. Soc. 61 (1–2), 63–67 (1978).CrossRefGoogle Scholar
  27. 27.
    C.G. Bergeron and S.H. Risbud, Introduction to Phase Equilibria in Ceramics, Am. Ceram. Soc., Columbus, OH, 1984.Google Scholar
  28. 28.
    F.J. Klug, S. Prochazka, and R.H. Doremus, Alumina–silica phase diagram in the mullite region, J. Am. Ceram. Soc. 70, 750–759 (1987).CrossRefGoogle Scholar
  29. 29.
    J.A. Pask, The Al2O3−SiO2 system: logical analysis of phenomenological experimental data, in Ceramic Microstructures: Control at the Atomic Level, A.P. Tomsia and A.M. Glaeser (eds.), Plenum, New York, NY, 1998, pp. 255–262.Google Scholar
  30. 30.
    W.E. Worrall, Clays and Ceramic Raw Materials, Halsted Press, New York, NY, 1975, pp. 151–152.Google Scholar
  31. 31.
    D.G. Goski and W.F. Caley, Reaction sintering of kyanite and alumina to form mullite composites, Can. Metall. Q. 38 (2), 119–126 (1999).CrossRefGoogle Scholar
  32. 32.
    S. Prochazka and F.J. Klug, Infrared-transparent mullite ceramics, J. Am. Ceram. Soc.,66, 874–880 (1983).CrossRefGoogle Scholar
  33. 33.
    Y.M.M. Al-jarsha, H.G. Emblem, K. Jones, M.A. Mohd, A.B.D. Rahman, T.J. Davies, R. Wakefield, and G.K. Sargeant, Preparation, characterization and uses of mullite grain, J. Mat. Sci. 25 (6), 2873–2880 (1990).CrossRefADSGoogle Scholar
  34. 34.
    R.D. Nixon, S. Chevacharoenkul, and R.F. Davis, Creep of hot-pressed SiC-Whisker-reinforced mullite, Ceram. Trans. 6, 579–603 (1990).Google Scholar
  35. 35.
    H. Schneider, K. Okada, and J.A. Pask, Mullite and Mullite Ceramics, Wiley, New York, NY, 1994.Google Scholar
  36. 36.
    R.G. Chandran and K.C. Patil, A Rapid combustion process for the preparation of crystalline mullite powders, Materi. Lett. 10 (6), 291–295 (1990).CrossRefGoogle Scholar
  37. 37.
    M. Schmuecker and H. Schneider, Structural development of single phase (type I) mullite gels, J. Sol–Gel Sci. Tech. 15, 191–199 (1999).CrossRefGoogle Scholar
  38. 38.
    M.J. Hyatt and N.P. Bansal, Phase transformations in xerogels of mullite composition. J. Mat. Sci. 25 (6), 2815–2821 (1990).CrossRefADSGoogle Scholar
  39. 39.
    D.X. Li and W.J. Thomson, Mullite formation kinetics of a single-phase gel, J. Am. Ceram. Soc. 73 (4), 964–969 (1990).CrossRefGoogle Scholar
  40. 40.
    P. Colomban and L. Mazerolles, SiO2−Al2O3 phase diagram and mullite non-stoichiometry of sol–gel prepared monoliths: influence on mechanical properties, J. Mat. Sci. Lett. 9 (9), 1077–1079 (1990).CrossRefGoogle Scholar
  41. 41.
    J.C. Huling and G.L. Messing, Hybrid gels for homoepitactic nucleation of mullite, J. Am. Ceram. Soc. 72 (9), 1725–1729 (1989).CrossRefGoogle Scholar
  42. 42.
    K.J.D. MacKenzie, R.H. Meinhold, J.E. Patterson, H. Schneider, M. Schmuecker, and D. Voll, Structural evolution in gel-derived mullite precursors, J. Eur. Ceram. Soc. 16, 1299–1308 (1996).CrossRefGoogle Scholar
  43. 43.
    L.J. Andrews, G.H. Beall, and A. Lempicki, Luminescence of Cr3+ in mullite transparent glass ceramics, J. Lumin. 36 (2), 65–74 (1986).CrossRefGoogle Scholar
  44. 44.
    P.A. Lessing, R.S. Gordon, and K.S. Mazdiyasni, Creep of polycrystalline mullite, J. Am. Ceram. Soc. 58 (3–4), 149–150 (1975).CrossRefGoogle Scholar
  45. 45.
    W. Kollenberg and H. Schneider, Microhardness of mullite at temperatures to 1000°C, J. Am. Ceram. Soc. 72 (9), 1739–1740 (1989).CrossRefGoogle Scholar
  46. 46.
    C. Paulmann, Study of oxygen vacancy ordering in mullite at high temperature, Phase Trans. 59, 77–90 (1996).CrossRefGoogle Scholar
  47. 47.
    T. Kumazawa, S. Ohta, H. Tabata, and S. Kanzaki, Influence of chemical composition on the mechanical properties of SiO2−Al2O3 ceramics, J. Ceram. Soc. Jpn. 96, 85–91 (1988).Google Scholar
  48. 48.
    Y. Okamoto, H. Fukudome, K. Hayashi, and T. Nishikawa, Creep deformation of polycrystalline mullite, J. Eur. Ceram. Soc. 6 (3), 161–168 (1990).CrossRefGoogle Scholar
  49. 49.
    R. Torrecillas, J.M. Calderon, J.S. Moya, M.J. Reece, C.K.L. Davies, C. Olagnond, andm G. Fantozzi, Suitability of mullite for high temperature applications, J. Eur. Ceram. Soc. 19, 2519–2527 (1999).CrossRefGoogle Scholar
  50. 50.
    H. Ohira, M.G.M.U. Ismail, Y. Yamamoto, T. Akiba, and S. Somiya, Mechanical properties of high purity mullite at elevated temperatures, J. Eur. Ceram. Soc. 16, 225–229 (1996).CrossRefGoogle Scholar
  51. 51.
    H. Schneider, “Thermal Expansion of Mullite,” J. Am. Ceram. Soc. 73 [7] 2073–6 (1990).CrossRefGoogle Scholar
  52. 52.
    I. Rommerskirchen, F. Cháveza, and D. Janke, Ionic conduction behaviour of mullite (3Al2O3ċ2SiO2) at 1400 to 1600°C, Solid State Ionics 74 (3–4), 179–187 (1994).CrossRefGoogle Scholar
  53. 53.
    Y. Ikuma, E. Shimada, S. Sakano, M. Oishi, M. Yokoyama, and Z.E. Nakagawa, Oxygen self-diffusion in cylindrical single-crystal mullite, J. Electrochem. Soc. 146 (12), 4672–4675 (1999).CrossRefGoogle Scholar
  54. 54.
    P. Fielitz, G. Borchardt, M. Schmuecker, H. Schneider, and P. Willich, Measurement of oxygen grain boundary diffusion in mullite ceramics by SIMS depth profiling, Appl. Surf. Sci. 203–204, 639–643 (2003).CrossRefGoogle Scholar
  55. 55.
    Y.-M. Sung, Kinetics analysis of mullite formation reaction at high temperatures, Acta Mater. 48, 2157–2162 (2000).CrossRefGoogle Scholar
  56. 56.
    M.D. Sacks, K. Wang, G.W. Scheiffele, and N. Bozkurt, Effect of composition on mullitization behavior of α-alumina/silica microcomposite powders, J. Am. Ceram. Soc. 80 (3), 663–672 (1997).CrossRefGoogle Scholar
  57. 57.
    B.R. Johnson, W.M. Kriven, and J. Schneider, Crystal structure development during devitrification of quenched mullite, J. Eur. Ceram. Soc. 21, 2541–2562 (2001).CrossRefGoogle Scholar
  58. 58.
    T. Huang, M.N. Rahaman, T.-I. Mah, and T.A. Parthasarathay, Anisotropic grain growth and microstructural evolution of dense mullite above 1550°C, J. Am. Ceram. Soc. 83 (1), 204–210 (2000).CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • David J. Duval
    • 1
  • Subhash H. Risbud
    • 1
  • James F. Shackelford
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations