Tumor Suppressor p53: A Multifunctional Protein Implicated in Seizure-Induced Neuronal Cell Death

  • Zhiqun Tan
  • Steven S. Schreiber


It is ironic that the p53 “tumor antigen”, first discovered more than 20 years ago, was initially thought to play a major role in promoting tumorigenesis (Parada et al. 1984). It was not long after, however, that the p53 protein was found to be a potent tumor suppressor. In fact, since the mid1990s, p53 has been regarded as the “guardian of the genome” on the basis of its ability to block the proliferation of cells with mutated DNA (Lane 1992). For more than two decades, tumor suppressor p53 has been among the most widely studied proteins. Notably, the myriad cellular functions in which p53 is involved continue to increase (Levine et al. 2006; Efeyan and Serrano 2007; Fuster et al. 2007).

The human p53 protein consists of 393 amino acid residues and has a molecular weight of approximately 53 kDa. The p53 gene product is a modular molecule that consists of three well-characterized functional domains: an N-terminal transactivation domain (residues 1–42), a central sequence-specific DNA binding domain (residues 102–292), and a highly basic C-terminal domain that regulates p53 oligomerization and sequence-specific DNA binding (Fig. 15.1) (Prives and Hall 1999; Lavin and Gueven 2006).


Neuronal Cell Death Kainic Acid Mouse Double Minute Free Ubiquitin Intractable Temporal Lobe Epilepsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268:2764–2772PubMedCrossRefGoogle Scholar
  2. Bengzon J, Mohapel P, Ekdahl CT, Lindvall O (2002) Neuronal apoptosis after brief and prolonged seizures. Prog Brain Res 135:111–119PubMedCrossRefGoogle Scholar
  3. Bischof O, Schwamborn K, Martin N, Werner A, Sustmann C, Grosschedl R, Dejean A (2006) The E3 SUMO ligase PIASy is a regulator of cellular senescence and apoptosis. Mol Cell 22:783–794PubMedCrossRefGoogle Scholar
  4. Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: The molecular basis for p53 regulation. Curr Opin Cell Biol 15:164–171PubMedCrossRefGoogle Scholar
  5. Brooks CL, Gu W (2004) Dynamics in the p53-Mdm2 ubiquitination pathway. Cell Cycle 3:895–899Google Scholar
  6. Byrnes KR, Faden AI (2007) Role of cell cycle proteins in CNS injury. Neurochem Res 32:1799–1807PubMedCrossRefGoogle Scholar
  7. Chipuk JE, Green DR (2004) Cytoplasmic p53: Bax and forward. Cell Cycle 3:429–431PubMedCrossRefGoogle Scholar
  8. Cregan SP, MacLaurin JG, Craig CG, Robertson GS, Nicholson DW, Park DS, Slack RS (1999) Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J Neurosci 19:7860–7869PubMedGoogle Scholar
  9. Culmsee C, Mattson MP (2005) p53 in neuronal apoptosis. Biochem Biophys Res Commun 331:761–777PubMedCrossRefGoogle Scholar
  10. Culmsee C, Zhu X, Yu QS, Chan SL, Camandola S, Guo Z, Greig NH, Mattson MP (2001) A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. J Neurochem 77:220–228PubMedCrossRefGoogle Scholar
  11. Deb SP (2002) Function and dysfunction of the human oncoprotein MDM2. Front Biosci 7:d235–d243Google Scholar
  12. Djebaïli M, Lerner-Natoli M, Montpied P, Baille V, Bockaert J, Rondouin G (2001) Molecular events involved in neuronal death induced in the mouse hippocampus by in-vivo injection of kainic acid. Brain Res Mol Brain Res 93:190–198PubMedCrossRefGoogle Scholar
  13. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221PubMedCrossRefGoogle Scholar
  14. Efeyan A, Serrano M (2007) p53: Guardian of the genome and policeman of the oncogenes. Cell Cycle 6:1006–1010Google Scholar
  15. El-Hodhod MA, Tomoum HY, Abd Al-Aziz MM, Samaan SM (2006) Serum Fas and Bcl-2 in patients with epilepsy. Acta Neurol Scand 113:315–321PubMedCrossRefGoogle Scholar
  16. Endo H, Saito A, Chan PH (2006) Mitochondrial translocation of p53 underlies the selective death of hippocampal CA1 neurons after global cerebral ischaemia. Biochem Soc Trans 34:1283–1286PubMedCrossRefGoogle Scholar
  17. Engel T, Murphy BM, Schindler CK, Henshall DC (2007) Elevated p53 and lower MDM2 expression in hippocampus from patients with intractable temporal lobe epilepsy. Epilepsy Res 77:151–156PubMedCrossRefGoogle Scholar
  18. Ethell DW, Buhler LA (2003) Fas ligand-mediated apoptosis in degenerative disorders of the brain. J Clin Immunol 23:439–446PubMedCrossRefGoogle Scholar
  19. Fabene PF, Merigo F, Galiè M, Benati D, Bernardi P, Farace P, Nicolato E, Marzola P, Sbarbati A (2007) Pilocarpine-induced status epilepticus in rats involves ischemic and excitotoxic mechanisms. PLoS One 2:e1105PubMedCrossRefGoogle Scholar
  20. Fiordaliso F, Leri A, Cesselli D, Limana F, Safai B, Nadal-Ginard B, Anversa P, Kajstura J (2001) Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes 50:2363–2375PubMedCrossRefGoogle Scholar
  21. Fogarty MP, Downer EJ, Campbell V (2003) A role for c-Jun N-terminal kinase 1 (JNK1), but not JNK2, in the beta-amyloid-mediated stabilization of protein p53 and induction of the apoptotic cascade in cultured cortical neurons. Biochem J 371:789–798PubMedCrossRefGoogle Scholar
  22. Fortin A, Cregan SP, MacLaurin JG, Kushwaha N, Hickman ES, Thompson CS, Hakim A, Albert PR, Cecconi F, Helin K, Park DS, Slack RS (2001) APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. J Cell Biol 155:207–216PubMedCrossRefGoogle Scholar
  23. Fujikawa DG (2005) Prolonged seizures and cellular injury: Understanding the connection. Epilepsy Behav 7(Suppl 3):S3–S11PubMedCrossRefGoogle Scholar
  24. Fuster JJ, Sanz-González SM, Moll UM, Andrés V (2007) Classic and novel roles of p53: Prospects for anticancer therapy. Trends Mol Med 13:192–199PubMedCrossRefGoogle Scholar
  25. Gilman CP, Chan SL, Guo Z, Zhu X, Greig N, Mattson MP (2003) p53 is present in synapses where it mediates mitochondrial dysfunction and synaptic degeneration in response to DNA damage, and oxidative and excitotoxic insults. Neuromol Med 3:159–172CrossRefGoogle Scholar
  26. Giono LE, Manfredi JJ (2006) The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 209:13–20PubMedCrossRefGoogle Scholar
  27. Henshall DC, Clark RS, Adelson PD, Chen M, Watkins SC, Simon RP (2000) Alterations in bcl-2 and caspase gene family protein expression in human temporal lobe epilepsy. Neurology 55:250–257PubMedGoogle Scholar
  28. Henshall DC, Bonislawski DP, Skradski SL, Araki T, Lan JQ, Schindler CK, Meller R, Simon RP (2001) Formation of the Apaf-1/cytochrome c complex precedes activation of caspase-9 during seizure-induced neuronal death. Cell Death Differ 8:1169–1181PubMedCrossRefGoogle Scholar
  29. Hughes PE, Alexi T, Schreiber SS (1997) Minireview: A role for the tumour-suppressor gene p53 in neuronal apoptosis. NeuroReport 8:v–xiGoogle Scholar
  30. Iwakuma T, Lozano G, Flores ER (2005) Li-Fraumeni syndrome: A p53 family affair. Cell Cycle 4:865–867Google Scholar
  31. Kurki S, Peltonen K, Laiho M (2004) Nucleophosmin, HDM2 and p53: Players in UV damage incited nucleolar stress response. Cell Cycle 3:976–979PubMedCrossRefGoogle Scholar
  32. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16PubMedCrossRefGoogle Scholar
  33. Lavin MF, Gueven N (2006) The complexity of p53 stabilization and activation. Cell Death Differ 13:941–950PubMedCrossRefGoogle Scholar
  34. Lee JH, Kim HS, Lee SJ, Kim KT (2007) Stabilization and activation of p53 induced by Cdk5 contributes to neuronal cell death. J Cell Sci 120:2259–2271PubMedCrossRefGoogle Scholar
  35. Leu JI, Dumont P, Hafey M, Murphy ME, George DL (2004) Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 6:443–450PubMedCrossRefGoogle Scholar
  36. Levine AJ, Hu W, Feng Z (2006) The P53 pathway: What questions remain to be explored? Cell Death Differ 13:1027–1036PubMedCrossRefGoogle Scholar
  37. Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang JY, Melino G (2000) The p53/p63/p73 family of transcription factors: Overlapping and distinct functions. J Cell Sci 113:1661–1670PubMedGoogle Scholar
  38. Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W (2003) Mono- versus polyubiquitination: Differential control of p53 fate by Mdm2. Science 302:1972–1975PubMedCrossRefGoogle Scholar
  39. Liu W, Bi X, Tocco G, Baudry M, Schreiber SS (1996) Increased expression of cyclin D1 in the adult rat brain following kainic acid treatment. Neuroreport 7:2785–2789PubMedCrossRefGoogle Scholar
  40. Liu W, Rong Y, Baudry M, Schreiber SS (1999) Status epilepticus induces p53 sequence-specific DNA binding in mature rat brain. Brain Res Mol Brain Res 63:248–253PubMedCrossRefGoogle Scholar
  41. Liu W, Liu R, Chun JT, Bi R, Hoe W, Schreiber SS, Baudry M (2001) Kainate excitotoxicity in organotypic hippocampal slice cultures: Evidence for multiple apoptotic pathways. Brain Res 916:239–248PubMedCrossRefGoogle Scholar
  42. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–148PubMedCrossRefGoogle Scholar
  43. Mayer C, Grummt I (2005) Cellular stress and nucleolar function. Cell Cycle 4:1036–1038PubMedCrossRefGoogle Scholar
  44. Meek DW (1997) Post-translational modification of p53 and the integration of stress signals. Pathol Biol (Paris) 45:804–814Google Scholar
  45. Miyashita T, Harigai M, Hanada M, Reed JC (1994) Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res 54:3131–3135PubMedGoogle Scholar
  46. Morrison RS, Wenzel HJ, Kinoshita Y, Robbins CA, Donehower LA, Schwartzkroin PA (1996) Loss of the p53 tumor suppressor gene protects neurons from kainate-induced cell death. J Neurosci 16:1337–1345PubMedGoogle Scholar
  47. Morrison RS, Kinoshita Y, Johnson MD, Guo W, Garden GA (2003) p53-dependent cell death signaling in neurons. Neurochem Res 28:15–27PubMedCrossRefGoogle Scholar
  48. Murphy ME, Leu JI, George DL (2004) p53 moves to mitochondria: a turn on the path to apoptosis. Cell Cycle 3:836–839PubMedCrossRefGoogle Scholar
  49. Neema M, Navarro-Quiroga I, Chechlacz M, Gilliams-Francis K, Liu J, Lamonica K, Lin SL, Naegele JR (2005) DNA damage and nonhomologous end joining in excitotoxicity: Neuroprotective role of DNA-PKcs in kainic acid-induced seizures. Hippocampus 15:1057–1071PubMedCrossRefGoogle Scholar
  50. Ohnishi T (2005) The role of the p53 molecule in cancer therapies with radiation and/or hyperthermia. J Cancer Res Ther 1:147–150PubMedCrossRefGoogle Scholar
  51. Olsson A, Manzl C, Strasser A, Villunger A (2007) How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 14:1561–1575PubMedCrossRefGoogle Scholar
  52. Parada LF, Land H, Weinberg RA, Wolf D, Rotter V (1984) Cooperation between gene encoding p53 tumour antigen and Ras in cellular transformation. Nature 312:649–651PubMedCrossRefGoogle Scholar
  53. Prives C, Hall PA (1999) The p53 pathway. J Pathol 187:112–126PubMedCrossRefGoogle Scholar
  54. Sakhi S, Bruce A, Sun N, Tocco G, Baudry M, Schreiber SS (1994) p53 induction is associated with neuronal damage in the central nervous system. Proc Natl Acad Sci USA 91:7525–7529PubMedCrossRefGoogle Scholar
  55. Sakhi S, Sun N, Wing LL, Mehta P, Schreiber SS (1996) Nuclear accumulation of p53 protein following kainic acid-induced seizures. Neuroreport 7:493–496PubMedCrossRefGoogle Scholar
  56. Sakhi S, Bruce A, Sun N, Tocco G, Baudry M, Schreiber SS (1997) Induction of tumor suppressor p53 and DNA fragmentation in organotypic hippocampal cultures following excitotoxin treatment. Exp Neurol 145:81–88PubMedCrossRefGoogle Scholar
  57. Schauwecker PE (2003) Genetic basis of kainate-induced excitotoxicity in mice: Phenotypic modulation of seizure-induced cell death. Epilepsy Res 55:201–210PubMedCrossRefGoogle Scholar
  58. Tan Z, Qu W, Tu W, Liu W, Baudry M, Schreiber SS (2000) Downregulation of free ubi-quitin: A novel mechanism of p53 stabilization and neuronal cell death. Cell Death Differ 27:675–681CrossRefGoogle Scholar
  59. Tan Z, Tu W, Schreiber SS (2001a) Downregulation of free ubiquitin: A novel mechanism of p53 stabilization and neuronal cell death. Brain Res Mol Brain Res 91:179–188PubMedCrossRefGoogle Scholar
  60. Tan Z, Levid J, Schreiber SS (2001b) Increased expression of Fas (CD95/APO-1) in adult rat brain after kainate-induced seizures. Neuroreport 12:1979–1982PubMedCrossRefGoogle Scholar
  61. Tan Z, Sankar R, Shin D, Sun N, Liu H, Wasterlain CG, Schreiber SS (2002a) Differential induction of p53 in immature and adult rat brain following lithium-pilocarpine status epilepticus. Brain Res 928:187–193PubMedCrossRefGoogle Scholar
  62. Tan Z, Sankar R, Tu W, Shin D, Liu H, Wasterlain CG, Schreiber SS (2002b) Immunohistochemical study of p53-associated proteins in rat brain following lithium-pilocarpine status epilepticus. Brain Res 929:129–138PubMedCrossRefGoogle Scholar
  63. Uberti D, Belloni M, Grilli M, Spano P, Memo M (1998) Induction of tumour-suppressor phosphoprotein p53 in the apoptosis of cultured rat cerebellar neurones triggered by excitatory amino acids. Eur J Neurosci 10:246–254PubMedCrossRefGoogle Scholar
  64. Uo T, Kinoshita Y, Morrison RS (2007) Apoptotic actions of p53 require transcriptional activation of PUMA and do not involve a direct mitochondrial/cytoplasmic site of action in postnatal cortical neurons. J Neurosci 27:12198–12210PubMedCrossRefGoogle Scholar
  65. Vousden KH (2002) Activation of the p53 tumor suppressor protein. Biochim Biophys Acta 1602:47–59PubMedGoogle Scholar
  66. Wang Q, Yu S, Simonyi A, Sun GY, Sun AY (2005) Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol Neurobiol 31:3–16PubMedCrossRefGoogle Scholar
  67. Xiang H, Hochman DW, Saya H, Fujiwara T, Schwartzkroin PA, Morrison RS (1996) Evidence for p53-mediated modulation of neuronal viability. J Neurosci 16:6753–6765PubMedGoogle Scholar
  68. Xiang H, Kinoshita Y, Knudson CM, Korsmeyer SJ, Schwartzkroin PA, Morrison RS (1998) Bax involvement in p53-mediated neuronal cell death. J Neurosci 18:1363–1373PubMedGoogle Scholar
  69. Xu S, Pang Q, Liu Y, Shang W, Zhai G, Ge M (2007) Neuronal apoptosis in the resected sclerotic hippocampus in patients with mesial temporal lobe epilepsy. J Clin Neurosci 14:835–840PubMedCrossRefGoogle Scholar
  70. Yang Y, Li CC, Weissman AM (2004) Regulating the p53 system through ubiquitination. Oncogene 23:2096–2106PubMedCrossRefGoogle Scholar
  71. Yang T, Hsu C, Liao W, Chuang JS (2008) Heat shock protein 70 expression in epilepsy suggests stress rather than protection. Acta Neuropathol 115:219–230PubMedCrossRefGoogle Scholar
  72. Yao X, Liu J, McCabe JT (2007) Ubiquitin and ubiquitin-conjugated protein expression in the rat cerebral cortex and hippocampus following traumatic brain injury (TBI). Brain Res 1182:116–122PubMedCrossRefGoogle Scholar
  73. Zhai W, Comai L (2000) Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol Cell Biol 20:5930–5938PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of California Irvine School of MedicineIrvineUSA

Personalised recommendations