Skip to main content

Programmed Necrosis: A “New” Cell Death Outcome for Injured Adult Neurons?

  • Chapter
  • First Online:
Acute Neuronal Injury

Abstract

Historically, cell death has been divided into two generic categories: apoptosis, which requires energy and in which the cell plays an active role, and necrosis, which occurs accidentally, does not require energy consumption and is considered as a passive, uncontrolled cell death program. Among the conceptually opposite cell death forms, apoptosis is the best understood. This death program has been defined as developmentally programmed and ordered cellular response. Apoptosis is initiated by cell rounding and subsequent detachment from the surrounding cells. Chromatin condenses into “crescent-like” forms abutting the inner nuclear membrane. Plasma membrane convolutes and gives rise to characteristic vesicles containing cellular organelles and cytoplasm, known as the “apoptotic bodies.” Apoptosis is generally not accompanied by inflammation since macrophages or neighbouring cells engulf the formed apoptotic bodies before the loss of plasma membrane integrity (Kerr et al. 1972). In contrast to apoptosis, necrosis is characterized by disruption of the plasma membrane with a subsequent water influx and leakage of cell content to the surroundings. Cell death by necrosis can elicit an inflammatory response (Edinger and Thompson 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877

    PubMed  CAS  Google Scholar 

  • Adhami F, Schloemer A, Kuan CY (2007) The roles of autophagy in cerebral ischemia. Autophagy 3:42–44

    PubMed  CAS  Google Scholar 

  • Alford S, Frenguelli BG, Schofield JG, Collingridge GL (1993) Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors. J Physiol 469:693–716

    PubMed  CAS  Google Scholar 

  • Amadoro G, Ciotti MT, Costanzi M, Cestari V, Calissano P, Canu N (2006) NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation. Proc Natl Acad Sci USA 103:2892–2897

    PubMed  CAS  Google Scholar 

  • Andrabi SA et al (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci USA 103:18308–18313

    PubMed  CAS  Google Scholar 

  • Andreyev AY, Fahy B, Fiskum G (1998) Cytochrome c release from brain mitochondria is independent of the mitochondrial permeability transition. FEBS Lett 439:373–376

    PubMed  CAS  Google Scholar 

  • Araujo IM et al (2005) Proteolysis of NR2B by calpain in the hippocampus of epileptic rats. Neuroreport 16:393–396

    PubMed  CAS  Google Scholar 

  • Baggetto LG (1992) Deviant energetic metabolism of glycolytic cancer cells. Biochimie 74:959–974

    PubMed  CAS  Google Scholar 

  • Baines CP et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662

    PubMed  CAS  Google Scholar 

  • Bajt ML, Cover C, Lemasters JJ, Jaeschke H (2006) Nuclear translocation of endonuclease G and apoptosis-inducing factor during acetaminophen-induced liver cell injury. Toxicol Sci 94:217–225

    PubMed  CAS  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    PubMed  CAS  Google Scholar 

  • Bano D et al (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120:275–285

    PubMed  CAS  Google Scholar 

  • Barkla DH, Gibson PR (1999) The fate of epithelial cells in the human large intestine. Pathology 31:230–238

    PubMed  CAS  Google Scholar 

  • Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280:18558–18561

    PubMed  CAS  Google Scholar 

  • Bauer DE, Harris MH, Plas DR, Lum JJ, Hammerman PS, Rathmell JC, Riley JL, Thompson CB (2004) Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. FASEB J 18:1303–1305

    PubMed  CAS  Google Scholar 

  • Beaulaton J, Lockshin RA (1982) The relation of programmed cell death to development and reproduction: Comparative studies and an attempt at classification. Int Rev Cytol 79:215–235

    PubMed  CAS  Google Scholar 

  • Ben-Ari Y (2001) Cell death and synaptic reorganizations produced by seizures. Epilepsia 42(Suppl 3):5–7

    PubMed  Google Scholar 

  • Berger NA, Sims JL, Catino DM, Berger SJ (1983) Poly(ADP-ribose) polymerase mediates the suicide response to massive DNA damage: studies in normal and DNA-repair defective cells. Princess Takamatsu Symp 13:219–226

    PubMed  CAS  Google Scholar 

  • Boise LH, Collins CM (2001) Salmonella-induced cell death: Apoptosis, necrosis or programmed cell death? Trends Microbiol 9:64–67

    PubMed  CAS  Google Scholar 

  • Borst P, Rottenberg S (2004) Cancer cell death by programmed necrosis? Drug Resist Update 7:321–324

    CAS  Google Scholar 

  • Bose I, Ghosh B (2007) The p53-MDM2 network: From oscillations to apoptosis. J Biosci 32:991–997

    PubMed  CAS  Google Scholar 

  • Boujrad H, Gubkina O, Robert N, Krantic S, Susin SA (2007) AIF-mediated programmed necrosis: A highly regulated way to die. Cell Cycle 6:2612–2619

    PubMed  CAS  Google Scholar 

  • Bras M et al (2007) Drp1 mediates caspase-independent type III cell death in normal and leukemic cells. Mol Cell Biol 27:7073–7088

    PubMed  CAS  Google Scholar 

  • Bredesen DE (2007) Key note lecture: Toward a mechanistic taxonomy for cell death programs. Stroke 38:652–660

    PubMed  Google Scholar 

  • Broker LE, Kruyt FA, Giaccone G (2005) Cell death independent of caspases: A review. Clin Cancer Res 11:3155–3162

    PubMed  Google Scholar 

  • Budd SL, Nicholls DG (1996) Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurochem 67:2282–2291

    PubMed  CAS  Google Scholar 

  • Camacho A, Massieu L (2006) Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death. Arch Med Res 37:11–18

    PubMed  CAS  Google Scholar 

  • Cande C et al (2004) AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene 23:1514–1521

    PubMed  CAS  Google Scholar 

  • Cao X, Deng X, May WS (2003a) Cleavage of Bax to p18 Bax accelerates stress-induced apoptosis, and a cathepsin-like protease may rapidly degrade p18 Bax. Blood 102:2605–2614

    PubMed  CAS  Google Scholar 

  • Cao G, Clark RS, Pei W, Yin W, Zhang F, Sun FY, Graham SH, Chen J (2003b) Translocation of apoptosis-inducing factor in vulnerable neurons after transient cerebral ischemia and in neuronal cultures after oxygen-glucose deprivation. J Cereb Blood Flow Metab 23:1137–1150

    PubMed  CAS  Google Scholar 

  • Cao G et al (2007) Critical role of calpain I in mitochondrial release of apoptosis-inducing factor in ischemic neuronal injury. J Neurosci 27:9278–9293

    PubMed  CAS  Google Scholar 

  • Cartron PF, Oliver L, Juin P, Meflah K, Vallette FM (2004) The p18 truncated form of Bax behaves like a Bcl-2 homology domain 3-only protein. J Biol Chem 279:11503–11512

    PubMed  CAS  Google Scholar 

  • Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA, Letai A (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9:351–365

    PubMed  CAS  Google Scholar 

  • Chautan M, Chazal G, Cecconi F, Gruss P, Golstein P (1999) Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol 9:967–970

    PubMed  CAS  Google Scholar 

  • Chen J, Liu X, Mandel LJ, Schnellmann RG (2001a) Progressive disruption of the plasma membrane during renal proximal tubule cellular injury. Toxicol Appl Pharmacol 171:1–11

    PubMed  CAS  Google Scholar 

  • Chen M, He H, Zhan S, Krajewski S, Reed JC, Gottlieb RA (2001b) Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem 276:30724–30728

    PubMed  CAS  Google Scholar 

  • Cheung EC et al (2005) Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms. J Neurosci 25:1324–1334

    PubMed  CAS  Google Scholar 

  • Chihab R, Oillet J, Bossenmeyer C, Daval JL (1998) Glutamate triggers cell death specifically in mature central neurons through a necrotic process. Mol Genet Metab 63:142–147

    PubMed  CAS  Google Scholar 

  • Chua BT, Guo K, Li P (2000) Direct cleavage by the calcium-activated protease calpain can lead to inactivation of caspases. J Biol Chem 275:5131–5135

    PubMed  CAS  Google Scholar 

  • Clarke PG (1990) Developmental cell death: Morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181:195–213

    CAS  Google Scholar 

  • Colbourne F, Sutherland GR, Auer RN (1999) Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia. J Neurosci 19:4200–4210

    PubMed  CAS  Google Scholar 

  • Cregan SP, Dawson VL, Slack RS (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23:2785–2796

    PubMed  CAS  Google Scholar 

  • Cuerrier D, Moldoveanu T, Davies PL (2005) Determination of peptide substrate specificity for mu-calpain by a peptide library-based approach: The importance of primed side interactions. J Biol Chem 280:40632–40641

    PubMed  CAS  Google Scholar 

  • Culmsee C, Zhu C, Landshamer S, Becattini B, Wagner E, Pellecchia M, Blomgren K, Plesnila N (2005) Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci 25:10262–10272

    PubMed  CAS  Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: Critical control points. Cell 116:205–219

    PubMed  CAS  Google Scholar 

  • Dargusch R, Piasecki D, Tan S, Liu Y, Schubert D (2001) The role of Bax in glutamate-induced nerve cell death. J Neurochem 76:295–301

    PubMed  CAS  Google Scholar 

  • Daugas E, Nochy D, Ravagnan L, Loeffler M, Susin SA, Zamzami N, Kroemer G (2000) Apoptosis-inducing factor (AIF): A ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett 476:118–123

    PubMed  CAS  Google Scholar 

  • Dawson VL, Dawson TM (2004) Deadly conversations: Nuclear-mitochondrial cross-talk. J Bioenerg Biomembr 36:287–294

    PubMed  CAS  Google Scholar 

  • Delettre C, Yuste VJ, Moubarak RS, Bras M, Lesbordes-Brion JC, Petres S, Bellalou J, Susin SA (2006a) AIFsh, a novel apoptosis-inducing factor (AIF) pro-apoptotic isoform with potential pathological relevance in human cancer. J Biol Chem 281:6413–6427

    PubMed  CAS  Google Scholar 

  • Delettre C, Yuste VJ, Moubarak RS, Bras M, Robert N, Susin SA (2006b) Identification and characterization of AIFsh2, a mitochondrial apoptosis-inducing factor (AIF) isoform with nadh oxidase activity. J Biol Chem 281:18507–18518

    PubMed  CAS  Google Scholar 

  • Donovan N, Becker EB, Konishi Y, Bonni A (2002) JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem 277:40944–40949

    PubMed  CAS  Google Scholar 

  • Dubinsky JM, Levi Y (1998) Calcium-induced activation of the mitochondrial permeability transition in hippocampal neurons. J Neurosci Res 53:728–741

    PubMed  CAS  Google Scholar 

  • Dugan LL, Sensi SL, Canzoniero LM, Handran SD, Rothman SM, Lin TS, Goldberg MP, Choi DW (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-d-aspartate. J Neurosci 15:6377–6388

    PubMed  CAS  Google Scholar 

  • Dykens JA (1994) Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Na+: Implications for neurodegeneration. J Neurochem 63:584–591

    PubMed  CAS  Google Scholar 

  • Edinger AL, Thompson CB (2004) Death by design: Apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669

    PubMed  CAS  Google Scholar 

  • Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: Signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757:1371–1387

    PubMed  CAS  Google Scholar 

  • Fonfria E et al (2004) TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 143:186–192

    PubMed  CAS  Google Scholar 

  • Fonnum F, Lock EA (2004) The contributions of excitotoxicity, glutathione depletion and DNA repair in chemically induced injury to neurones: Exemplified with toxic effects on cerebellar granule cells. J Neurochem 88:513–531

    PubMed  CAS  Google Scholar 

  • Friberg H, Wieloch T (2002) Mitochondrial permeability transition in acute neurodegeneration. Biochimie 84:241–250

    PubMed  CAS  Google Scholar 

  • Fryer HJ, Knox RJ, Strittmatter SM, Kalb RG (1999) Excitotoxic death of a subset of embryonic rat motor neurons in vitro. J Neurochem 72:500–513

    PubMed  CAS  Google Scholar 

  • Fujikawa DG, Shinmei SS, Cai B (1999) Lithium-pilocarpine-induced status epilepticus produces necrotic neurons with internucleosomal DNA fragmentation in adult rats. Eur J Neurosci 11:1605–1614

    PubMed  CAS  Google Scholar 

  • Fujikawa DG, Shinmei SS, Cai B (2000a) Seizure-induced neuronal necrosis: Implications for programmed cell death mechanisms. Epilepsia 41(Suppl 6):S9–S13

    PubMed  Google Scholar 

  • Fujikawa DG, Shinmei SS, Cai B (2000b) Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: Implications for programmed cell death mechanisms. Neuroscience 98:41–53

    PubMed  CAS  Google Scholar 

  • Fukuda K, Yamamoto M (1999) Acquisition of resistance to apoptosis and necrosis by Bcl-xL over-expression in rat hepatoma McA-RH8994 cells. J Gastroenterol Hepatol 14:682–690

    PubMed  CAS  Google Scholar 

  • Gao G, Dou QP (2000) N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome c release and apoptotic cell death. J Cell Biochem 80:53–72

    PubMed  CAS  Google Scholar 

  • Gharibyan AL, Zamotin V, Yanamandra K, Moskaleva OS, Margulis BA, Kostanyan IA, Morozova-Roche LA (2007) Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways. J Mol Biol 365:1337–1349

    PubMed  CAS  Google Scholar 

  • Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    PubMed  CAS  Google Scholar 

  • Golstein P, Kroemer G (2007) Cell death by necrosis: Towards a molecular definition. Trends Biochem Sci 32:37–43

    PubMed  CAS  Google Scholar 

  • Golstein P, Aubry L, Levraud JP (2003) Cell-death alternative model organisms: Why and which? Nat Rev Mol Cell Biol 4:798–807

    PubMed  CAS  Google Scholar 

  • Gozuacik D, Kimchi A (2007) Autophagy and cell death. Curr Top Dev Biol 78:217–245

    PubMed  CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    PubMed  CAS  Google Scholar 

  • Haince JF, Rouleau M, Hendzel MJ, Masson JY, Poirier GG (2005) Targeting poly(ADP-ribosyl)ation: A promising approach in cancer therapy. Trends Mol Med 11:456–463

    PubMed  CAS  Google Scholar 

  • Han W, Li L, Qiu S, Lu Q, Pan Q, Gu Y, Luo J, Hu X (2007) Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther 6:1641–1649

    PubMed  CAS  Google Scholar 

  • Hans G et al (2005) Beta-carbolines induce apoptosis in cultured cerebellar granule neurons via the mitochondrial pathway. Neuropharmacology 48:105–117

    PubMed  CAS  Google Scholar 

  • Heeres JT, Hergenrother PJ (2007) Poly(ADP-ribose) makes a date with death. Curr Opin Chem Biol 11:644–653

    PubMed  CAS  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    PubMed  CAS  Google Scholar 

  • Hirt UA, Gantner F, Leist M (2000) Phagocytosis of nonapoptotic cells dying by caspase-independent mechanisms. J Immunol 164:6520–6529

    PubMed  CAS  Google Scholar 

  • Holcik M, Thompson CS, Yaraghi Z, Lefebvre CA, MacKenzie AE, Korneluk RG (2000) The hippocampal neurons of neuronal apoptosis inhibitory protein 1 (NAIP1)-deleted mice display increased vulnerability to kainic acid-induced injury. Proc Natl Acad Sci USA 97:2286–2290

    PubMed  CAS  Google Scholar 

  • Holler N et al (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495

    PubMed  CAS  Google Scholar 

  • Holt JA (1983) Cancer, a disease of defective glucose metabolism. Med Hypotheses 10:133–150

    PubMed  CAS  Google Scholar 

  • Hong SJ, Dawson TM, Dawson VL (2004) Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci 25:259–264

    PubMed  CAS  Google Scholar 

  • Ikeda Y, Long DM (1990) The molecular basis of brain injury and brain edema: The role of oxygen free radicals. Neurosurgery 27:1–11

    PubMed  CAS  Google Scholar 

  • Ishihara N et al (2005) Inhibition of apoptosis-inducing factor translocation is involved in protective effects of hepatocyte growth factor against excitotoxic cell death in cultured hippocampal neurons. J Neurochem 95:1277–1286

    PubMed  CAS  Google Scholar 

  • Jaattela M (2002) Programmed cell death: Many ways for cells to die decently. Ann Med 34:480–488

    PubMed  Google Scholar 

  • Jaattela M, Tschopp J (2003) Caspase-independent cell death in T lymphocytes. Nat Immunol 4:416–423

    PubMed  Google Scholar 

  • Kehrer JP (1993) Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 23:21–48

    PubMed  CAS  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  • Kim GT, Chun YS, Park JW, Kim MS (2003a) Role of apoptosis-inducing factor in myocardial cell death by ischemia-reperfusion. Biochem Biophys Res Commun 309:619–624

    PubMed  CAS  Google Scholar 

  • Kim JS, He L, Lemasters JJ (2003b) Mitochondrial permeability transition: A common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304:463–470

    PubMed  CAS  Google Scholar 

  • Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, Bronson RT, Ackerman SL (2002) The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419:367–374

    PubMed  CAS  Google Scholar 

  • Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270:96–99

    PubMed  CAS  Google Scholar 

  • Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7:1166–1173

    PubMed  CAS  Google Scholar 

  • Krantic S, Mechawar N, Reix S, Quirion R (2005) Molecular basis of programmed cell death involved in neurodegeneration. Trends Neurosci 28:670–676

    PubMed  CAS  Google Scholar 

  • Krantic S, Mechawar N, Reix S, Quirion R (2007) Apoptosis-inducing factor: A matter of neuron life and death. Prog Neurobiol 81:179–196

    PubMed  CAS  Google Scholar 

  • Kroemer G et al (2005) Classification of cell death: Recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 12(Suppl 2):1463–1467

    PubMed  CAS  Google Scholar 

  • Krysko DV, Denecker G, Festjens N, Gabriels S, Parthoens E, D’Herde K, Vandenabeele P (2006) Macrophages use different internalization mechanisms to clear apoptotic and necrotic cells. Cell Death Differ 13:2011–2022

    PubMed  CAS  Google Scholar 

  • Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342

    PubMed  CAS  Google Scholar 

  • Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525–535

    PubMed  CAS  Google Scholar 

  • Leist M, Jaattela M (2001) Four deaths and a funeral: From caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    PubMed  CAS  Google Scholar 

  • Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P (1997) Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J Exp Med 185:1481–1486

    PubMed  CAS  Google Scholar 

  • Leist M, Single B, Naumann H, Fava E, Simon B, Kuhnle S, Nicotera P (1999) Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis. Exp Cell Res 249:396–403

    PubMed  CAS  Google Scholar 

  • Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183–192

    PubMed  CAS  Google Scholar 

  • Li L, Han W, Gu Y, Qiu S, Lu Q, Jin J, Luo J, Hu X (2007) Honokiol induces a necrotic cell death through the mitochondrial permeability transition pore. Cancer Res 67:4894–4903

    PubMed  CAS  Google Scholar 

  • Lindsten T et al (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6:1389–1399

    PubMed  CAS  Google Scholar 

  • Lindsten T, Golden JA, Zong WX, Minarcik J, Harris MH, Thompson CB (2003) The proapoptotic activities of Bax and Bak limit the size of the neural stem cell pool. J Neurosci 23:11112–11119

    PubMed  CAS  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    PubMed  CAS  Google Scholar 

  • Liu X, Schnellmann RG (2003) Calpain mediates progressive plasma membrane permeability and proteolysis of cytoskeleton-associated paxillin, talin, and vinculin during renal cell death. J Pharmacol Exp Ther 304:63–70

    PubMed  CAS  Google Scholar 

  • Liu T, Brouha B, Grossman D (2004) Rapid induction of mitochondrial events and caspase-independent apoptosis in Survivin-targeted melanoma cells. Oncogene 23:39–48

    PubMed  CAS  Google Scholar 

  • Loeffler M et al (2001) Dominant cell death induction by extramitochondrially targeted apoptosis-inducing factor. FASEB J 15:758–767

    PubMed  CAS  Google Scholar 

  • Lorenzo HK, Susin SA (2004) Mitochondrial effectors in caspase-independent cell death. FEBS Lett 557:14–20

    PubMed  CAS  Google Scholar 

  • Lorenzo HK, Susin SA (2007) Therapeutic potential of AIF-mediated caspase-independent programmed cell death. Drug Resist Update 10:235–255

    CAS  Google Scholar 

  • Mandic A, Viktorsson K, Strandberg L, Heiden T, Hansson J, Linder S, Shoshan MC (2002) Calpain-mediated Bid cleavage and calpain-independent Bak modulation: Two separate pathways in cisplatin-induced apoptosis. Mol Cell Biol 22:3003–3013

    PubMed  CAS  Google Scholar 

  • Martinou I, Desagher S, Eskes R, Antonsson B, Andre E, Fakan S, Martinou JC (1999) The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Cell Biol 144:883–889

    PubMed  CAS  Google Scholar 

  • Mate MJ et al (2002) The crystal structure of the mouse apoptosis-inducing factor AIF. Nat Struct Biol 9:442–446

    PubMed  CAS  Google Scholar 

  • Meli E, Pangallo M, Picca R, Baronti R, Moroni F, Pellegrini-Giampietro DE (2004) Differential role of poly(ADP-ribose) polymerase-1in apoptotic and necrotic neuronal death induced by mild or intense NMDA exposure in vitro. Mol Cell Neurosci 25:172–180

    PubMed  CAS  Google Scholar 

  • Meli E, Baronti R, Pangallo M, Picca R, Moroni F, Pellegrini-Giampietro DE (2005) Group I metabotropic glutamate receptors stimulate the activity of poly(ADP-ribose) polymerase in mammalian mGlu1-transfected cells and in cortical cell cultures. Neuropharmacology 49(Suppl 1):80–88

    PubMed  CAS  Google Scholar 

  • Meurette O, Rebillard A, Huc L, Le Moigne G, Merino D, Micheau O, Lagadic-Gossmann D, Dimanche-Boitrel MT (2007) TRAIL induces receptor-interacting protein 1-dependent and caspase-dependent necrosis-like cell death under acidic extracellular conditions. Cancer Res 67:218–226

    PubMed  CAS  Google Scholar 

  • Miller TM, Moulder KL, Knudson CM, Creedon DJ, Deshmukh M, Korsmeyer SJ, Johnson EM Jr (1997) Bax deletion further orders the cell death pathway in cerebellar granule cells and suggests a caspase-independent pathway to cell death. J Cell Biol 139:205–217

    PubMed  CAS  Google Scholar 

  • Miramar MD et al (2001) NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 276:16391–16398

    PubMed  CAS  Google Scholar 

  • Moroni F (2008) Poly(ADP-ribose)polymerase 1 (PARP-1) and postischemic brain damage. Curr Opin Pharmacol 8:96–103

    PubMed  CAS  Google Scholar 

  • Moroni F et al (2001) Poly(ADP-ribose) polymerase inhibitors attenuate necrotic but not apoptotic neuronal death in experimental models of cerebral ischemia. Cell Death Differ 8:921–932

    PubMed  CAS  Google Scholar 

  • Moubarak RS, Yuste VJ, Artus C, Bouharrour A, Greer PA, Menissier-de Murcia J, Susin SA (2007) Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 27:4844–4862

    PubMed  CAS  Google Scholar 

  • Munoz-Pinedo C, Guio-Carrion A, Goldstein JC, Fitzgerald P, Newmeyer DD, Green DR (2006) Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proc Natl Acad Sci USA 103:11573–11578

    PubMed  CAS  Google Scholar 

  • Murahashi H et al (2003) Possible contribution of apoptosis-inducing factor (AIF) and reactive oxygen species (ROS) to UVB-induced caspase-independent cell death in the T cell line Jurkat. J Leukoc Biol 73:399–406

    PubMed  CAS  Google Scholar 

  • Nakagawa T et al (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658

    PubMed  CAS  Google Scholar 

  • Nath R et al (1996) Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J 319(Pt 3):683–690

    PubMed  CAS  Google Scholar 

  • Nelson WG (2004) Prostate cancer prevention. J Nutr 134:3211S–3212S

    PubMed  CAS  Google Scholar 

  • Nicotera P, Leist M, Manzo L (1999a) Neuronal cell death: A demise with different shapes. Trends Pharmacol Sci 20:46–51

    PubMed  CAS  Google Scholar 

  • Nicotera P, Leist M, Ferrando-May E (1999b) Apoptosis and necrosis: Different execution of the same death. Biochem Soc Symp 66:69–73

    PubMed  CAS  Google Scholar 

  • Niimura M et al (2006) Prevention of apoptosis-inducing factor translocation is a possible mechanism for protective effects of hepatocyte growth factor against neuronal cell death in the hippocampus after transient forebrain ischemia. J Cereb Blood Flow Metab 26:1354–1365

    PubMed  CAS  Google Scholar 

  • Niquet J, Seo DW, Wasterlain CG (2006) Mitochondrial pathways of neuronal necrosis. Biochem Soc Trans 34:1347–1351

    PubMed  CAS  Google Scholar 

  • Nishimura Y, Lemasters JJ (2001) Glycine blocks opening of a death channel in cultured hepatic sinusoidal endothelial cells during chemical hypoxia. Cell Death Differ 8:850–858

    PubMed  CAS  Google Scholar 

  • Nixon RA (2006) Autophagy in neurodegenerative disease: Friend, foe or turncoat? Trends Neurosci 29:528–535

    PubMed  CAS  Google Scholar 

  • Ohgoh M, Shimizu H, Ogura H, Nishizawa Y (2000) Astroglial trophic support and neuronal cell death: Influence of cellular energy level on type of cell death induced by mitochondrial toxin in cultured rat cortical neurons. J Neurochem 75:925–933

    PubMed  CAS  Google Scholar 

  • Okada H, Mak TW (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4:592–603

    PubMed  CAS  Google Scholar 

  • Oo TF, Blazeski R, Harrison SM, Henchcliffe C, Mason CA, Roffler-Tarlov SK, Burke RE (1996) Neuron death in the substantia nigra of weaver mouse occurs late in development and is not apoptotic. J Neurosci 16:6134–6145

    PubMed  CAS  Google Scholar 

  • Oppenheim RW, Flavell RA, Vinsant S, Prevette D, Kuan CY, Rakic P (2001) Programmed cell death of developing mammalian neurons after genetic deletion of caspases. J Neurosci 21:4752–4760

    PubMed  CAS  Google Scholar 

  • Orrenius S, Zhivotovsky B (2006) The future of toxicology – does it matter how cells die? Chem Res Toxicol 19:729–733

    PubMed  CAS  Google Scholar 

  • Otera H, Ohsakaya S, Nagaura Z, Ishihara N, Mihara K (2005) Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J 24:1375–1386

    PubMed  CAS  Google Scholar 

  • Pastorino JG, Chen ST, Tafani M, Snyder JW, Farber JL (1998) The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem 273:7770–7775

    PubMed  CAS  Google Scholar 

  • Perrelet D et al (2000) IAP family proteins delay motoneuron cell death in vivo. Eur J Neurosci 12:2059–2067

    PubMed  CAS  Google Scholar 

  • Plesnila N, Zhu C, Culmsee C, Groger M, Moskowitz MA, Blomgren K (2004) Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J Cereb Blood Flow Metab 24:458–466

    PubMed  Google Scholar 

  • Polster BM, Basanez G, Etxebarria A, Hardwick JM, Nicholls DG (2005) Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280:6447–6454

    PubMed  CAS  Google Scholar 

  • Rao RV, Castro-Obregon S, Frankowski H, Schuler M, Stoka V, del Rio G, Bredesen DE, Ellerby HM (2002) Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J Biol Chem 277:21836–21842

    PubMed  CAS  Google Scholar 

  • Saelens X, Festjens N, Parthoens E, Vanoverberghe I, Kalai M, van Kuppeveld F, Vandenabeele P (2005) Protein synthesis persists during necrotic cell death. J Cell Biol 168:545–551

    PubMed  CAS  Google Scholar 

  • Saez ME, Ramirez-Lorca R, Moron FJ, Ruiz A (2006) The therapeutic potential of the calpain family: New aspects. Drug Discov Today 11:917–923

    PubMed  CAS  Google Scholar 

  • Saito A et al (2005) Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol 31:105–116

    PubMed  CAS  Google Scholar 

  • Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24:107–129

    PubMed  CAS  Google Scholar 

  • Schinzel AC et al (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci USA 102:12005–12010

    PubMed  CAS  Google Scholar 

  • Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): Novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528

    PubMed  CAS  Google Scholar 

  • Schweichel JU, Merker HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7:253–266

    Google Scholar 

  • Scorrano L, Korsmeyer SJ (2003) Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 304:437–444

    PubMed  CAS  Google Scholar 

  • Seye CI, Knaapen MW, Daret D, Desgranges C, Herman AG, Kockx MM, Bult H (2004) 7-Ketocholesterol induces reversible cytochrome c release in smooth muscle cells in absence of mitochondrial swelling. Cardiovasc Res 64:144–153

    PubMed  CAS  Google Scholar 

  • Shall S, de Murcia G (2000) Poly(ADP-ribose) polymerase-1: What have we learned from the deficient mouse model? Mutat Res 460:1–15

    PubMed  CAS  Google Scholar 

  • Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6:1221–1228

    PubMed  CAS  Google Scholar 

  • Skaper SD (2003) Poly(ADP-Ribose) polymerase-1 in acute neuronal death and inflammation: A strategy for neuroprotection. Ann N Y Acad Sci 993:217–228; discussion 287–288

    Google Scholar 

  • Sorimachi H, Suzuki K (2001) The structure of calpain. J Biochem (Tokyo) 129:653–664

    CAS  Google Scholar 

  • Sperandio S, de Belle I, Bredesen DE (2000) An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA 97:14376–14381

    PubMed  CAS  Google Scholar 

  • Srivastava S et al (2007) Apoptosis-inducing factor regulates death in peripheral T cells. J Immunol 179:797–803

    PubMed  CAS  Google Scholar 

  • Stadelmann C, Bruck W, Bancher C, Jellinger K, Lassmann H (1998) Alzheimer disease: DNA fragmentation indicates increased neuronal vulnerability, but not apoptosis. J Neuropathol Exp Neurol 57:456–464

    PubMed  CAS  Google Scholar 

  • Stadtman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem 266:2005–2008

    PubMed  CAS  Google Scholar 

  • Stoica BA, Movsesyan VA, Knoblach SM, Faden AI (2005) Ceramide induces neuronal apoptosis through mitogen-activated protein kinases and causes release of multiple mitochondrial proteins. Mol Cell Neurosci 29:355–371

    PubMed  CAS  Google Scholar 

  • Strasser A et al (2000) The role of bim, a proapoptotic BH3-only member of the Bcl-2 family in cell-death control. Ann N Y Acad Sci 917:541–548

    PubMed  CAS  Google Scholar 

  • Strosznajder R, Gajkowska B (2006) Effect of 3-aminobenzamide on Bcl-2, Bax and AIF localization in hippocampal neurons altered by ischemia-reperfusion injury. The immunocytochemical study. Acta Neurobiol Exp (Wars) 66:15–22

    Google Scholar 

  • Susin SA et al (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1341

    PubMed  CAS  Google Scholar 

  • Susin SA et al (1997) The central executioner of apoptosis: Multiple connections between protease activation and mitochondria in Fas/APO-1/CD95- and ceramide-induced apoptosis. J Exp Med 186:25–37

    PubMed  CAS  Google Scholar 

  • Susin SA et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    PubMed  CAS  Google Scholar 

  • Susin SA et al (2000) Two distinct pathways leading to nuclear apoptosis. J Exp Med 192:571–580

    PubMed  CAS  Google Scholar 

  • Tan Y, Dourdin N, Wu C, De Veyra T, Elce JS, Greer PA (2006) Conditional disruption of ubiquitous calpains in the mouse. Genesis 44:297–303

    PubMed  CAS  Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: Enemies within. Science 281:1312–1316

    PubMed  CAS  Google Scholar 

  • Toyota H, Yanase N, Yoshimoto T, Moriyama M, Sudo T, Mizuguchi J (2003) Calpain-induced Bax-cleavage product is a more potent inducer of apoptotic cell death than wild-type Bax. Cancer Lett 189:221–230

    PubMed  CAS  Google Scholar 

  • Tsujimoto Y (2002) Bcl-2 family of proteins: life-or-death switch in mitochondria. Biosci Rep 22:47–58

    PubMed  CAS  Google Scholar 

  • Unal-Cevik I, Kilinc M, Can A, Gursoy-Ozdemir Y, Dalkara T (2004) Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia. Stroke 35:2189–2194

    PubMed  Google Scholar 

  • Vahsen N et al (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    PubMed  CAS  Google Scholar 

  • van Wijk SJ, Hageman GJ (2005) Poly(ADP-ribose) polymerase-1 mediated caspase-independent cell death after ischemia/reperfusion. Free Radic Biol Med 39:81–90

    PubMed  Google Scholar 

  • Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S, Hakem R, Greenberg AH (2000) BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 20:5454–5468

    PubMed  CAS  Google Scholar 

  • Vanden Berghe T, van Loo G, Saelens X, Van Gurp M, Brouckaert G, Kalai M, Declercq W, Vandenabeele P (2004) Differential signaling to apoptotic and necrotic cell death by Fas-associated death domain protein FADD. J Biol Chem 279:7925–7933

    PubMed  CAS  Google Scholar 

  • Wang X, Yang C, Chai J, Shi Y, Xue D (2002) Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science 298:1587–1592

    PubMed  CAS  Google Scholar 

  • Wang HM, Shimoji M, Yu SW, Dawson TM, Dawson VL (2003) Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson’s disease. In: Federoff H (eds) Parkinson’s disease: The life cycle of the dopamine neuron. New York Acad Sciences, New York, pp 132–139

    Google Scholar 

  • Wang H et al (2004) Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. J Neurosci 24:10963–10973

    PubMed  CAS  Google Scholar 

  • Wang Y, Han R, Liang ZQ, Wu JC, Zhang XD, Gu ZL, Qin ZH (2008) An autophagic mechanism is involved in apoptotic death of rat striatal neurons induced by the non-N-methyl-d-aspartate receptor agonist kainic acid. Autophagy 4:214–226

    PubMed  CAS  Google Scholar 

  • Waring P (2005) Redox active calcium ion channels and cell death. Arch Biochem Biophys 434:33–42

    PubMed  CAS  Google Scholar 

  • Wei MC et al (2001) Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    PubMed  CAS  Google Scholar 

  • Whiteman M et al (2007) The pro-inflammatory oxidant hypochlorous acid induces Bax-dependent mitochondrial permeabilisation and cell death through AIF-/EndoG-dependent pathways. Cell Signal 19:705–714

    PubMed  CAS  Google Scholar 

  • Willis SN, Adams JM (2005) Life in the balance: How BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17:617–625

    PubMed  CAS  Google Scholar 

  • Willis SN et al (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315:856–859

    PubMed  CAS  Google Scholar 

  • Wood DE, Thomas A, Devi LA, Berman Y, Beavis RC, Reed JC, Newcomb EW (1998) Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene 17:1069–1078

    PubMed  CAS  Google Scholar 

  • Wright KM, Linhoff MW, Potts PR, Deshmukh M (2004) Decreased apoptosome activity with neuronal differentiation sets the threshold for strict IAP regulation of apoptosis. J Cell Biol 167:303–313

    PubMed  CAS  Google Scholar 

  • Xiong ZG et al (2004) Neuroprotection in ischemia: Blocking calcium-permeable acid-sensing ion channels. Cell 118:687–698

    PubMed  CAS  Google Scholar 

  • Ye H et al (2002) DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nat Struct Biol 9:680–684

    PubMed  CAS  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: Opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    PubMed  CAS  Google Scholar 

  • Yu SW et al (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263

    PubMed  CAS  Google Scholar 

  • Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, Dawson VL (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci USA 103:18314–18319

    PubMed  CAS  Google Scholar 

  • Yuste VJ et al (2005a) The contribution of apoptosis-inducing factor, caspase-activated DNase, and inhibitor of caspase-activated DNase to the nuclear phenotype and DNA. J Biol Chem 280:35670–35683

    PubMed  CAS  Google Scholar 

  • Yuste VJ, Moubarak RS, Delettre C, Bras M, Sancho P, Robert N, d’Alayer J, Susin SA (2005b) Cysteine protease inhibition prevents mitochondrial apoptosis-inducing factor (AIF) release. Cell Death Differ 12:1445–1448

    PubMed  CAS  Google Scholar 

  • Zhang X et al (2002) Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. J Neurochem 82:181–191

    PubMed  CAS  Google Scholar 

  • Zhu C, Qiu L, Wang X, Hallin U, Cande C, Kroemer G, Hagberg H, Blomgren K (2003) Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain. J Neurochem 86:306–317

    PubMed  CAS  Google Scholar 

  • Zhu C, Wang X, Qiu L, Peeters-Scholte C, Hagberg H, Blomgren K (2004) Nitrosylation precedes caspase-3 activation and translocation of apoptosis-inducing factor in neonatal rat cerebral hypoxia-ischaemia. J Neurochem 90:462–471

    PubMed  CAS  Google Scholar 

  • Zhu C, Xu F, Wang X, Shibata M, Uchiyama Y, Blomgren K, Hagberg H (2006) Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia. J Neurochem 96:1016–1027

    PubMed  CAS  Google Scholar 

  • Zhu C et al (2007) Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia. Cell Death Differ 14:775–784

    PubMed  CAS  Google Scholar 

  • Zolotarjova N, Ho C, Mellgren RL, Askari A, Huang WH (1994) Different sensitivities of native and oxidized forms of Na+/K(+)-ATPase to intracellular proteinases. Biochim Biophys Acta 1192:125–131

    PubMed  CAS  Google Scholar 

  • Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20:1–15

    PubMed  CAS  Google Scholar 

  • Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18:1272–1282

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to colleagues whose original work we could not cite owing to limitations of space. The authors wish to thank Marcela Segade for invaluable help. Our research is supported by institutional grants from Institut Pasteur and CNRS and by specific grants from Ligue Contre le Cancer and Association pour la Recherche sur le Cancer (ARC; contract n° 4043) to Santos A. Susin and joint INSERM/FRSQ cooperation programme to Slavica Krantic (France) and Remi Quirion (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santos A. Susin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Krantic, S., Susin, S.A. (2010). Programmed Necrosis: A “New” Cell Death Outcome for Injured Adult Neurons?. In: Fujikawa, D. (eds) Acute Neuronal Injury. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73226-8_3

Download citation

Publish with us

Policies and ethics