Advertisement

Apoptosis-Inducing Factor Translocation to Nuclei After Transient Global Ischemia

  • Can Liu
  • Armando P. Signore
  • Guodong Cao
  • Jun Chen
Chapter

Abstract

Global cerebral ischemia produces both acute and delayed neuronal cell death. The loss of mitochondrial membrane integrity and the subsequent release of apoptogenic factors are critical in mediating the intrinsic, or mitochondrial, neurodegenerative pathway (Fujimura et al. 1999; Sugawara et al. 1999; Cao et al. 2003). Both caspase-dependent and -independent prodeath effector pathways can be initiated by the intrinsic pathway (Graham and Chen 2001). The key signaling molecule, released by mitochondria that initiates the caspase-independent route is apoptosis-inducing factor (AIF), a mitochondrial-specific flavoprotein that normally resides in the intermembrane space. Following global ischemia, AIF is truncated by calpain, allowing it to translocate from compromised mitochondria to the nucleus, where it degrades the nuclear genome (Fig. 9.1a–f). Along with freed AIF, endonuclease G (EndoG) is also released from mitochondria and mediates early chromatinolysis in neurons (Susin et al. 1999).

Keywords

Mitochondrial Permeability Transition Pore Global Ischemia Global Cerebral Ischemia Transient Focal Cerebral Ischemia Transient Global Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. Bioessays 26:882–893PubMedCrossRefGoogle Scholar
  2. Arrington DD, Van Vleet TR, Schnellmann RG (2006) Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol Cell Physiol 291:C1159–C1171PubMedCrossRefGoogle Scholar
  3. Belizario JE, Alves J, Occhiucci JM, Garay-Malpartida M, Sesso A (2007) A mechanistic view of mitochondrial death decision pores. Braz J Med Biol Res 40:1011–1024PubMedCrossRefGoogle Scholar
  4. Blomgren K, Zhu CL, Wang XY, Karlsson JO, Leverin AL, Bahr BA, Mallard C, Hagberg H (2001) Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia – A mechanism of “pathological apoptosis”? J Biol Chem 276:10191–10198PubMedCrossRefGoogle Scholar
  5. Boujrad H, Gubkina O, Robert N, Krantic S, Susin SA (2007) AIF-mediated programmed necrosis – A highly regulated way to die. Cell Cycle 6:2612–2619PubMedCrossRefGoogle Scholar
  6. Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang GP, Iyer S, Smulson M (1999) Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis – Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 274:22932–22940PubMedCrossRefGoogle Scholar
  7. Breckenridge DG, Xue D (2004) Regulation of mitochondrial membrane premeabilization by BCL-2 family proteins and caspases. Curr Opin Cell Biol 16:647–652PubMedCrossRefGoogle Scholar
  8. Bredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443:796–802PubMedCrossRefGoogle Scholar
  9. Cande C, Cohen I, Daugas E, Ravagnan L, Larochette N, Zamzami N, Kroemer G (2002) Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 84:215–222PubMedCrossRefGoogle Scholar
  10. Cande C, Vahsen N, Kouranti I, Schmitt E, Daugas E, Spahr C, Luban J, Kroemer RT, Giordanetto F, Garrido C, Penninger JM, Kroemer G (2004) AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene 23:1514–1521PubMedCrossRefGoogle Scholar
  11. Cao GD, Clark RSB, Pei W, Yin W, Zhang F, Sun FY, Graham SH, Chen J (2003) Translocation of apoptosis-inducing factor in vulnerable neurons after transient cerebral ischemia and in neuronal cultures after oxygen-glucose deprivation. J Cereb Blood Flow Metab 23:1137–1150PubMedCrossRefGoogle Scholar
  12. Cao GD, Xing J, Xiao X, Liou AKF, Gao YQ, Yin XM, Clark RSB, Graham SH, Chen J (2007) Critical role of calpain I in mitochondrial release of apoptosis-inducing factor in ischemic neuronal injury. J Neurosci 27:9278–9293PubMedCrossRefGoogle Scholar
  13. Chen J, Jin KL, Chen MZ, Pei W, Kawaguchi K, Greenberg DA, Simon RP (1997) Early detection of DNA strand breaks in the brain after transient focal ischemia: Implications for the role of DNA damage in apoptosis and neuronal cell death. J Neurochem 69:232–245PubMedCrossRefGoogle Scholar
  14. Cheung ECC, Joza N, Steenaart NAE, McClellan KA, Neuspiel M, McNamara S, MacLaurin JG, Rippstein P, Park DS, Shore GC, McBride HM, Penninger JM, Slack RS (2006) Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. EMBO J 25:4061–4073PubMedCrossRefGoogle Scholar
  15. Cipriani G, Rapizzi E, Vannacci A, Rizzuto R, Moroni F, Chiarugi A (2005) Nuclear poly(ADP-ribose) polymerase-1 rapidly triggers mitochondrial dysfunction. J Biol Chem 280:17227–17234PubMedCrossRefGoogle Scholar
  16. Cregan SP, Fortin A, MacLaurin JG, Callaghan SM, Cecconi F, Yu SW, Dawson TM, Dawson VL, Park DS, Kroemer G, Slack RS (2002) Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol 158:507–517PubMedCrossRefGoogle Scholar
  17. Culmsee C, Zhu CL, Landshamer S, Becattini B, Wagner E, Pellecchia M, Blomgren K, Plesnila N (2005) Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci 25:10262–10272PubMedCrossRefGoogle Scholar
  18. Demurcia G, Menissier J (1994) Poly(ADP-ribose) polymerase – a molecular nick-sensor (1994;19:172). Trends Biochem Sci 19:250–250CrossRefGoogle Scholar
  19. El Ghouzzi V, Csaba Z, Olivier P, Lelouvier B, Schwendimann L, Dournaud P, Verney C, Rustin P, Gressens P (2007) Apoptosis-inducing factor deficiency induces early mitochondrial degeneration in brain followed by progressive Multifocal neuropathology. J Neuropathol Exp Neurol 66:838–847PubMedCrossRefGoogle Scholar
  20. Eliasson MJL, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3:1089–1095PubMedCrossRefGoogle Scholar
  21. Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA (1997) Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab 17:1143–1151PubMedCrossRefGoogle Scholar
  22. Fujimura M, Morita-Fujimura Y, Kawase M, Copin JC, Calagui B, Epstein CJ, Chan PH (1999) Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome C and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J Neurosci 19:3414–3422PubMedGoogle Scholar
  23. Garcia M, Bondada V, Geddes JW (2005) Mitochondrial localization of mu-calpain. Biochem Biophys Res Commun 338:1241–1247PubMedCrossRefGoogle Scholar
  24. Giffard RG, Yenari MA (2004) Many mechanisms for Hsp70 protection from cerebral ischemia. J Neurosurg Anesthesiol 16:53–61PubMedCrossRefGoogle Scholar
  25. Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32:37–43PubMedCrossRefGoogle Scholar
  26. Goto S, Xue R, Sugo N, Sawada M, Blizzard KK, Poitras MF, Johns DC, Dawson TM, Dawson VL, Crain BJ, Traystman RJ, Mori S, Hurn PD (2002) Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery. Stroke 33:1101–1106PubMedCrossRefGoogle Scholar
  27. Graham SH, Chen J (2001) Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab 21:99–109PubMedCrossRefGoogle Scholar
  28. Gross A, Yin XM, Wang K, Wei MC, Jockel J, Millman C, Erdjument-Bromage H, Tempst P, Korsmeyer SJ (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-X-L prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274:1156–1163PubMedCrossRefGoogle Scholar
  29. Gurbuxani S, Schmitt E, Cande C, Parcellier A, Hammann A, Daugas E, Kouranti I, Spahr C, Pance A, Kroemer G, Garrido C (2003) Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene 22:6669–6678PubMedCrossRefGoogle Scholar
  30. Ha HC (2004) Defective transcription factor activation for proinflammatory gene expression in poly(ADP-ribose) polymerase 1-deficient glia. Proc Natl Acad Sci U S A 101:5087–5092PubMedCrossRefGoogle Scholar
  31. Ha HC, Snyder SH (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A 96:13978–13982PubMedCrossRefGoogle Scholar
  32. Hamby AM, Suh SW, Kauppinen TM, Swanson RA (2007) Use of a poly (ADP-ribose) polymerase inhibitor to suppress inflammation and neuronal death after cerebral ischemia-reperfusion. Stroke 38:632–636PubMedCrossRefGoogle Scholar
  33. Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226:544–547PubMedCrossRefGoogle Scholar
  34. Herceg Z, Wang ZQ (1999) Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis. Mol Cell Biol 19:5124–5133PubMedGoogle Scholar
  35. Jin KL, Chen J, Nagayama T, Chen MZ, Sinclair J, Graham SH, Simon RP (1999) In situ detection of neuronal DNA strand breaks using the Klenow fragment of DNA polymerase I reveals different mechanisms of neuron death after global cerebral ischemia. J Neurochem 72:1204–1214PubMedCrossRefGoogle Scholar
  36. Kato M, Nonaka T, Maki M, Kikuchi H, Imajoh-Ohmi S (2000) Caspases cleave the amino-terminal calpain inhibitory unit of calpastatin during apoptosis in human Jurkat T cells. J Biochem 127:297–305PubMedGoogle Scholar
  37. Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, Bronson RT, Ackerman SL (2002) The harlequin mouse mutation down-regulates apoptosis-inducing factor. Nature 419:367–374PubMedCrossRefGoogle Scholar
  38. Lee BI, Lee DJ, Cho KJ, Kim GW (2005) Early nuclear translocation of endonuclease G and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Neurosci Lett 386:23–27PubMedCrossRefGoogle Scholar
  39. Li JH, Grynspan F, Berman S, Nixon R, Bursztajn S (1996) Regional differences in gene expression for calcium activated neutral proteases (calpains) and their endogenous inhibitor calpastatin in mouse brain and spinal cord. J Neurobiol 30:177–191PubMedCrossRefGoogle Scholar
  40. Li X, Nemoto M, Xu Z, Yu SW, Shimoji M, Andrabi SA, Haince JF, Poirier GG, Dawson TM, Dawson VL, Koehler RC (2007) Influence of duration of focal cerebral ischemia and neuronal nitric oxide synthase on translocation of apoptosis-inducing factor to the nucleus. Neuroscience 144:56–65PubMedCrossRefGoogle Scholar
  41. Liou AKF, Zhou ZG, Pei W, Lim TM, Yin XM, Chen J (2005) BimEL up-regulation potentiates AIF translocation and cell death in response to MPTP. FASEB J 19:1350–1352PubMedGoogle Scholar
  42. McCullough LD, Zeng ZY, Blizzard KK, Debchoudhury I, Hurn PD (2005) Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab 25:502–512PubMedCrossRefGoogle Scholar
  43. McGinnis KM, Gnegy ME, Park YH, Mukerjee N, Wang KKW (1999) Procaspase-3 and poly(ADP)ribose polymerase (PARP) are calpain substrates. Biochem Biophys Res Commun 263:94–99PubMedCrossRefGoogle Scholar
  44. Montague JW, Hughes FM, Cidlowski JA (1997) Native recombinant cyclophilins A, B, and C degrade DNA independently of peptidylprolyl cis-trans-isomerase activity – Potential roles of cyclophilins in apoptosis. J Biol Chem 272:6677–6684PubMedCrossRefGoogle Scholar
  45. Muller GJ, Lassmann H, Johansen FF (2007) Anti-apoptotic signaling and failure of apoptosis in the ischemic rat hippocampus. Neurobiol Dis 25:582–593PubMedCrossRefGoogle Scholar
  46. Nagayama T, Simon RP, Chen DX, Henshall DC, Pei W, Stetler RA, Chen J (2000) Activation of poly(ADP-Ribose) polymerase in the rat hippocampus may contribute to cellular recovery following sublethal transient global ischemia. J Neurochem 74:1636–1645PubMedCrossRefGoogle Scholar
  47. Newbern J, Taylor A, Robinson M, Lively MO, Milligan CE (2007) c-Jun N-terminal kinase signaling regulates events associated with both health and degeneration in motoneurons. Neuroscience 147:680–692PubMedCrossRefGoogle Scholar
  48. Otera H, Ohsakaya S, Nagaura ZI, Ishihara N, Mihara K (2005) Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J 24:1375–1386PubMedCrossRefGoogle Scholar
  49. Ozaki T, Tomita H, Tamai M, Ishiguro SI (2007) Characteristics of mitochondrial calpains. J Biochem 142:365–376PubMedCrossRefGoogle Scholar
  50. Pagnussat AD, Faccioni-Heuser MC, Netto CA, Achaval M (2007) An ultrastructural study of cell death in the CA1 pyramidal field of the hippocapmus in rats submitted to transient global ischemia followed by reperfusion. J Anat 211:589–599PubMedCrossRefGoogle Scholar
  51. Plesnila N, Zhu CL, Culmsee C, Groger M, Moskowitz MA, Blomgren K (2004) Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J Cereb Blood Flow Metab 24:458–466PubMedCrossRefGoogle Scholar
  52. Polster BM, Basanez G, Etxebarria A, Hardwick JM, Nicholls DG (2005) Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280:6447–6454PubMedCrossRefGoogle Scholar
  53. Porn-Ares MI, Samali A, Orrenius S (1998) Cleavage of the calpain inhibitor, calpastatin, during apoptosis. Cell Death Differ 5:1028–1033PubMedCrossRefGoogle Scholar
  54. Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, Mak T, Jaattela M, Penninger JM, Garrido C, Kroemer G (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3:839–843PubMedCrossRefGoogle Scholar
  55. Reffey SB, Wurthner JU, Parks WT, Roberts AB, Duckett CS (2001) X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor-beta signaling. J Biol Chem 276:26542–26549CrossRefGoogle Scholar
  56. Shall S, de Murcia G (2000) Poly(ADP-ribose) polymerase-1: what have we learned from the deficient mouse model? Mutat Res 460:1–15PubMedGoogle Scholar
  57. Strosznajder RP, Walski M (2004) Effects 3-aminobenzamide on ultrastructure of hippocampal CA1 layer after global ischemia in gerbils. J Physiol Pharmacol 55(Suppl 3):S127–S133Google Scholar
  58. Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH (1999) Mitochondrial release of cytochrome C corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci 19:RC39PubMedGoogle Scholar
  59. Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, Costantini P, Ferri KF, Irinopoulou T, Prevost MC, Brothers G, Mak TW, Penninger J, Earnshaw WC, Kroemer G (2000) Two distinct pathways leading to nuclear apoptosis. J Exp Med 192:571–579PubMedCrossRefGoogle Scholar
  60. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446PubMedCrossRefGoogle Scholar
  61. Suzuki Y, Nakabayashi Y, Nakata K, Reed JC, Takahashi R (2001) X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and-7 in distinct modes. J Biol Chem 276:27058–27063PubMedCrossRefGoogle Scholar
  62. Szabo C, Dawson VL (1998) Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci 19:287–298PubMedCrossRefGoogle Scholar
  63. Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schagger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689PubMedCrossRefGoogle Scholar
  64. Vahsen N, Cande C, Dupaigne P, Giordanetto F, Kroemer RT, Herker E, Scholz S, Modjtahedi N, Madeo F, Le Cam E, Kroemer G (2006) Physical interaction of apoptosis-inducing factor with DNA and RNA. Oncogene 25:1763–1774PubMedCrossRefGoogle Scholar
  65. van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 9:1031–1042PubMedCrossRefGoogle Scholar
  66. Wang HM, Yu SW, Koh DW, Lew J, Coombs C, Bowers W, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2004) Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. J Neurosci 24:10963–10973PubMedCrossRefGoogle Scholar
  67. Wang KKW, Posmantur R, Nadimpalli R, Nath R, Mohan P, Nixon RA, Talanian RV, Keegan M, Herzog L, Allen H (1998) Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Arch Biochem Biophys 356:187–196PubMedCrossRefGoogle Scholar
  68. Wilkinson JC, Wilkinson AS, Galban S, Csomos RA, Duckett CS (2008) Apoptosis-inducing factor is a target for ubiquitination through interaction with XIAP. Mol Cell Biol 28:237–247PubMedCrossRefGoogle Scholar
  69. Windelborn JA, Lipton P (2008) Lysosomal release of cathepsins causes ischemic damage in the rat hippocampal slice and depends on NMDA-mediated calcium influx, arachidonic acid metabolism, and free radical production. J Neurochem 106:56–69. doi:10.1111/j.1471-4159.2008.05349.xPubMedCrossRefGoogle Scholar
  70. Xu Y, Huang S, Liu ZG, Han JH (2006) Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation. J Biol Chem 281:8788–8795PubMedCrossRefGoogle Scholar
  71. Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K, Ueno N, Nishida E, Shibuya H, Matsumoto K (1999) XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J 18:179–187PubMedCrossRefGoogle Scholar
  72. Yang Y, Fang SY, Jensen JP, Weissman AM, Ashwell JD (2000) Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288:874–877PubMedCrossRefGoogle Scholar
  73. Ye H, Cande C, Stephanou NC, Jiang SL, Gurbuxani S, Larochette N, Daugas E, Garrido C, Kroemer G, Wu H (2002) DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nat Struct Biol 9:680–684PubMedCrossRefGoogle Scholar
  74. Yu SW, Wang HM, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263PubMedCrossRefGoogle Scholar
  75. Zablocka B, Dluzniewska J, Zajac H, Domanska-Janik K (2003) Opposite reaction of ERK and JNK in ischemia vulnerable and resistant regions of hippocampus: involvement of mitochondria (vol 110, pg 245, 2003). Mol Brain Res 113:143–143CrossRefGoogle Scholar
  76. Zhang F, Yin W, Chen J (2004) Apoptosis in cerebral ischemia: executional and regulatory signaling mechanisms. Neurol Res 26:835–845PubMedCrossRefGoogle Scholar
  77. Zhu CL, Wang XY, Deinum J, Huang ZH, Gao JF, Modjtahedi N, Neagu MR, Nilsson M, Eriksson PS, Hagberg H, Luban J, Kroemer G, Blomgren K (2007) Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. J Exp Med 204:1741–1748PubMedCrossRefGoogle Scholar
  78. Zhu CL, Xu FL, Wang XY, Shibata M, Uchiyama Y, Blomgren K, Hagberg H (2006) Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia. J Neurochem 96:1016–1027PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Can Liu
    • 1
  • Armando P. Signore
    • 1
  • Guodong Cao
    • 1
  • Jun Chen
    • 1
  1. 1.Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations