The uses, processing, structure, and properties of alumina are summarized in this article. Various polymorphs of alumina and its phase relations with other oxides are described. The following properties are discussed: mechanical, thermal, thermodynamic, electrical, diffusional, chemical, and optical. Quantitative values for these properties are given in tables. The usefulness of alumina results from its high strength, melting temperature, abrasion resistance, optical transparency, and electrical resistivity. Traditional uses of alumina because of these properties are furnace components, cutting tools, bearings, and gem stones; more recent applications include catalyst substrates, tubes for arc lamps, and laser hosts. Possible new uses of alumina are in electronic circuits, optical components, and biomaterials. Alumina fibers for composites and optics must be pure, defect free, and cheap.


Gibbs Free Energy Creep Rate Abrasion Resistance Alumina Powder American Ceramic Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.D. Hart (ed.), Alumina Chemicals, The American Ceramic Society, Westerville, OH, 1990.Google Scholar
  2. 2.
    W.H. Gitzen, Alumina as a Ceramic Material, The American Ceramic Society, Westerville, OH, 1970.Google Scholar
  3. 3.
    Emphasizes defects and interfaces, especially grain boundaries, in alumina, J. Am. Ceram. Soc. 77, [2] (1994).Google Scholar
  4. 4.
    Emphasizes grain boundaries, grain growth, and diffusion in alumina, J. Am. Ceram. Soc. 86 [4] (2003).Google Scholar
  5. 5.
    P. Richet, J.A. Xu, and H.K. Mao, Quasi-hydrostatic compression of ruby to 500 kbar, Phys. Chem. Min. 16, 207–211 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    A.P. Jephcoat, R.J. Hemley, H.K. Mao, and K.A. Goettel, X-ray diffraction of ruby (Al2O3. Cr3+) to 175 GPa, Physica B 150, 115–121 (1988).CrossRefGoogle Scholar
  7. 7.
    K.T. Thomson, R.M. Wentzcovitch, and M.S.T. Bukowinski, Polymorphs of alumina predicted by first principles, Science 274, 1880–1882 (1996).PubMedADSCrossRefGoogle Scholar
  8. 8.
    A.H. Carim, G.S. Rohrer, N.R. Dando, S.Y. Tzeng, C.L. Rohrer, and A.J. Perrotta, Conversion of diaspore to corundum, J. Am. Ceram. Soc. 80, 2677–80 (1997).CrossRefGoogle Scholar
  9. 9.
    R.L. Coble, Transparent Alumina and Method of Preparation, U.S. Patent 3, 026, 210, March 20 (1967).Google Scholar
  10. 10.
    F.J. Klug, S. Prochazka, and R.H. Doremus, Alumina-silica phase diagram in the mullite region, J. Am. Ceram. Soc. 70, 750–759 (1987).CrossRefGoogle Scholar
  11. 11.
    E.N. Bunting, Phase equilibrium in the system Cr3O3–Al2O3, Bur. Stand. J. Res. 6, 947–949 (1931).Google Scholar
  12. 12.
    E.M. Levin, C.R. Robbins, and H.F. McMurdie, Phase Diagrams for Ceramists, Vol. I–XIII, The American Ceramic Society, 1964–2002.Google Scholar
  13. 13.
    D.M. Roy and R.E. Barks, Subsolidus phase equilibrium in Al2O3–Cr2O3, Nature,235, 118–119 (1972).ADSGoogle Scholar
  14. 14.
    C. Greskovich and J.A. Brewer, Solubility of magnesia in polycrystalline alumina at high temperatures, J. Am. Ceram. Soc. 84, 420–425 (2001).CrossRefGoogle Scholar
  15. 15.
    J.H. Gieske and G.R. Barsch, Pressure dependence of the elastic constants of single crystalline aluminum oxide, Phys. Status Solidi 29, 121–131 (1967).CrossRefGoogle Scholar
  16. 16.
    A. Kelly, Strong Solids, Chap. 1, Oxford University Press, London, 1973.Google Scholar
  17. 17.
    S.M. Wiederhorn in Mechanical and Thermal Properties of Ceramics, J.B. Wachtman, (ed.), NBS Special Publications 303, U.S. GPO, Washington, D.C., 1969, p. 217.Google Scholar
  18. 18.
    R.H. Doremus, Cracks and energy-criteria for brittle fracture, J. Appl. Phys. 47, 1833–1836 (1976).ADSCrossRefGoogle Scholar
  19. 19.
    R.H. Doremus, Fracture statistics: A comparison of the normal, Weibull and type I extreme value distributions, J. Appl. Phys. 54, 193–201 (1983).ADSCrossRefGoogle Scholar
  20. 20.
    S.C. Carniglia, Reexamination of experimental strength – vs. – grain – size data for ceramics. J. Am. Ceram. Soc. 55, 243 (1972).CrossRefGoogle Scholar
  21. 21.
    J.E. Burke, R.H. Doremus, W.B. Hillig, and A.M. Turkalo, Static Fatigue in Glasses and Alumina, in Materials Sci. Res. Vol. 5, W.W. Kriegel (ed.), Plenum Press, New York, 1971, pp. 435–444.Google Scholar
  22. 22.
    N.W. Thibault and H.Z. Nyquist, The measured Knoop hardness of hard substances and factors affecting its determination, Trans. Am. Soc. Metals 38, 271–330 (1947).Google Scholar
  23. 23.
    W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, Wiley, New York (1976).Google Scholar
  24. 24.
    W.R. Cannon and T.G. Langdon, Creep of Ceramics, J. Mater. Sci. 18, 1–50 (1983); 23, 1–20 (1988).ADSCrossRefGoogle Scholar
  25. 25.
    A.H. Hynes and R.H. Doremus, Theories of creep in ceramics, Crit. Rev. Solid State Mater. Sci. 21, 1–59 (1996).CrossRefGoogle Scholar
  26. 26.
    M.L. Kronberg, Plastic deformation of single crystals of sapphire: Basal slip and twinning, Aeta Met. 5, 507–529 (1957).CrossRefGoogle Scholar
  27. 27.
    J.D. Snow and A.H. Heuer, Slip systems in Al2O3, J. Am. Ceram. Soc. 56, 153–157 (1973).CrossRefGoogle Scholar
  28. 28.
    M.W. Chase, NIST – JAVAF Thermochemical Tables, J. Phys. Chem. Ref. Data, Monograph 9.Google Scholar
  29. 29.
    R.H. Tamoreaux, D.L. Hildenbrand and L. Brewer, High temperature vaporization behavior of oxides, J. Phys. Chem. Ref. Data 16, 412 (1987).Google Scholar
  30. 30.
    L. Brewer and A.W. Searcy, Gaseous species of the Al–Al2O3 system, J. Am. Chem. Soc. 73, 5308–5314 (1951).CrossRefGoogle Scholar
  31. 31.
    R.V. Gains, H.C.W. Skinner, E.E. Foord, B. Mason, and A. Rosenzweig, Dana’s New Mineralogy, Wiley, New York, 1977, p. 214.Google Scholar
  32. 32.
    E. Schreiber and O.L. Anderson, Pressure derivatives of the sound velocities of polycrystalline alumina, J. Am. Ceram. Soc. 49, 184–190 (1966).CrossRefGoogle Scholar
  33. 33.
    J. Pappis and W.D. Kingery, Electrical properties of single and polycrystalline alumina at high temperatures, J. Am. Ceram. Soc. 44, 459 (1961).CrossRefGoogle Scholar
  34. 34.
    F.G. Will, H.G. Lorenzi, and K.H. Janora, J. Am. Ceram. Soc. 75, 295–304, 2790–2791 (1992).CrossRefGoogle Scholar
  35. 35.
    O.T. Özkan and A.J. Moulson, The electrical conductivity of single crystal and polycrystalline aluminum oxide, British J. Appl. Phys. 3, 983 (1970).ADSGoogle Scholar
  36. 36.
    H.P.R. Frederike and W.R. Hosler, High temperature electrical conductivity of aluminum oxide, Mater. Sci. Res. 9, 233 (1973).Google Scholar
  37. 37.
    K. Kituzawa and R.L. Coble, Electrical conduction in single crystal and polycrystalline Al2O3 at high temperature, J. Am. Ceram. Soc. 57, 245 (1979).CrossRefGoogle Scholar
  38. 38.
    H.M. Kizilyalli and P.R. Mason, DC and AC electrical conduction in single crystal alumina, Phys. Status Solidi 36, 499 (1976).CrossRefGoogle Scholar
  39. 39.
    E.E. Shpilrain, D.N. Kagan, L.S. Barkhatov, and L.I. Zhmakin, The electrical conductivity of alumina near the melting point, High Temperatures–High Pressures 8, 177 (1976).Google Scholar
  40. 40.
    R. Ramirez, R. Gonzalez, J. Colera, and Y. Chen, Electric-field-enhanced diffusion of deuterons and protons in α-Al2O3 crystals, Phys. Rev. B 55, 237–242 (1997).ADSCrossRefGoogle Scholar
  41. 41.
    R.H. Doremus, Diffusion in Alumina, J. Appl. Phys. 101, 101301 (2006).ADSCrossRefGoogle Scholar
  42. 42.
    J.D. Fowler, D. Chandra, T.S. Elleman, A.W. Payne, and K. Verghese, Tritium diffusion in Al2O3 and BeO, J. Am. Ceram. Soc. 60, 55 (1977).CrossRefGoogle Scholar
  43. 43.
    V.S. Stubican and J.W. Orenbach, Influence of anisotropy and doping on grain-boundary diffusion in oxide systems, Solid State Ionics 12, 375 (1984).CrossRefGoogle Scholar
  44. 44.
    X. Tang, and K.P.D. Lagerof, and A.H. Heuer, Determination of pipe diffusion coefficients in undoped and magnesia doped sapphire (α-Al2O3); a study based on annihilation of dislocation dipoles, J. Am. Ceram. Soc. 86, 560–565 (2003).CrossRefGoogle Scholar
  45. 45.
    D.R. Gaskell, Introduction to the Thermodynamics of Materials, 4th edn., Taylor and Francis, New York, 2003.Google Scholar
  46. 46.
    L.S. Darken and N.W. Gurry, Physical Chemistry of Metals, McGraw-Hill, New York, 1953.Google Scholar
  47. 47.
    A. Paul, Chemistry of Glasses, Chapman and Hall, London, 1982, p. 157.Google Scholar
  48. 48.
    R.H. Doremus, Diffusion of Reactive Molecules in Solids and Melts, Wiley, New York, 2002, pp. 71, 191.Google Scholar
  49. 49.
    M.E. Thomas and W.J. Tropf in Handbook of Optical Constants of Solids III, E.D. Palik (ed.), Academic Press, New York, 1998, p. 653.Google Scholar
  50. 50.
    L.H. Malitson and M.J. Dodge, Refractive index and birefringence of synthetic sapphire, J. Opt. Soc. Am. 62, 1405 (1972).Google Scholar
  51. 51.
    K. Nassau, The Physics and Chemistry of Color, Wiley, New York, 1983.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Robert H. Doremus
    • 1
  1. 1.Department of Materials Science and EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations