Caspase-Independent Cell Death Mechanisms in Simple Animal Models

  • Matthias Rieckher
  • Nektarios Tavernarakis


Caspase proteases are key mediators of apoptotic cell death, playing both regulatory and executioner roles. Traditionally, the requirement for caspase activity has been one of the defining features of classical apoptosis and has been used to discriminate between different types of cell death. However, it is becoming increasingly apparent that a wide spectrum of cell death paradigms does not involve caspase proteases. It is now established that mostly in cases of pathological and accidental cell death and also in certain situations of developmentally programmed cell death, cellular destruction proceeds without activation of caspases. Instead, alternative, caspase-independent mechanisms are brought to bear. In this chapter, we survey caspase-independent cell death mechanisms in two invertebrate animal models, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. We highlight common elements among different instances of cell demise, which point to evolutionarily conserved death mechanisms. Such mechanisms are likely to be relevant to pathological cell death in humans also.


Apoptosis Induce Factor Nurse Cell Necrotic Cell Death Mitochondrial Outer Membrane Permeabilization Linker Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the contributions of numerous investigators, whom we did not include in this review. Work in the authors’ laboratory is funded by grants from EMBO and the EU 6th Framework Programme to N.T.


  1. Abraham MC, Lu Y, Shaham S (2007) A morphologically conserved nonapoptotic program promotes linker cell death in Caenorhabditis elegans. Dev Cell 12:73–86PubMedGoogle Scholar
  2. Antignani A, Youle RJ (2006) How do Bax and Bak lead to permeabilization of the outer mitochondrial membrane? Curr Opin Cell Biol 18:685–689PubMedGoogle Scholar
  3. Arnoult D, Gaume B, Karbowski M, Sharpe JC, Cecconi F, Youle RJ (2003) Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J 22:4385–4399PubMedGoogle Scholar
  4. Artal-Sanz M, Tavernarakis N (2005) Proteolytic mechanisms in necrotic cell death and neurodegeneration. FEBS Lett 579:3287–3296PubMedGoogle Scholar
  5. Artal-Sanz M, Samara C, Syntichaki P, Tavernarakis N (2006) Lysosomal biogenesis and function is critical for necrotic cell death in Caenorhabditis elegans. J Cell Biol 173:231–239PubMedGoogle Scholar
  6. Baehrecke EH (2003) Autophagic programmed cell death in Drosophila. Cell Death Differ 10:940–945PubMedGoogle Scholar
  7. Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6:505–510PubMedGoogle Scholar
  8. Bargmann CI, Avery L (1995) Laser killing of cells in Caenorhabditis elegans. Methods Cell Biol 48:225–250PubMedGoogle Scholar
  9. Beart PM, O’Shea RD (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17PubMedGoogle Scholar
  10. Berger AJ, Hart AC, Kaplan JM (1998) G alphas-induced neurodegeneration in Caenorhabditis elegans. J Neurosci 18:2871–2880PubMedGoogle Scholar
  11. Berger J, Suzuki T, Senti KA, Stubbs J, Schaffner G, Dickson BJ (2001) Genetic mapping with SNP markers in Drosophila. Nat Genet 29:475–481PubMedGoogle Scholar
  12. Blumenthal T, Evans D, Link CD, Guffanti A, Lawson D, Thierry-Mieg J, Thierry-Mieg D, Chiu WL, Duke K, Kiraly M, Kim SK (2002) A global analysis of Caenorhabditis elegans operons. Nature 417:851–854PubMedGoogle Scholar
  13. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  14. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94PubMedGoogle Scholar
  15. Broker LE, Kruyt FA, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11:3155–3162PubMedGoogle Scholar
  16. Carthew RW (2007) Pattern formation in the Drosophila eye. Curr Opin Genet Dev 17:309–313PubMedGoogle Scholar
  17. Cauchi RJ, van den Heuvel M (2006) The fly as a model for neurodegenerative diseases: is it worth the jump? Neurodegener Dis 3:338–356PubMedGoogle Scholar
  18. Celotto AM, Palladino MJ (2005) Drosophila: a “model” model system to study neurodegeneration. Mol Interv 5:292–303PubMedGoogle Scholar
  19. Chalfie M, Wolinsky E (1990) The identification and suppression of inherited neurodegeneration in Caenorhabditis elegans. Nature 345:410–416PubMedGoogle Scholar
  20. Challa M, Malladi S, Pellock BJ, Dresnek D, Varadarajan S, Yin YW, White K, Bratton SB (2007) Drosophila Omi, a mitochondrial-localized IAP antagonist and proapoptotic serine protease. EMBO J 26:3144–3156PubMedGoogle Scholar
  21. Clarke PG (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181:195–213Google Scholar
  22. Cote J, Ruiz-Carrillo A (1993) Primers for mitochondrial DNA replication generated by endonuclease G. Science 261:765–769PubMedGoogle Scholar
  23. Coulson A, Waterston R, Kiff J, Sulston J, Kohara Y (1988) Genome linking with yeast artificial chromosomes. Nature 335:184–186PubMedGoogle Scholar
  24. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219PubMedGoogle Scholar
  25. del Peso L, Gonzalez VM, Inohara N, Ellis RE, Nunez G (2000) Disruption of the CED-9.CED-4 complex by EGL-1 is a critical step for programmed cell death in Caenorhabditis elegans. J Biol Chem 275:27205–27211PubMedGoogle Scholar
  26. Driscoll M, Gerstbrein B (2003) Dying for a cause: invertebrate genetics takes on human neurodegeneration. Nat Rev Genet 4:181–194PubMedGoogle Scholar
  27. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669PubMedGoogle Scholar
  28. Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44:817–829PubMedGoogle Scholar
  29. Estaquier J, Arnoult D (2006) CED-9 and EGL-1: a duo also regulating mitochondrial network morphology. Mol Cell 21:730–732PubMedGoogle Scholar
  30. Faber PW, Voisine C, King DC, Bates EA, Hart AC (2002) Glutamine/proline-rich PQE-1 proteins protect Caenorhabditis elegans neurons from huntingtin polyglutamine neurotoxicity. Proc Natl Acad Sci USA 99:17131–17136PubMedGoogle Scholar
  31. Furuya N, Yu J, Byfield M, Pattingre S, Levine B (2005) The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1:46–52PubMedGoogle Scholar
  32. Golic KG (1991) Site-specific recombination between homologous chromosomes in Drosophila. Science 252:958–961PubMedGoogle Scholar
  33. Gorski SM, Chittaranjan S, Pleasance ED, Freeman JD, Anderson CL, Varhol RJ, Coughlin SM, Zuyderduyn SD, Jones SJ, Marra MA (2003) A SAGE approach to discovery of genes involved in autophagic cell death. Curr Biol 13:358–363PubMedGoogle Scholar
  34. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629PubMedGoogle Scholar
  35. Greenspan RJ (1997) Fly pushing. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  36. Hall DH, Russell RL (1991) The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of identified neurons and complete pattern of synaptic interactions. J Neurosci 11:1–22PubMedGoogle Scholar
  37. Halligan DL, Keightley PD (2006) Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. Genome Res 16:875–884PubMedGoogle Scholar
  38. Hartl DL, Ajioka JW, Cai H, Lohe AR, Lozovskaya ER, Smoller DA, Duncan IW (1992) Towards a Drosophila genome map. Trends Genet 8:70–75PubMedGoogle Scholar
  39. Hay BA, Guo M (2006) Caspase-dependent cell death in Drosophila. Annu Rev Cell Dev Biol 22:623–650PubMedGoogle Scholar
  40. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776PubMedGoogle Scholar
  41. Hersh BM, Hartwieg E, Horvitz HR (2002) The Caenorhabditis elegans mucolipin-like gene cup-5 is essential for viability and regulates lysosomes in multiple cell types. Proc Natl Acad Sci USA 99:4355–4360PubMedGoogle Scholar
  42. Igaki T, Miura M (2004) Role of Bcl-2 family members in invertebrates. Biochim Biophys Acta 1644:73–81PubMedGoogle Scholar
  43. Igaki T, Suzuki Y, Tokushige N, Aonuma H, Takahashi R, Miura M (2007) Evolution of mitochondrial cell death pathway: Proapoptotic role of HtrA2/Omi in Drosophila. Biochem Biophys Res Commun 356:993–997PubMedGoogle Scholar
  44. Jakubowski J, Kornfeld K (1999) A local, high-density, single-nucleotide polymorphism map used to clone Caenorhabditis elegans cdf-1. Genetics 153:743–752PubMedGoogle Scholar
  45. Jin Y (2005) C. elegans – a practical approach. Oxford University press, OxfordGoogle Scholar
  46. Juhasz G, Sass M (2005) Hid can induce, but is not required for autophagy in polyploid larval Drosophila tissues. Eur J Cell Biol 84:491–502PubMedGoogle Scholar
  47. Juhasz G, Erdi B, Sass M, Neufeld TP (2007a) Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev 21:3061–3066PubMedGoogle Scholar
  48. Juhasz G, Puskas LG, Komonyi O, Erdi B, Maroy P, Neufeld TP, Sass M (2007b) Gene expression profiling identifies FKBP39 as an inhibitor of autophagy in larval Drosophila fat body. Cell Death Differ 14:1181–1190PubMedGoogle Scholar
  49. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150:1507–1513PubMedGoogle Scholar
  50. Kang C, You YJ, Avery L (2007) Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev 21:2161–2171PubMedGoogle Scholar
  51. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257PubMedGoogle Scholar
  52. Kim R, Emi M, Tanabe K (2006) Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 57:545–553PubMedGoogle Scholar
  53. Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, Bronson RT, Ackerman SL (2002) The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419:367–374PubMedGoogle Scholar
  54. Klionsky DJ (2004) Cell biology: regulated self-cannibalism. Nature 431:31–32PubMedGoogle Scholar
  55. Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118:7–18PubMedGoogle Scholar
  56. Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937PubMedGoogle Scholar
  57. Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545PubMedGoogle Scholar
  58. Kornberg TB, Krasnow MA (2000) The Drosophila genome sequence: implications for biology and medicine. Science 287:2218–2220PubMedGoogle Scholar
  59. Korswagen HC, van der Linden AM, Plasterk RH (1998) G protein hyperactivation of the Caenorhabditis elegans adenylyl cyclase SGS-1 induces neuronal degeneration. EMBO J 17:5059–5065PubMedGoogle Scholar
  60. Kourtis N, Tavernarakis N (2007) Non-developmentally programmed cell death in Caenorhabditis elegans. Semin Cancer Biol 17:122–133PubMedGoogle Scholar
  61. Krantic S, Mechawar N, Reix S, Quirion R (2007) Apoptosis-inducing factor: a matter of neuron life and death. Prog Neurobiol 81:179–196PubMedGoogle Scholar
  62. Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11:725–730PubMedGoogle Scholar
  63. Kumar A, Rothman JH (2007) Cell death: hook, line and linker. Curr Biol 17:R286–R289PubMedGoogle Scholar
  64. Lakovaara S (1969) Malt as a culture medium for Drosophila species. Drosoph Inf Serv 44:128Google Scholar
  65. Lawrence PA (1992) The making of a fly. The genetics of animal design, 1st edn. Blackwell, OxfordGoogle Scholar
  66. Lee ST, Kim M (2006) Aging and neurodegeneration. Molecular mechanisms of neuronal loss in Huntington’s disease. Mech Ageing Dev 127:432–435PubMedGoogle Scholar
  67. Lee CY, Clough EA, Yellon P, Teslovich TM, Stephan DA, Baehrecke EH (2003) Genome-wide analyses of steroid- and radiation-triggered programmed cell death in Drosophila. Curr Biol 13:350–357PubMedGoogle Scholar
  68. Lee J, Nam S, Hwang SB, Hong M, Kwon JY, Joeng KS, Im SH, Shim J, Park MC (2004) Functional genomic approaches using the nematode Caenorhabditis elegans as a model system. J Biochem Mol Biol 37:107–113PubMedGoogle Scholar
  69. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598PubMedGoogle Scholar
  70. Lettre G, Hengartner MO (2006) Developmental apoptosis in C. elegans: a complex CEDnario. Nat Rev Mol Cell Biol 7:97–108PubMedGoogle Scholar
  71. Leyssen M, Hassan BA (2007) A fruitfly’s guide to keeping the brain wired. EMBO Rep 8:46–50PubMedGoogle Scholar
  72. Li W, Baker NE (2007) Engulfment is required for cell competition. Cell 129:1215–1225PubMedGoogle Scholar
  73. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99PubMedGoogle Scholar
  74. Lim HY, Bodmer R, Perrin L (2006) Drosophila aging 2005/06. Exp Gerontol 41:1213–1216PubMedGoogle Scholar
  75. Lin CY, Chen SH, Cho CS, Chen CL, Lin FK, Lin CH, Chen PY, Lo CZ, Hsiung CA (2006) Fly-DPI: database of protein interactomes for D. melanogaster in the approach of systems biology. BMC Bioinformatics 7(Suppl 5):S18PubMedGoogle Scholar
  76. Lindmo K, Stenmark H (2006) How a RING finger protein and a steroid hormone control autophagy. Autophagy 2:321–322PubMedGoogle Scholar
  77. Lindmo K, Simonsen A, Brech A, Finley K, Rusten TE, Stenmark H (2006) A dual function for Deep orange in programmed autophagy in the Drosophila melanogaster fat body. Exp Cell Res 312:2018–2027PubMedGoogle Scholar
  78. Lorenzo HK, Susin SA (2004) Mitochondrial effectors in caspase-independent cell death. FEBS Lett 557:14–20PubMedGoogle Scholar
  79. Majeski AE, Dice JF (2004) Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 36:2435–2444PubMedGoogle Scholar
  80. Martin DN, Baehrecke EH (2004) Caspases function in autophagic programmed cell death in Drosophila. Development 131:275–284PubMedGoogle Scholar
  81. Martin DN, Balgley B, Dutta S, Chen J, Rudnick P, Cranford J, Kantartzis S, DeVoe DL, Lee C, Baehrecke EH (2007) Proteomic analysis of steroid-triggered autophagic programmed cell death during Drosophila development. Cell Death Differ 14:916–923PubMedGoogle Scholar
  82. Mazzalupo S, Cooley L (2006) Illuminating the role of caspases during Drosophila oogenesis. Cell Death Differ 13:1950–1959PubMedGoogle Scholar
  83. McCall K (2004) Eggs over easy: cell death in the Drosophila ovary. Dev Biol 274:3–14PubMedGoogle Scholar
  84. Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391PubMedGoogle Scholar
  85. Mello CC, Conte D Jr (2004) Revealing the world of RNA interference. Nature 431:338–342PubMedGoogle Scholar
  86. Mello C, Fire A (1995) Methods in cell biology: Caenorhabditis elegans: modern biological analysis of an organism. Academic, San Diego, p 451Google Scholar
  87. Mergliano J, Minden JS (2003) Caspase-independent cell engulfment mirrors cell death pattern in Drosophila embryos. Development 130:5779–5789PubMedGoogle Scholar
  88. Miramar MD, Costantini P, Ravagnan L, Saraiva LM, Haouzi D, Brothers G, Penninger JM, Peleato ML, Kroemer G, Susin SA (2001) NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 276:16391–16398PubMedGoogle Scholar
  89. Modjtahedi N, Giordanetto F, Madeo F, Kroemer G (2006) Apoptosis-inducing factor: vital and lethal. Trends Cell Biol 16:264–272PubMedGoogle Scholar
  90. Munoz-Pinedo C, Guio-Carrion A, Goldstein JC, Fitzgerald P, Newmeyer DD, Green DR (2006) Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proc Natl Acad Sci USA 103:11573–11578PubMedGoogle Scholar
  91. Murakami S (2007) Caenorhabditis elegans as a model system to study aging of learning and memory. Mol Neurobiol 35:85–94PubMedGoogle Scholar
  92. Nakano Y, Fujitani K, Kurihara J, Ragan J, Usui-Aoki K, Shimoda L, Lukacsovich T, Suzuki K, Sezaki M, Sano Y, Ueda R, Awano W, Kaneda M, Umeda M, Yamamoto D (2001) Mutations in the novel membrane protein spinster interfere with programmed cell death and cause neural degeneration in Drosophila melanogaster. Mol Cell Biol 21:3775–3788PubMedGoogle Scholar
  93. Nass R, Hall DH, Miller DM 3rd, Blakely RD (2002) Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci USA 99:3264–3269PubMedGoogle Scholar
  94. Neufeld TP (2007) Contribution of Atg1-dependent autophagy to TOR-mediated cell growth and survival. Autophagy 3:477–479PubMedGoogle Scholar
  95. Nicotera P, Leist M, Manzo L (1999) Neuronal cell death: a demise with different shapes. Trends Pharmacol Sci 20:46–51PubMedGoogle Scholar
  96. Ohiro Y, Garkavtsev I, Kobayashi S, Sreekumar KR, Nantz R, Higashikubo BT, Duffy SL, Higashikubo R, Usheva A, Gius D, Kley N, Horikoshi N (2002) A novel p53-inducible apoptogenic gene, PRG3, encodes a homologue of the apoptosis-inducing factor (AIF). FEBS Lett 524:163–171PubMedGoogle Scholar
  97. O’Keefe LV, Liu Y, Perkins A, Dayan S, Saint R, Richards RI (2005) FRA16D common chromosomal fragile site oxido-reductase (FOR/WWOX) protects against the effects of ionizing radiation in Drosophila. Oncogene 24:6590–6596PubMedGoogle Scholar
  98. Olney JW (1994) Excitatory transmitter neurotoxicity. Neurobiol Aging 15:259–260PubMedGoogle Scholar
  99. Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, Padmanabhan R, Hild M, Berry DL, Garza D, Hubbert CC, Yao TP, Baehrecke EH, Taylor JP (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:859–863PubMedGoogle Scholar
  100. Parrish JZ, Xue D (2003) Functional genomic analysis of apoptotic DNA degradation in C. elegans. Mol Cell 11:987–996PubMedGoogle Scholar
  101. Parrish J, Li L, Klotz K, Ledwich D, Wang X, Xue D (2001) Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412:90–94PubMedGoogle Scholar
  102. Parrish JZ, Yang C, Shen B, Xue D (2003) CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation. EMBO J 22:3451–3460PubMedGoogle Scholar
  103. Porter AG, Urbano AG (2006) Does apoptosis-inducing factor (AIF) have both life and death functions in cells? Bioessays 28:834–843PubMedGoogle Scholar
  104. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595PubMedGoogle Scholar
  105. Riddle D (1988) The nematode C. elegans. Cold Spring Harbor Laboratory Press, New York, pp 393–412Google Scholar
  106. Riddle DL, Gorski SM (2003) Shaping and stretching life by autophagy. Dev Cell 5:364–365PubMedGoogle Scholar
  107. Riddle DL, Blumenthal T, Meyer BJ, Priess JR (1997) C. elegans II. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  108. Rieckher M, Kourtis N, Pasparaki A, Tavernarakis N (2009) Transgenesis in Caenorhabditis elegans. Method Mol Biol 561:21–39Google Scholar
  109. Rival T, Soustelle L, Strambi C, Besson MT, Iche M, Birman S (2004) Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in the Drosophila brain. Curr Biol 14:599–605PubMedGoogle Scholar
  110. Roudier N, Lefebvre C, Legouis R (2005) CeVPS-27 is an endosomal protein required for the molting and the endocytic trafficking of the low-density lipoprotein receptor-related protein 1 in Caenorhabditis elegans. Traffic 6:695–705PubMedGoogle Scholar
  111. Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6:304–312PubMedGoogle Scholar
  112. Rusten TE, Lindmo K, Juhasz G, Sass M, Seglen PO, Brech A, Stenmark H (2004) Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell 7:179–192PubMedGoogle Scholar
  113. Samara C, Tavernarakis N (2008) Autophagy and cell death in Caenorhabditis elegans. Curr Pharm Des 14:1–19Google Scholar
  114. Samara C, Syntichaki P, Tavernarakis N (2008) Autophagy is required for necrotic cell death in Caenorhabditis elegans. Cell Death Differ 15(1):105–112PubMedGoogle Scholar
  115. Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, Webster JA, Lewis TA, O’Kane CJ, Schreiber SL, Rubinsztein DC (2007) Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol 3:331–338PubMedGoogle Scholar
  116. Schmitz C, Kinge P, Hutter H (2007) Axon guidance genes identified in a large-scale RNAi screen using the RNAi-hypersensitive Caenorhabditis elegans strain nre-1(hd20) lin-15b(hd126). Proc Natl Acad Sci USA 104:834–839PubMedGoogle Scholar
  117. Scott BA, Avidan MS, Crowder CM (2002) Regulation of hypoxic death in C. elegans by the insulin/IGF receptor homolog DAF-2. Science 296:2388–2391PubMedGoogle Scholar
  118. Scott RC, Schuldiner O, Neufeld TP (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7:167–178PubMedGoogle Scholar
  119. Scott RC, Juhasz G, Neufeld TP (2007) Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17:1–11PubMedGoogle Scholar
  120. Simmer F, Moorman C, van der Linden AM, Kuijk E, van den Berghe PV, Kamath RS, Fraser AG, Ahringer J, Plasterk RH (2003) Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol 1:E12PubMedGoogle Scholar
  121. Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD (2008) Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4(2):176–184PubMedGoogle Scholar
  122. Spradling AC, Stern DM, Kiss I, Roote J, Laverty T, Rubin GM (1995) Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci USA 92:10824–10830PubMedGoogle Scholar
  123. Stefanis L (2005) Caspase-dependent and -independent neuronal death: two distinct pathways to neuronal injury. Neuroscientist 11:50–62PubMedGoogle Scholar
  124. Sulston JE, Albertson DG, Thomson JN (1980) The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev Biol 78:542–576PubMedGoogle Scholar
  125. Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119PubMedGoogle Scholar
  126. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446PubMedGoogle Scholar
  127. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8:613–621PubMedGoogle Scholar
  128. Syntichaki P, Tavernarakis N (2002) Death by necrosis. Uncontrollable catastrophe, or is there order behind the chaos? EMBO Rep 3:604–609PubMedGoogle Scholar
  129. Syntichaki P, Tavernarakis N (2003) The biochemistry of neuronal necrosis: rogue biology? Nat Rev Neurosci 4:672–684PubMedGoogle Scholar
  130. Syntichaki P, Tavernarakis N (2004) Genetic models of mechanotransduction: the nematode Caenorhabditis elegans. Physiol Rev 84:1097–1153PubMedGoogle Scholar
  131. Syntichaki P, Xu K, Driscoll M, Tavernarakis N (2002) Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature 419:939–944PubMedGoogle Scholar
  132. Syntichaki P, Samara C, Tavernarakis N (2005) The vacuolar H+ -ATPase mediates intracellular acidification required for neurodegeneration in C. elegans. Curr Biol 15:1249–1254PubMedGoogle Scholar
  133. Tabata T, Takei Y (2004) Morphogens, their identification and regulation. Development 131:703–712PubMedGoogle Scholar
  134. Takacs-Vellai K, Vellai T, Puoti A, Passannante M, Wicky C, Streit A, Kovacs AL, Muller F (2005) Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Curr Biol 15:1513–1517PubMedGoogle Scholar
  135. Tavernarakis N, Driscoll M (2001) Degenerins. At the core of the metazoan mechanotransducer? Ann N Y Acad Sci 940:28–41PubMedGoogle Scholar
  136. Tavernarakis N, Wang SL, Dorovkov M, Ryazanov A, Driscoll M (2000) Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat Genet 24:180–183PubMedGoogle Scholar
  137. Thomas JH, Lockery S (2005) C. elegans – a practical approach: neurobiology. Oxford University press, OxfordGoogle Scholar
  138. Thumm M, Kadowaki T (2001) The loss of Drosophila APG4/AUT2 function modifies the phenotypes of cut and Notch signaling pathway mutants. Mol Genet Genomics 266:657–663PubMedGoogle Scholar
  139. Toth ML, Simon P, Kovacs AL, Vellai T (2007) Influence of autophagy genes on ion-channel-dependent neuronal degeneration in Caenorhabditis elegans. J Cell Sci 120:1134–1141PubMedGoogle Scholar
  140. Varkey J, Chen P, Jemmerson R, Abrams JM (1999) Altered cytochrome c display precedes apoptotic cell death in Drosophila. J Cell Biol 144:701–710PubMedGoogle Scholar
  141. Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96:245–254PubMedGoogle Scholar
  142. Venken KJ, Bellen HJ (2005) Emerging technologies for gene manipulation in Drosophila melanogaster. Nat Rev Genet 6:167–178PubMedGoogle Scholar
  143. Walhout AJ, Sordella R, Lu X, Hartley JL, Temple GF, Brasch MA, Thierry-Mieg N, Vidal M (2000) Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287:116–122PubMedGoogle Scholar
  144. Wang CW, Klionsky DJ (2003) The molecular mechanism of autophagy. Mol Med 9:65–76PubMedGoogle Scholar
  145. Wang X, Yang C, Chai J, Shi Y, Xue D (2002) Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science 298:1587–1592PubMedGoogle Scholar
  146. Wang X, Wang J, Gengyo-Ando K, Gu L, Sun CL, Yang C, Shi Y, Kobayashi T, Shi Y, Mitani S, Xie XS, Xue D (2007) C. elegans mitochondrial factor WAH-1 promotes phosphatidylserine externalization in apoptotic cells through phospholipid scramblase SCRM-1. Nat Cell Biol 9:541–549PubMedGoogle Scholar
  147. Wang X, Yang C, Xue D (unpublished results)Google Scholar
  148. Waterston R, Sulston J (1995) The genome of Caenorhabditis elegans. Proc Natl Acad Sci USA 92:10836–10840PubMedGoogle Scholar
  149. White JG, Southgate E, Thomson JN, Brenner S (1983) Factors that determine connectivity in the nervous system of Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 48(Pt 2):633–640PubMedGoogle Scholar
  150. Wu M, Xu LG, Li X, Zhai Z, Shu HB (2002) AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J Biol Chem 277:25617–25623PubMedGoogle Scholar
  151. Xiang H, Hochman DW, Saya H, Fujiwara T, Schwartzkroin PA, Morrison RS (1996) Evidence for p53-mediated modulation of neuronal viability. J Neurosci 16:6753–6765PubMedGoogle Scholar
  152. Xu K, Tavernarakis N, Driscoll M (2001) Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca(2+) release from the endoplasmic reticulum. Neuron 31:957–971PubMedGoogle Scholar
  153. Yamashima T (2000) Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog Neurobiol 62:273–295PubMedGoogle Scholar
  154. Yamashima T (2004) Ca2+-dependent proteases in ischemic neuronal death: a conserved ‘calpain-cathepsin cascade’ from nematodes to primates. Cell Calcium 36:285–293PubMedGoogle Scholar
  155. Yanagisawa H, Miyashita T, Nakano Y, Yamamoto D (2003) HSpin1, a transmembrane protein interacting with Bcl-2/Bcl-xL, induces a caspase-independent autophagic cell death. Cell Death Differ 10:798–807PubMedGoogle Scholar
  156. Ye H, Cande C, Stephanou NC, Jiang S, Gurbuxani S, Larochette N, Daugas E, Garrido C, Kroemer G, Wu H (2002) DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nat Struct Biol 9:680–684PubMedGoogle Scholar
  157. Yorimitsu T, Klionsky DJ (2007) Eating the endoplasmic reticulum: quality control by autophagy. Trends Cell Biol 17:279–285PubMedGoogle Scholar
  158. Yuste VJ, Moubarak RS, Delettre C, Bras M, Sancho P, Robert N, D’Alayer J, Susin SA (2005) Cysteine protease inhibition prevents mitochondrial apoptosis-inducing factor (AIF) release. Cell Death Differ 12:1445–1448PubMedGoogle Scholar
  159. Zhou Z, Mangahas PM, Yu X (2004) The genetics of hiding the corpse: engulfment and degradation of apoptotic cells in C. elegans and D. melanogaster. Curr Top Dev Biol 63:91–143PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Molecular Biology and Biotechnology, Foundation for Research and TechnologyHeraklionGreece

Personalised recommendations