Advertisement

Multilevel Generalized Linear Models

  • Germán Rodríguez

Keywords

Markov Chain Monte Carlo Generalize Linear Mixed Model American Statistical Association Royal Statistical Society Simulated Maximum Likelihood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. O. Aalen. Heterogeneity in survival analysis. Statistics in Medicine, 7:1121–1137, 1988.CrossRefGoogle Scholar
  2. M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions. Number 55 in National Bureau of Standards Applied Mathematics Series. U.S. Government Printing Office, Washington, DC, 1964.Google Scholar
  3. M. Aitkin, D. Anderson, B. Francis, and J. Hinde. Statistical Modelling in GLIM. Clarendon Press, Oxford, 1989.MATHGoogle Scholar
  4. M. Aitkin and D. G. Clayton. The fitting of exponential, Weibull and extreme value distributions to complex censored survival data using GLIM. Applied Statistics, 29:156–163, 1980.CrossRefGoogle Scholar
  5. P. D. Allison. Discrete-time methods for the analysis of event histories. Sociological Methodology, 13:61–98, 1982.CrossRefGoogle Scholar
  6. D. A. Anderson and M. Aitkin. Variance component models with binary response: Interviewer variability. Journal of the Royal Statistical Society, Series B, 47:203–210, 1985.MathSciNetGoogle Scholar
  7. J. S. Barber, S. A. Murphy, W. G. Axinn, and J. Maples. Discrete-time multilevel hazard analysis. Sociological Methodology, 30:201–235, 2000.CrossRefGoogle Scholar
  8. S. Bennet and J. Whitehead. Fitting logistic and log-logistic regression models to censored data using GLIM. GLIM Newsletter, 4:12–19, 1981.Google Scholar
  9. N. G. Best, M. K. Cowles, and S. K. Vines. CODA: Convergence Diagnosis and Output Analysis Software for Gibbs Sampling Output, version 0.40. Medical Research Council Biostatistics Unit, Cambridge, UK, 1997.Google Scholar
  10. J. G. Booth, J. P. Hobert, and W. Jank. A survey of Monte Carlo algorithms for maximizing the likelihood of a two-stage hierarchical model. Statistical Modelling, 1:333–349, 2001.MATHCrossRefGoogle Scholar
  11. N. E. Breslow and D. G. Clayton. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88:9–25, 1993.MATHCrossRefGoogle Scholar
  12. N. E. Breslow and X. Lin. Bias correction in generalised linear mixed models with a single component of dispersion. Biometrika, 82:81–91, 1995.MATHCrossRefMathSciNetGoogle Scholar
  13. W. J. Browne and D. Draper. A comparison of Bayesian and likelihood-based methods for fitting multilevel models. Bayesian Analysis, 1:473–549, 2006. (with discussion)MathSciNetCrossRefGoogle Scholar
  14. D. G. Clayton. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65:141–151, 1978.MATHCrossRefMathSciNetGoogle Scholar
  15. D. G. Clayton. The analysis of event history data: Review of progress and outstanding problems. Statistics in Medicine, 7:819–841, 1988.CrossRefGoogle Scholar
  16. D. G. Clayton. Generalized linear mixed models. In W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors, Markov Chain Monte Carlo in Practice, pages 275–301. Chapman & Hall, London, 1996.Google Scholar
  17. D. G. Clayton and J. Cuzick. The EM algorithm for Cox’s regression model using GLIM. Applied Statistics, 34:148–156, 1985.CrossRefGoogle Scholar
  18. D. G. Clayton and J. Cuzick. Multivariate generalizations of the proportional hazards model. Journal of the Royal Statistical Society, Series B, 148:82–117, 1985. (with discussion).MATHCrossRefMathSciNetGoogle Scholar
  19. C. Corcoran, B. Coull, and A. Patel. Egret for Windows User Manual. Cytel Software Corporation, Cambridge, MA, 1999.Google Scholar
  20. D. R. Cox. Regression models and life tables. Journal of the Royal Statistical Society, Series B, 34:187–220, 1972. (with discussion).MATHGoogle Scholar
  21. D. R. Cox. Partial likelihood. Biometrika, 62:269–276, 1975.MATHCrossRefMathSciNetGoogle Scholar
  22. D. R. Cox and D. Oakes. Analysis of Survival Data. Chapman & Hall, London, 1984.Google Scholar
  23. M. J. Crowder. Beta-binomial Anova for proportions. Applied Statistics, 27:34–37, 1978.CrossRefGoogle Scholar
  24. M. Davidian and D. M. Giltinan. Nonlinear Models for Repeated Measurement Data. Chapman & Hall, London, 1995.Google Scholar
  25. P. J. Diggle, K.-Y. Liang, and S. L. Zeger. Analysis of Longitudinal Data. Oxford University Press, Oxford, UK, 1994.Google Scholar
  26. P. Feigl and M. Zelen. Estimation of exponential survival probabilities with concomitant information. Biometrics, 21:826–838, 1967.CrossRefGoogle Scholar
  27. A. Gelman and D. B. Rubin. Inference from iterative simulation using multiple sequences. Statistical Science, 7:457–511, 1992. (with discussion).CrossRefGoogle Scholar
  28. J. Geweke. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics 4, pages 169–194. Oxford University Press, Oxford, UK, 1992.Google Scholar
  29. W. R. Gilks and P. Wild. Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41:337–348, 1992.MATHCrossRefGoogle Scholar
  30. H. Goldstein. Nonlinear multilevel models, with an application to discrete response data. Biometrika, 78:45–51, 1991.CrossRefMathSciNetGoogle Scholar
  31. H. Goldstein. Multilevel models and generalised estimating equations. Multilevel Modelling Newsletter, 5(2):2, 1993.Google Scholar
  32. H. Goldstein. Multilevel unit specific and population average generalised linear models. Multilevel Modelling Newsletter, 7(3):4–5, 1995.Google Scholar
  33. H. Goldstein. Consistent estimators for multilevel generalised linear models using an iterated bootstrap. Multilevel Modelling Newsletter, 8(1):3–6, 1996.Google Scholar
  34. H. Goldstein and J. Rasbash. Improved approximations for multilevel models with binary responses. Journal of the Royal Statistical Society, Series A, 159:505–513, 1996.MATHMathSciNetGoogle Scholar
  35. C. Gouriéroux and A. Monfort. Simulation-Based Econometric Methods. Oxford University Press, Oxford, UK, 1996.Google Scholar
  36. P. J. Green. Penalized likelihood for general semi-parametric regression models. International Statistical Review, 55:245–259, 1987.MATHMathSciNetCrossRefGoogle Scholar
  37. G. Guo and G. Rodríguez. Estimating a multivariate proportional hazards model for clustered data using the EM algorithm, with an application to child survival in Guatemala. Journal of the American Statistical Association, 87:969–976, 1992.CrossRefGoogle Scholar
  38. D. Hedeker and R. D. Gibbons. A random-effects ordinal regression model for multilevel analysis. Biometrics, 50:933–944, 1994.MATHCrossRefGoogle Scholar
  39. D. Hedeker and R. D. Gibbons. MIXOR: A computer program for mixed-effects ordinal regression analysis. Computer Methods and Programs in Biomedicine, 49:157–176, 1996.CrossRefGoogle Scholar
  40. T. R. Holford. The analysis of rates and survivorship using log-linear models. Biometrics, 36:299–306, 1980.MATHCrossRefGoogle Scholar
  41. P. Hougaard. Life table methods for heterogeneous populations: Distributions describing the heterogeneity. Biometrika, 71:75–83, 1984.MATHCrossRefMathSciNetGoogle Scholar
  42. P. Hougaard. Survival models for heterogeneous populations derived from stable distributions. Biometrika, 73:387–396, 1986.MATHCrossRefMathSciNetGoogle Scholar
  43. J. D. Kalbfleisch and R. L. Prentice. The Statistical Analysis of Failure Time Data, 2nd edition. Wiley, New York, 2002.MATHGoogle Scholar
  44. M. P. Keane. Simulation estimation for panel data models with limited dependent variables. In G. S. Maddala, C. R. Rao, and H. D. Vinod, editors, Handbook of Statistics, volume 11, pages 545–571. North-Holland, Amsterdam, 1993.Google Scholar
  45. A. Y. C. Kuk. Asymptotically unbiased estimation in generalized linear models with random effects. Journal of the Royal Statistical Society, Series B, 57:395–407, 1995.MATHMathSciNetGoogle Scholar
  46. N. M. Laird. Empirical Bayes methods for two-way contingency tables. Biometrika, 65:581–590, 1978.MATHCrossRefMathSciNetGoogle Scholar
  47. N. M. Laird and D. Olivier. Covariance analysis of censored survival data using log-linear analysis techniques. Journal of the American Statistical Association, 76:231–240, 1981.MATHCrossRefMathSciNetGoogle Scholar
  48. J. F. Lawless. Regression methods for Poisson process data. Journal of the American Statistical Association, 82:808–815, 1987.MATHCrossRefMathSciNetGoogle Scholar
  49. Y. Lee and J. A. Nelder. Hierarchical generalized linear models. Journal of the Royal Statistical Society, Series B, 58:619–678, 1996.MATHMathSciNetGoogle Scholar
  50. S. R. Lerman and C. F. Manski. On the use of simulated frequencies to approximate choice probabilities. In C. F. Manski and D. McFadden, editors, Structural Analysis of Discrete Data with Econometric Applications, pages 305–319. MIT Press, Cambridge, MA, 1981.Google Scholar
  51. L. A. Lillard and C. W. A. Panis. aML: Multilevel Multiprocess Statistical Software, Version 2.0. EconWare, Los Angeles, CA, 2003.Google Scholar
  52. X. Lin and N. E. Breslow. Bias correction in generalized linear mixed models with multiple components of dispersion. Journal of the American Statistical Association, 91:1007–1016, 1996.MATHCrossRefMathSciNetGoogle Scholar
  53. Q. Liu and D. A. Pierce. A note on Gauss-Hermite quadrature. Biometrika, 81:624–629, 1994.MATHMathSciNetGoogle Scholar
  54. N. T. Longford. A quasi-likelihood adaptation for variance component analysis. In American Statistical Association Proceedings of the Statistical Computing Section, pages 137–142. 1988.Google Scholar
  55. N. T. Longford. VARCL: Software for Variance Component Analysis of Data with Nested Random Effects (Maximum Likelihood). Educational Testing Service, Princeton, NJ, 1988.Google Scholar
  56. N. T. Longford. Logistic regression with random coefficients. Computational Statistics & Data Analysis, 17:1–15, 1994.MATHCrossRefGoogle Scholar
  57. T. A. Louis. Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B, 44:226–233, 1982.MATHMathSciNetGoogle Scholar
  58. K. G. Manton, E. Stallard, and J. W. Vaupel. Alternative models for the heterogeneity of mortality risks among the aged. Journal of the American Statistical Association, 81:635–644, 1986.CrossRefGoogle Scholar
  59. P. McCullagh and J. A. Nelder. Generalized Linear Models, 2nd edition. Chapman & Hall, London, 1989.MATHGoogle Scholar
  60. C. E. McCulloch. Maximum likelihood algorithms for generalized linear mixed models. Journal of the American Statistical Association, 92:162–170, 1997.MATHCrossRefMathSciNetGoogle Scholar
  61. D. McFadden. A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica, 57:995–1026, 1989.MATHCrossRefMathSciNetGoogle Scholar
  62. W. H. Mosley and L. C. Chen. An analytical framework for the study of child survival in developing countries. Population and Development Review, 10:25–45, 1984.CrossRefGoogle Scholar
  63. J. Myles and D. G. Clayton. GLMMGibbs: An R Package for Estimating Bayesian Generalised Linear Mixed Models by Gibbs Sampling. Comprehensive R Archive Network (devel section), 2001. URL http://cran.r-project.orgGoogle Scholar
  64. J. C. Naylor and A. F. M. Smith. Applications of a method for the efficient computation of posterior distributions. Applied Statistics, 31:214–225, 1980.CrossRefMathSciNetGoogle Scholar
  65. J. A. Nelder and R. Wedderburn. Generalized linear models. Journal of the Royal Statistical Society, Series B, 135:370–384, 1972.CrossRefGoogle Scholar
  66. J. M. Neuhaus, J. D. Kalbfleisch, and W. W. Hauck. A comparison of cluster-specific and population-averaged approaches to analyzing correlated binary data. International Statistical Review, 59:25–35, 1991.Google Scholar
  67. E. S. W. Ng, J. R. Carpenter, H. Goldstein, and J.Rasbash. Estimation in generalised linear mixed models with binary outcomes by simulated maximum likelihood. Statistical Modelling, 6:23–42, 2006.CrossRefMathSciNetGoogle Scholar
  68. D. Oakes. A model for association in bivariate survival data. Journal of the Royal Statistical Society, Series B, 44:414–422, 1982.MATHMathSciNetGoogle Scholar
  69. A. R. Pebley, N. Goldman, and G. Rodríguez. Prenatal and delivery care and childhood immunization in Guatemala: Do family and community matter? Demography, 33:231–247, 1996.CrossRefGoogle Scholar
  70. J. C. Pinheiro and D. M. Bates. Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics, 4:12–35, 1995.CrossRefGoogle Scholar
  71. J. C. Pinheiro and D. M. Bates. Mixed-Effects Models in S and S-PLUS. Springer, New York, 2000.MATHGoogle Scholar
  72. R. L. Prentice and L. A. Gloeckler. Regression analysis of grouped survival data with application to breast cancer data. Biometrics, 34:57–67, 1978.MATHCrossRefGoogle Scholar
  73. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C, 2nd edition. Cambridge University Press, Cambridge, MA, 1992.MATHGoogle Scholar
  74. S. Rabe-Hesketh, A. Skrondal, and A. Pickles. Reliable estimation of generalized linear mixed models using adaptive quadrature. The Stata Journal, 2:1–21, 2002.Google Scholar
  75. A. E. Raftery and S. M. Lewis. How many iterations in the Gibbs sampler? In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics 4, pages 763–773. Oxford University Press, Oxford, UK, 1992.Google Scholar
  76. A. E. Raftery and S. M. Lewis. Implementing MCMC. In W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors, Markov Chain Monte Carlo in Practice, pages 115–130. Chapman & Hall, London, 1996.Google Scholar
  77. S. W. Raudenbush, M.-L. Yang, and M. Yosef. Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation. Journal of Computational and Graphical Statistics, 9:141–157, 2000.CrossRefMathSciNetGoogle Scholar
  78. G. O. Roberts. Markov chain concepts related to sampling algorithms. In W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors, Markov Chain Monte Carlo in Practice, pages 45–57. Chapman & Hall, London, 1996.Google Scholar
  79. G. Rodríguez. Event history analysis. In S. Kotz, C. B. Read, and D. L. Banks, editors, Encyclopedia of Statistical Sciences, Update Volume, pages 222–230. Wiley, New York, 1997.Google Scholar
  80. G. Rodríguez and I. Elo. Intra-class correlation in random-effects models for binary data. The Stata Journal, 3:32–46, 2003.Google Scholar
  81. G. Rodríguez and N. Goldman. An assessment of estimation procedures for multilevel models with binary responses. Journal of the Royal Statistical Society, Series A, 158:73–89, 1995.Google Scholar
  82. G. Rodríguez and N. Goldman. Improved estimation procedures for multilevel models with binary response: A case-study. Journal of the Royal Statistical Society, Series A, 164:339–355, 2001.MATHGoogle Scholar
  83. N. Sastry. A nested frailty model for survival data, with an application to the study of child survival in northeast Brazil. Journal of the American Statistical Association, 92:426–435, 1997.MATHCrossRefGoogle Scholar
  84. R. Schall. Estimation in generalized linear models with random effects. Biometrika, 78:719–727, 1991.MATHCrossRefGoogle Scholar
  85. S. G. Self and K.-Y. Liang. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under non-standard conditions. Journal of the American Statistical Association, 82:605–610, 1987.MATHCrossRefMathSciNetGoogle Scholar
  86. D. J. Spiegelhalter, A. Thomas, N. G. Best, and W. R. Gilks. UGS: Bayesian Inference Using Gibbs Sampling. Medical Research Council Biostatistics Unit, Cambridge, UK, 1996.Google Scholar
  87. R. Stiratelli, N. M. Laird, and J. H. Ware. Random-effects models for serial observations with binary response. Biometrics, 40:961–971, 1984.CrossRefGoogle Scholar
  88. D. O. Stram and J. W. Lee. Variance components testing in the longitudinal mixed-effects model. Biometrics, 50:1171–1177, 1994.MATHCrossRefGoogle Scholar
  89. T. M. Therneau and P. M. Grambsch. Modeling Survival Data: Extending the Cox Model. Springer, New York, 2000.MATHGoogle Scholar
  90. R. A. Thisted. Elements of Statistical Computing: Numerical Computation. Chapman & Hall, London, 1988.MATHGoogle Scholar
  91. J. Vaupel, K. G. Manton, and E. Stallard. The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16:439–454, 1979.CrossRefGoogle Scholar
  92. J. Vaupel and A. Yashin. Heterogeneity’s ruses: Some surprising effects of selection on population dynamics. American Statistician, 39:176–185, 1985.CrossRefMathSciNetGoogle Scholar
  93. J. Whitehead. Fitting Cox's regression model to survival data using GLIM. Applied Statistics, 29:268–275, 1980.MATHCrossRefMathSciNetGoogle Scholar
  94. G. Y. Wong and W. M. Mason. The hierarchical logistic regression model for multilevel analysis. Journal of the American Statistical Association, 80:513–524, 1985.CrossRefGoogle Scholar
  95. S. L. Zeger and M. R. Karim. Generalized linear models with random effects: A Gibbs sampling approach. Journal of the American Statistical Association, 86: 79–86, 1991.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Germán Rodríguez
    • 1
  1. 1.Department of StatisticsOffice of Population Research Wallace Hall Princeton UniversityPrincetonUSA

Personalised recommendations