Zirconia is a very important industrial ceramic for structural applications because of its high toughness, which has proven to be superior to other ceramics. In addition, it has applications making use of its high ionic conductivity. The thermodynamically stable, room temperature form of zirconia is baddeleyite. However, this mineral is not used for the great majority of industrial applications of zirconia. The intermediate-temperature phase of zirconia, which has a tetragonal structure, can be stabilized at room temperature by the addition of modest amounts (below ∼8 mol%) of dopants such as Y3+ and Ca2+. This doped zirconia has mechanical toughness values as high as 17MPa·m1/2. On the other hand, the high-temperature phase of zirconia, which has a cubic structure, can be stabilized at room temperature by the addition of significant amounts (above ∼8 mol%) of dopants. This form of zirconia has one of the highest ionic conductivity values associated with ceramics, allowing the use of the material in oxygen sensors and solid-oxide fuel cells. Research on this material actively continues and many improvements can be expected in the years to come.


Fracture Toughness Tetragonal Phase Monoclinic Phase Tetragonal Structure High Ionic Conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Stapper, M. Bernasconi, N. Nicoloso, and M. Parrinello, Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia, Phys. Rev. B, 59(2), 797–810 (1999).CrossRefADSGoogle Scholar
  2. 2.
    J.K. Dewhurst and J.E. Lowther, Relative stability, structure, and elastic properties of several phases of pure zirconia, Phys. Rev. B, 57(2), 741–747 (1998).CrossRefADSGoogle Scholar
  3. 3.
    P. Li, I.-W. Chen, and J.E. Penner-Hahn, Effect of dopants on zirconia stabilization – An X-ray absorption study: I, trivalent dopants, J. Am. Ceram. Soc. 77(1) 118–128 (1994).CrossRefGoogle Scholar
  4. 4.
    D.W. Richerson, Modern Ceramic Engineering Properties, Processing, and Use in Design 3/e, Taylor and Francis Group, Boca Raton, 2006, p 30.Google Scholar
  5. 5.
    S.-M. Ho, On the structural chemistry of zirconium oxide, Mater. Sci. Eng. 54, 23–29 (1982).CrossRefGoogle Scholar
  6. 6.
    P. Aldebert and J.-P. Traverse, Structure and ionic mobility of zirconia at high temperature, J. Am. Ceram. Soc. 68(1), 34–40 (1985).CrossRefGoogle Scholar
  7. 7.
    P. Bouvier, E. Djurado, G. Lucazeau, and T. Le Bihan, High-pressure structural evolution of undoped tetragonal nanocrystalline zirconia, Phys. Rev. B 62(13), 8731–8737 (2000).CrossRefADSGoogle Scholar
  8. 8.
    N. Igawa and Y. Ishii, Crystal structure of metastable tetragonal zirconia up to 1473 K, J. Am. Ceram. Soc. 84(5), 1169–1171 (2001).CrossRefGoogle Scholar
  9. 9.
    G. Teufer, The crystal structure of tetragonal ZrO2, Acta Crystallogr. 15, 1187 (1962).CrossRefGoogle Scholar
  10. 10.
    M. Winterer, Reverse Monte Carlo analysis of extended x-ray absorption fine structure spectra of monoclinic and amorphous zirconia, J. Appl. Phys. 88(10), 5635–5644 (2000).CrossRefADSGoogle Scholar
  11. 11.
    P. Li, I.-W. Chen, and J.E. Penner-Hahn, X-ray-absorption studies of zirconia polymorphs. I. Characteristic local structures, Phys. Rev. B, 48(14), 10063–10073 (1993).CrossRefADSGoogle Scholar
  12. 12.
    J.D. McCullough and K.N. Trueblood, The crystal structure of baddeleyite (monoclinic ZrO2), Acta Crystallogr. 12, 507–511 (1959).CrossRefGoogle Scholar
  13. 13.
    H. Arashi, T. Suzuki, ad S.-I. Akimoto, Non-destructive phase transformation of ZrO2 single crystal at high pressure, J. Mater. Sci. Lett. 6, 106–108 (1987).CrossRefGoogle Scholar
  14. 14.
    S. Kawasaki, T. Yamanaka, S. Kume, and T. Ashida, Crystallite size effect on the pressure-induced phase transformation of ZrO2, Solid State Commun. 76(4), 527–530 (1990).CrossRefADSGoogle Scholar
  15. 15.
    S. Desgreniers and K. Lagarec, High-density ZrO2 and HfO2: Crystalline structures and equations of state, Phys. Rev. B, 59(13), 8467–8472 (1999).CrossRefADSGoogle Scholar
  16. 16.
    C.J. Howard, E.H. Kisi, and O. Ohtaka, Crystal structures of two orthorhombic zirconias, J. Am. Ceram. Soc. 74(9), 2321–2323 (1991).CrossRefGoogle Scholar
  17. 17.
    E.H. Kisi, C.J. Howard, and R.J. Hill, Crystal structure of orthorhombic zirconia in partially stabilized zirconia, J. Am. Ceram. Soc. 72(9), 1757–1760 (1989).CrossRefGoogle Scholar
  18. 18.
    O. Ohtaka, T. Yamanaka, and T. Yagi, New high-pressure and –temperature phase of ZrO2 above 1000°C at 20 GPa, Phys. Rev. B, 49(14), 9295–9298 (1994).CrossRefADSGoogle Scholar
  19. 19.
    J. Livage, K. Doi, and C. Mazieres, Hydrated zirconium oxide, J. Am. Ceram. Soc. 51(6), 349–353 (1968).CrossRefGoogle Scholar
  20. 20.
    A. Clearfield, Crystalline hydrous zirconia, Inorg. Chem. 3(1), 146–148 (1964).CrossRefGoogle Scholar
  21. 21.
    C. Landron, A. Douy, and D. Bazin, From liquid to solid: residual disorder in the local environment of oxygen-coordinated zirconium, Phys. Status Solidi B, 184, 299–307 (1994).CrossRefGoogle Scholar
  22. 22.
    A. Corina Geiculescu and H.J. Rack, Atomic-scale structure of water-based zirconia xerogels by X-ray diffraction, J. Sol–Gel Sci. Technol. 20, 13–26 (2001).CrossRefGoogle Scholar
  23. 23.
    A.V. Chadwick, G. Mountjoy, V.M. Nield, I.J.F. Poplett, M.E. Smith, J.H. Strange, and M.G. Tucker, Solid-state NMR and X-ray studies of the structural evolution of nanocrystalline zirconia, Chem. Mater. 13, 1219–1229 (2001).CrossRefGoogle Scholar
  24. 24.
    A.S. Foster, V.B. Sulimov, F. Lopez Gejo, A.L. Shluger, and R.M. Nieminen, Structure and electrical levels of point defects in monoclinic zirconia, Phys. Rev. B, 64, 224108 (2001).CrossRefADSGoogle Scholar
  25. 25.
    A. Eichler, Tetragonal Y-doped zirconia: structure and ion conductivity, Phys. Rev. B, 64, 174103 (2001).CrossRefADSGoogle Scholar
  26. 26.
    R.W. Vest, N.M. Tallan, and W.C. Tripp, Electrical properties and defect structure of zirconia: I, monoclinic phase, J. Am. Ceram. Soc. 47(12), 635–640 (1964).CrossRefGoogle Scholar
  27. 27.
    A.H. Heuer, Transformation toughening in ZrO2-containing ceramics, J. Am. Ceram. Soc. 70(10), 689–698 (1987).CrossRefGoogle Scholar
  28. 28.
    U. Messerschmidt, B. Baufeld, and D. Baither, Plastic deformation of cubic zirconia single crystals, Key Eng. Mater. 153–154, 143–182 (1998).CrossRefGoogle Scholar
  29. 29.
    R.H.J. Hannink, P.M. Kelly, and B.C. Muddle, Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc. 83(3), 461–487 (2000).CrossRefGoogle Scholar
  30. 30.
    S.-K. Chan, Y. Fang, M. Grimsditch, Z. Li, M.V. Nevitt, W.M. Robertson, and E.S. Zouboulis, Temperature dependence of the elastic moduli of monoclinic zirconia, J. Am. Ceram. Soc. 74(7), 1742–1744 (1991).CrossRefGoogle Scholar
  31. 31.
    A. Bravo-Leon, Y. Morikawa, M. Kawahara, and M.J. Mayo, Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content, Acta Mater. 50, 4555–4562 (2002).CrossRefGoogle Scholar
  32. 32.
    R.A. Cutler, J.R. Reynolds, and A. Jones, Sintering and characterization of polycrystalline monoclinic, tetragonal, and cubic zirconia, J. Am. Ceram. Soc. 75(8), 2173–2183 (1992).CrossRefGoogle Scholar
  33. 33.
    M. Levichkova, V. Mankov, N. Starbov, D. Karashanova, B. Mednikarov, and K. Starbova, Structure and properties of nanosized electron beam deposited zirconia thin films, Surf. Coat. Technol. 141, 70–77 (2001).CrossRefGoogle Scholar
  34. 34.
    T. Sakuma, Y.-I. Yoshizawa, and H. Suto, The microstructure and mechanical properties of yttria-stabilized zirconia prepared by arc-melting, J. Mater. Sci. 20, 2399–2407 (1985).CrossRefADSGoogle Scholar
  35. 35.
    G. Skandan, H. Hahn, M. Roddy, and W.R. Cannon, Ultrafine-grained dense monoclinic and tetragonal zirconia, J. Am. Ceram. Soc. 77(7), 1706–1710 (1994).CrossRefGoogle Scholar
  36. 36.
    J. Eichler, U. Eisele, and J. Rödel, Mechanical properties of monoclinic zirconia, J. Am. Ceram. Soc. 87(7), 1401–1403 (2004).CrossRefGoogle Scholar
  37. 37.
    Y.-M. Chiang, D. Birnie III, and W.D. Kingery, Physical Ceramics Principles for Ceramic Science and Engineering, Wiley, New York, 1997, p. 484.Google Scholar
  38. 38.
    D.W. Richerson, Modern Ceramic Engineering Properties, Processing, and Use in Design 3/e Taylor and Francis Group, Boca Raton, 2006, pp. 275, 643.Google Scholar
  39. 39.
    G. Stefanic and S. Music, Factors influencing the stability of low temperature tetragonal ZrO2, Croat. Chem. Acta 75(3), 727–767 (2002).Google Scholar
  40. 40.
    H.S. Maiti, K.V.G.K. Gokhale, and E.C. Subbarao, Kinetics and burst phenomenon in ZrO2 transformation, J. Am. Ceram. Soc. 55(6), 317–322 (1972).CrossRefGoogle Scholar
  41. 41.
    A.H. Heuer, N. Claussen, W.M. Kriven, and M. Rühle, Stability of tetragonal ZrO2 particles in ceramic matrices, J. Am. Ceram. Soc. 65(12), 642–650 (1982).CrossRefGoogle Scholar
  42. 42.
    M.H. Bocanegra-Bernal and S. Diaz De La Torre, Review. Phase transitions in zirconium dioxide and related materials for high performance engineering materials, J. Mater. Sci. 37, 4947–4971 (2002).CrossRefGoogle Scholar
  43. 43.
    A.G. Evans, N. Burlingame, M. Drory, and W.M. Kriven, Martensitic transformations in zirconia–particle size effects and toughnening, Acta Metall. 29, 447–456 (1981).CrossRefGoogle Scholar
  44. 44.
    A.G. Evans and A.H. Heuer, Review – Transformation toughening in ceramics: Martensitic transformations in crack-tip stress fields, J. Am. Ceram. Soc. 63(5–6), 241–248 (1980).CrossRefGoogle Scholar
  45. 45.
    D.W. Richerson, Modern Ceramic Engineering Properties, Processing, and Use in Design Taylor and Francis Group, Boca Raton, 2006, pp. 635, 640–644.Google Scholar
  46. 46.
    T.K. Gupta, F.F. Lange, and J.H. Bechtold, Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase, J. Mater. Sci. 13(7), 1464–1470 (1978).CrossRefADSGoogle Scholar
  47. 47.
    Y.-M. Chiang, D. Birnie III, and W.D. Kingery, Physical Ceramics Principles for Ceramic Science and Engineering, Wiley, New York, 1997, pp. 488–492.Google Scholar
  48. 48.
    M.J. Roddy, W.R. Cannon, G. Skandan, and H. Hahn, Creep behavior of nanocrystalline monoclinic ZrO2, J. Eur. Ceram. Soc. 22, 2657–2662 (2002).CrossRefGoogle Scholar
  49. 49.
    M. Yoshida, Y. Shinoda, T. Akatsu, and F. Wakai, Superplasticity-like deformation of nanocrystalline monoclinic zirconia at elevated temperatures, J. Am. Ceram. Soc. 87(6), 1122–1125 (2004).CrossRefGoogle Scholar
  50. 50.
    J.D. Comins, P.E. Ngoepe, and C.R.A. Catlow, Brillouin-scattering and computer-simulation studies of fast-ion conductors. A review, J. Chem. Soc. Faraday Trans. 86(8), 1183–1192 (1990).CrossRefGoogle Scholar
  51. 51.
    R.W. Vest and N.M. Tallan, Electrical properties and defect structure of zirconia: II, tetragonal phase and inversion, J. Am. Ceram. Soc. 48(9), 472–475 (1965).CrossRefGoogle Scholar
  52. 52.
    A. Kumar, D. Rajdev, and D.L. Douglass, Effect of oxide defect structure on the electrical properties of ZrO2, J. Am. Ceram. Soc. 55(9), 439–445 (1972).CrossRefGoogle Scholar
  53. 53.
    R.W. Vest, N.M. Tallan, and W.C. Tripp, Electrical properties and defect structure of zirconia: I, monoclinic phase, J. Am. Ceram. Soc. 47(12), 635–640 (1964).CrossRefGoogle Scholar
  54. 54.
    P. Kofstad and D.J. Ruzicka, On the defect structure of ZrO2 and HfO2, J. Electrochem. Soc. 110(3), 181–184 (1963).CrossRefGoogle Scholar
  55. 55.
    E. Dow Whitney, Electrical resistivity and diffusionless phase transformation of zirconia at high temperatures and ultrahigh pressures, J. Electrochem. Soc. 112(1), 91–94 (1965).CrossRefGoogle Scholar
  56. 56.
    O. Ohtaka, S. Kume, and E. Ito, Stability field of cotunnite-type zirconia, J. Am. Ceram. Soc. 73(3), 744–745 (1990).CrossRefGoogle Scholar
  57. 57.
    A. Madeyski and W.W. Smeltzer, Oxygen diffusion in monoclinic zirconia, Mater. Res. Bull. 3, 369–376 (1968).CrossRefGoogle Scholar
  58. 58.
    F.J. Keneshea and D.L. Douglas, The diffusion of oxygen in zirconia as a function of oxygen pressure, Oxidation Met. 3(1), 1–14 (1971).CrossRefGoogle Scholar
  59. 59.
    Y. Ikuma, K. Komatsu, and W. Komatsu, Oxygen diffusion in monoclinic ZrO2, undoped and doped with Y2O3, Adv. Ceram. 24, 749–758 (1988).Google Scholar
  60. 60.
    C.A.J. Fisher and H. Matsubara, Molecular dynamics investigations of grain boundary phenomena in cubic zirconia, Comput. Mater. Sci. 14, 177–184 (1999).CrossRefGoogle Scholar
  61. 61.
    Y. Moriya and A. Navrotsky, High-temperature calorimetry of zirconia: heat capacity and thermodynamics of the monoclinic-tetragonal phase transition, J. Chem. Thermodyn. 38, 211–223 (2006).CrossRefGoogle Scholar
  62. 62.
    H. Boysen, F. Frey, and T. Vogt, Neutron powder investigation of the tetragonal to monoclinic phase transformation in undoped zirconia, Acta Crystallogr. B, 47, 881–886 (1991).CrossRefGoogle Scholar
  63. 63.
    R. Ruh, H.J. Garrett, R.F. Domagala, and N.M. Tallan, The system zirconia-hafnia, J. Am. Ceram. Soc. 51(1), 23–27 (1968).CrossRefGoogle Scholar
  64. 64.
    G.M. Wolten, Diffusionless phase transformations in zirconia and hafnia, J. Am. Ceram. Soc. 46(9), 418–422 (1963).CrossRefGoogle Scholar
  65. 65.
    W.L. Baun, Phase transformation at high temperatures in hafnia and zirconia, Science, 140(3573), 1330–1331 (1963).CrossRefPubMedADSGoogle Scholar
  66. 66.
    A. Benyagoub, F. Levesque, F. Couvreur, C. Gibert-Mougel, C. Dufour, and E. Paumier, Evidence of a phase transition induced in zirconia by high energy heavy ions, Appl. Phys. Lett. 77(20), 3197–3199 (2000).CrossRefADSGoogle Scholar
  67. 67.
    K.E. Sickafus, H. Matzke, T. Hartmann, K. Yasuda, J.A. Valdez, P. Chodak III, M. Nastasi, and R.A. Verrall, Radiation damage effects in zirconia, J. Nucl. Mater. 274, 66–77 (1999).CrossRefADSGoogle Scholar
  68. 68.
    A. Navrotsky, L. Benoist, and H. Lefebvre, Direct calorimetric measurement of enthalpies of phase transitions at 2000–2400°C in yttria and zirconia, J. Am. Ceram. Soc. 88(10), 2942–2944 (2005).Google Scholar
  69. 69.
    J.E. Bailey, The monoclinic-tetragonal transformation and associated twinning in thin films of zirconia, Proc. Roy. Soc. Lon. Ser. A, Math. Phys. Sci. 279(1378), 395–412 (1964).CrossRefADSGoogle Scholar
  70. 70.
    S.T. Buljan, H.A. McKinstry, and V.S. Stubican, Optical and X-ray single crystal studies of the monoclinic tetragonal transition in ZrO2, J. Am. Ceram. Soc. 59(7–8), 351–354 (1976).CrossRefGoogle Scholar
  71. 71.
    R.N. Patil and E.C. Subbarao, Monoclinic-tetragonal phase transition in zirconia: Mechanism, pretransformation and coexistence, Acta Crystallogr. A 26, 535–542 (1970).CrossRefADSGoogle Scholar
  72. 72.
    F. Frey, H. Boysen, and T. Vogt, Neutron powder investigation of the monoclinic to tetragonal phase transformation in undoped zirconia, Acta Crystallogr. B 46, 724–730 (1990).CrossRefGoogle Scholar
  73. 73.
    E.C. Subbarao, H.S. Maiti, and K.K. Srivastava, Martensitic transformation in zirconia, Phys. Status Solidi A 21, 9–40 (1974).CrossRefGoogle Scholar
  74. 74.
    G.K. Bansal and A.H. Heuer, On a martensitic phase transformation in zirconia (ZrO2)-I. Metallographic evidence, Acta Metall. 20, 1281–1289 (1972).CrossRefGoogle Scholar
  75. 75.
    G.K. Bansal and A.H. Heuer, On a martensitic phase transformation in zirconia (ZrO2)-II. Crystallographic aspects, Acta Metall. 22, 409–417 (1974).CrossRefGoogle Scholar
  76. 76.
    P.M. Kelly, Martensitic transformations in ceramics, Mater. Sci. Forum, 56–58, 335–346 (1990).CrossRefGoogle Scholar
  77. 77.
    D. Huang, K.R. Venkatachari, and G.C. Stangle, Influence of yttria content on the preparation of nanocrystalline yttria-doped zirconia, J. Mater. Res. 10(3), 762–773 (1995).CrossRefADSGoogle Scholar
  78. 78.
    V.S. Stubican, R.C. Hink, and S.P. Ray, Phase equilibria and ordering in the system ZrO2–Y2O3, J. Am. Ceram. Soc. 61(1–2), 17–21 (1978).CrossRefGoogle Scholar
  79. 79.
    V.S. Stubican and S.P. Ray, Phase equilibria and ordering in the system ZrO2–CaO, J. Am. Ceram. Soc. 60(11–12), 534–537 (1977).CrossRefGoogle Scholar
  80. 80.
    C.F. Grain, Phase relations in the ZrO2–MgO system, J. Am. Ceram. Soc. 50(6), 288–290 (1967).CrossRefGoogle Scholar
  81. 81.
    I. Cohen and B.E. Schaner, A metallographic and x-ray study of the UO2–ZrO2 system, J. Nucl. Mater. 9(1), 18–52 (1963).CrossRefADSGoogle Scholar
  82. 82.
    F.A. Mumpton and R. Roy, Low-temperature equilibria among ZrO2, ThO2, and UO2, J. Am. Ceram. Soc. 43, 234–240 (1960).CrossRefGoogle Scholar
  83. 83.
    W.W. Barker, F.P. Bailey, and W. Garrett, A high-temperature neutron diffraction study of pure and scandia-stabilized zirconia, J. Solid State Chem. 7, 448–453 (1973).CrossRefADSGoogle Scholar
  84. 84.
    P. Duwez and F. Odell, Phase relationships in the system zirconia-ceria, J. Am. Ceram. Soc. 33(9), 274–283 (1950).CrossRefGoogle Scholar
  85. 85.
    T. Chraska, A.H. King, and C.C. Berndt, On the size-dependent phase transformation in nanoparticulate zirconia, Mater. Sci. Eng. A 286, 169–178 (2000).CrossRefGoogle Scholar
  86. 86.
    R.C. Garvie, Stabilization of the tetragonal structure in zirconia microcrystals, J. Phys. Chem. 82(2), 218–224 (1978).CrossRefGoogle Scholar
  87. 87.
    A. Suresh, M.J. Mayo, and W.D. Porter, Thermodynamics of the tetragonal-to-monoclinic phase transformation in fine and nanocrystalline yttria-stabilized zirconia powders, J. Mater. Res. 18(12), 2912–2921 (2003).CrossRefADSGoogle Scholar
  88. 88.
    A. Suresh, M.J. Mayo, W.D. Porter, and C.J. Rawn, Crystallite and grain-size-dependent phase transformations in yttria-doped zirconia, J. Am. Ceram. Soc. 86(2), 360–362 (2003).CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Olivia A. Graeve
    • 1
  1. 1.Department of Chemical and Metallurgical EngineeringUniversity of NevadaRenoUSA

Personalised recommendations