Advertisement

Multilevel and Related Models for Longitudinal Data

  • Anders Skrondal
  • Sophia Rabe-Hesketh

Keywords

Linear Mixed Model Longitudinal Data Path Diagram Labor Market Experience Nonparametric Maximum Likelihood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Aitkin. A general maximum likelihood analysis of variance components in generalized linear models. Biometrics, 55:117–128, 1999.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    R. R. Bahadur. A representation of the joint distribution of responses to n dichotomous items. In H. Solomon, editor, Studies in Item Analysis and Prediction, volume 6, pages 158–168. Stanford University Press, Stanford, CA, 1961.Google Scholar
  3. 3.
    B. H. Baltagi. Econometric Analysis of Panel Data, 2nd edition. Wiley, Chichester, 2001.Google Scholar
  4. 4.
    B. H. Baltagi and P. X. Wu. Unequally spaced panel data regressions with AR(1) disturbances. Econometric Theory, 15:814–823, 1999.MATHCrossRefGoogle Scholar
  5. 5.
    D. J. Bartholomew. The sensitivity of latent trait analysis to the choice of prior distribution. British Journal of Mathematical and Statistical Psychology, 41:101–107, 1988.MATHGoogle Scholar
  6. 6.
    G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and Control, 3rd edition. Prentice-Hall, Englewood Cliffs, NJ, 1994.MATHGoogle Scholar
  7. 7.
    N. E. Breslow and N. Day. Statistical Methods in Cancer Research. Vol. I — The Analysis of Case-Control Studies. IARC, Lyon, 1980.Google Scholar
  8. 8.
    G. Chamberlain. Analysis of covariance with qualitative data. Review of Economic Studies, 47:225–238, 1980.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    G. Chamberlain. Panel data. In Z. Griliches and M. D. Intriligator, editors, Handbook of Econometrics, volume 2, pages 1247–1318. North-Holland, Amsterdam, 1984.Google Scholar
  10. 10.
    D. G. Clayton. Generalized linear mixed models. In W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors, Markov Chain Monte Carlo in Practice, pages 275–301. Chapman & Hall, London, 1996.Google Scholar
  11. 11.
    D. R. Cox. The analysis of multivariate binary data. Applied Statistics, 21:113–120, 1972.CrossRefGoogle Scholar
  12. 12.
    M. J. Crowder and D. J. Hand. Analysis of Repeated Measures. Chapman & Hall, London, 1990.MATHGoogle Scholar
  13. 13.
    J. R. Dale. Global cross-ratio models for bivariate, discrete, ordered responses. Biometrics, 42:909–917, 1986.CrossRefGoogle Scholar
  14. 14.
    C. M. Dayton and G. B. MacReady. Concomitant variable latent class models. Journal of the American Statistical Association, 83:173–178, 1988.CrossRefMathSciNetGoogle Scholar
  15. 15.
    J. de Leeuw and E. Meijer. Introduction to multilevel analysis. In J. de Leeuw and E. Meijer, editors, Handbook of Multilevel Analysis, Chapter . Springer, New York, 2008. (this volume).Google Scholar
  16. 16.
    P. J. Diggle. An approach to analysis of repeated measures. Biometrics, 44:959–971, 1988.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    P. J. Diggle, P. J. Heagerty, K.-Y. Liang, and S. L. Zeger. Analysis of Longitudinal Data, 2nd edition. Oxford University Press, Oxford, UK, 2002.Google Scholar
  18. 18.
    R. C. Elston. On estimating time-response curves. Biometrics, 20:643–647, 1964.MATHCrossRefGoogle Scholar
  19. 19.
    G. M. Fitzmaurice, N. M. Laird, and A. G. Rotnitzky. Regression models for discrete longitudinal responses. Statistical Science, 8:284–309, 1993.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    G. M. Fitzmaurice, N. M. Laird, and J. H. Ware. Applied Longitudinal Analysis. Wiley, New York, 2004.MATHGoogle Scholar
  21. 21.
    K. R. Gabriel. Ante-dependence analysis of an ordered set of variables. Annals of Mathematical Statistics, 33:201–212, 1962.CrossRefMathSciNetGoogle Scholar
  22. 22.
    W. A. Gibson. Three multivariate models: factor analysis, latent structure analysis and latent profile analysis. Psychometrika, 24:229–252, 1959.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    H. Goldstein. Nonlinear multilevel models, with an application to discrete response data. Biometrika, 78:45–51, 1991.CrossRefMathSciNetGoogle Scholar
  24. 24.
    D. J. Hand and M. J. Crowder. Practical Longitudinal Data Analysis. Chapman & Hall, London, 1996.MATHGoogle Scholar
  25. 25.
    J. A. Hausman. Specification tests in econometrics. Econometrica, 46:1251–1271, 1978.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    P. J. Heagerty and B. F. Kurland. Misspecified maximum likelihood estimates and generalized linear mixed models. Biometrika, 88:973–985, 2001.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    P. J. Heagerty and S. L. Zeger. Marginalized multilevel models and likelihood inference. Statistical Science, 15:1–26, 2000. (with discussion)swallowdot.Google Scholar
  28. 28.
    J. J. Heckman. The incidental parameters problem and the problem of initial conditions in estimating a discrete stochastic process and some Monte Carlo evidence on their practical importance. In C. F. Manski and D. L. McFadden, editors, Structural Analysis of Discrete Data with Econometric Applications, pages 179–196. MIT Press, Cambridge, MA, 1981natexlaba. (Downloadable from urlhttp://elsa.berkeley.edu/mcfadden/discrete.html)swallowdot.Google Scholar
  29. 29.
    J. J. Heckman. Statistical models for discrete panel data. In C. F. Manski and D. L. McFadden, editors, Structural Analysis of Discrete Data with Econometric Applications, pages 114–178. MIT Press, Cambridge, MA, 1981natexlabb. (Downloadable from urlhttp://elsa.berkeley.edu/mcfadden/discrete.html)swallowdot.Google Scholar
  30. 30.
    J. J. Heckman and B. Singer. A method for minimizing the impact of distributional assumptions in econometric models for duration data. Econometrica, 52:271–320, 1984.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    D. Hedeker. Multilevel models for ordinal and nominal variables. In J. de Leeuw and E. Meijer, editors, Handbook of Multilevel Analysis, Chapter refchap:hede06. Springer, New York, 2008. (this volume)swallowdot.Google Scholar
  32. 32.
    C. Hsiao. Analysis of Panel Data, 2nd edition. Cambridge University Press, Cambridge, UK, 2003.Google Scholar
  33. 33.
    R. H. Jones. Longitudinal Data with Serial Correlation: A State-Space Approach. Chapman & Hall, London, 1993.MATHGoogle Scholar
  34. 34.
    N. M. Laird. Nonparametric maximum likelihood estimation of a mixing distribution. Journal of the American Statistical Association, 73:805–811, 1978.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    N. M. Laird and J. H. Ware. Random-effects models for longitudinal data. Biometrics, 38:963–974, 1982.MATHCrossRefGoogle Scholar
  36. 36.
    K.-Y. Liang and S. L. Zeger. Longitudinal data analysis using generalized linear models. Biometrika, 73:13–22, 1986.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    B. G. Lindsay and M. L. Lesperance. A review of semiparametric mixture models. Journal of Statistical Planning and Inference, 47:5–28, 1995.CrossRefMathSciNetGoogle Scholar
  38. 38.
    J. K. Lindsey. Models for Repeated Measurements, 2nd edition. Oxford University Press, Oxford, UK, 1999.Google Scholar
  39. 39.
    N. T. Longford. Random Coefficient Models. Oxford University Press, Oxford, UK, 1993.MATHGoogle Scholar
  40. 40.
    N. T. Longford. Missing data. In J. de Leeuw and E. Meijer, editors, Handbook of Multilevel Analysis, Chapter refchap:long06. Springer, New York, 2008. (this volume)swallowdot.Google Scholar
  41. 41.
    G. S. Maddala. The use of variance components models in pooling cross-section and time series data. Econometrica, 39:341–358, 1971.CrossRefMathSciNetGoogle Scholar
  42. 42.
    C. E. McCulloch and S. R. Searle. Generalized, Linear and Mixed Models. Wiley, New York, 2001.MATHGoogle Scholar
  43. 43.
    W. Meredith and J. Tisak. Latent curve analysis. Psychometrika, 55:107–122, 1990.CrossRefGoogle Scholar
  44. 44.
    G. Molenberghs. Generalized estimating equations. In M. Aerts, H. Geys, G. Molenberghs, and L. M. Ryan, editors, Topics in Modelling Clustered Data, pages 47–75. Chapman & Hall/CRC, Boca Raton, FL, 2002.Google Scholar
  45. 45.
    G. Molenberghs and G. Verbeke. Models for Discrete Longitudinal Data. Springer, New York, 2005.MATHGoogle Scholar
  46. 46.
    B. O. Muthén and K. Shedden. Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55:463–469, 1999.MATHCrossRefGoogle Scholar
  47. 47.
    D. S. Nagin and K. C. Land. Age, criminal careers, and population heterogeneity: Specification and estimation of a nonparametric mixed Poisson model. Criminology, 31:327–362, 1993.CrossRefGoogle Scholar
  48. 48.
    J. M. Neuhaus, W. W. Hauck, and J. D. Kalbfleisch. The effects of mixture distribution misspecification when fitting mixed-effects logistic models. Biometrika, 79:755–762, 1992.CrossRefGoogle Scholar
  49. 49.
    J. Neyman and E. L. Scott. Consistent estimates based on partially consistent observations. Econometrica, 16:1–32, 1948.CrossRefMathSciNetGoogle Scholar
  50. 50.
    J. C. Pinheiro and D. M. Bates. Mixed-Effects Models in S and S-PLUS. Springer, New York, 2000.MATHGoogle Scholar
  51. 51.
    R. E. Quandt. A new approach to estimating switching regressions. Journal of the American Statistical Association, 67:306–310, 1972.MATHCrossRefGoogle Scholar
  52. 52.
    S. Rabe-Hesketh, A. Pickles, and A. Skrondal. Correcting for covariate measurement error in logistic regression using nonparametric maximum likelihood estimation. Statistical Modelling, 3:215–232, 2003.CrossRefMathSciNetGoogle Scholar
  53. 53.
    S. Rabe-Hesketh and A. Skrondal. Multilevel and Longitudinal Modeling Using Stata. Stata Press, College Station, TX, 2005.Google Scholar
  54. 54.
    S. Rabe-Hesketh and A. Skrondal. Generalized linear mixed effects models. In G. Fitzmaurice, M. Davidian, G. Verbeke, and G. Molenberghs, editors, Longitudinal Data Analysis: A Handbook of Modern Statistical Methods. Chapman & Hall/CRC, Boca Raton, FL, 2007.Google Scholar
  55. 55.
    S. Rabe-Hesketh, A. Skrondal, and A. Pickles. GLLAMM manual. Working Paper 160, U.C. Berkeley Division of Biostatistics, Berkeley, CA, 2004. (Downloadable from urlhttp://www.bepress.com/ucbbiostat/paper160/)swallowdot.Google Scholar
  56. 56.
    S. Rabe-Hesketh, A. Skrondal, and A. Pickles. Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. Journal of Econometrics, 128:301–323, 2005.CrossRefMathSciNetGoogle Scholar
  57. 57.
    G. Rasch. Probabilistic Models for Some Intelligence and Attainment Tests. Danmarks Pædagogiske Institut, Copenhagen, 1960.Google Scholar
  58. 58.
    G. Rodríguez. Multilevel generalized linear models. In J. de Leeuw and E. Meijer, editors, Handbook of Multilevel Analysis, Chapter refchap:rodr06. Springer, New York, 2008. (this volume)swallowdot.Google Scholar
  59. 59.
    D. B. Rubin. Inference and missing data. Biometrika, 63:581–592, 1976. (with discussion)swallowdot.MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    A. Skrondal and S. Rabe-Hesketh. Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Chapman & Hall/CRC, Boca Raton, FL, 2004.MATHGoogle Scholar
  61. 61.
    T. A. B. Snijders and J. Berkhof. Diagnostic checks for multilevel models. In J. de Leeuw and E. Meijer, editors, Handbook of Multilevel Analysis, Chapter refchap:snij06. Springer, New York, 2008. (this volume)swallowdot.Google Scholar
  62. 62.
    T. A. B. Snijders and R. J. Bosker. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. Sage, London, 1999.MATHGoogle Scholar
  63. 63.
    StataCorp. Stata Statistical Software: Release 9.0. Stata Corporation, College Station, TX, 2005.Google Scholar
  64. 64.
    F. Vella and M. Verbeek. Whose wages do unions raise? A dynamic model of unionism and wage rate determination for young men. Journal of Applied Econometrics, 13:163–183, 1998.CrossRefGoogle Scholar
  65. 65.
    G. Verbeke and G. Molenberghs. Linear Mixed Models for Longitudinal Data. Springer, New York, 2000.MATHGoogle Scholar
  66. 66.
    G. Verbeke, B. Spiessens, and E. Lesaffre. Conditional linear mixed models. American Statistician, 55:25–34, 2001.CrossRefMathSciNetGoogle Scholar
  67. 67.
    E. F. Vonesh and V. M. Chinchilli. Linear and Nonlinear Models for the Analysis of Repeated Measurements. Marcel Dekker, New York, 1997.MATHGoogle Scholar
  68. 68.
    M. Wedel and W. A. Kamakura. Market Segmentation: Conceptual and Methodological Foundations, 2nd edition. Kluwer, Dordrecht, 2000.Google Scholar
  69. 69.
    M. Wedel and W. A. Kamakura. Factor analysis with (mixed) observed and latent variables. Psychometrika, 66:515–530, 2001.CrossRefMathSciNetGoogle Scholar
  70. 70.
    J. M. Wooldridge. Econometric Analysis of Cross Section and Panel Data. MIT Press, Cambridge, MA, 2002.Google Scholar
  71. 71.
    S. L. Zeger and K.-Y. Liang. Longitudinal data analysis for discrete and continuous outcomes. Biometrics, 42:121–130, 1986.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anders Skrondal
    • 1
  • Sophia Rabe-Hesketh
    • 2
  1. 1.Department of Statistics and Methodology Institute, London School of Economics and Division of EpidemiologyNorwegian Institute of Public HealthLondon
  2. 2.Graduate School of Education and Graduate Group in BiostatisticsUniversity of California, Berkeley and Institute of Education, University of LondonLondon

Personalised recommendations