Advertisement

Multilevel Models for Ordinal and Nominal Variables

  • Donald Hedeker

Keywords

Item Response Theory Item Response Theory Model Proportional Odds Model Ordinal Response Threshold Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Adams, M. Wilson, and M. Wu. Multilevel item response models: An approach to errors in variable regression. Journal of Educational and Behavioral Statistics, 22:47–76, 1997.Google Scholar
  2. 2.
    A. Agresti. Categorical Data Analysis. Wiley, New York, 1990.MATHGoogle Scholar
  3. 3.
    A. Agresti, J. G. Booth, J. P. Hobart, and B. Caffo. Random-effects modeling of categorical response data. Sociological Methodology, 30:27–80, 2000.Google Scholar
  4. 4.
    A. Agresti and J. B. Lang. A proportional odds model with subject-specific effects for repeated ordered categorical responses. Biometrika, 80:527–534, 1993.MATHMathSciNetGoogle Scholar
  5. 5.
    A. Agresti and R. Natarajan. Modeling clustered ordered categorical data: A survey. International Statistical Review, 69:345–371, 2001.MATHGoogle Scholar
  6. 6.
    P. D. Allison. Discrete-time methods for the analysis of event histories. Sociological Methodology, 13:61–98, 1982.Google Scholar
  7. 7.
    P. D. Allison. Survival Analysis using the SAS System: A Practical Guide. SAS Institute, Cary, NC, 1995.Google Scholar
  8. 8.
    T. Amemiya. Qualitative response models: A survey. Journal of Economic Literature, 19:483–536, 1981.Google Scholar
  9. 9.
    D. A. Anderson and M. Aitkin. Variance component models with binary response: Interviewer variability. Journal of the Royal Statistical Society, Series B, 47:203–210, 1985.MathSciNetGoogle Scholar
  10. 10.
    K. J. Arrow. Social Choice and Individual Values. Wiley, New York, 1951.MATHGoogle Scholar
  11. 11.
    D. J. Bartholomew and M. Knott. Latent Variable Models and Factor Analysis, 2nd edition. Oxford University Press, New York, 1999.MATHGoogle Scholar
  12. 12.
    E. K. Berndt, B. H. Hall, R. E. Hall, and J. A. Hausman. Estimation and inference in nonlinear structural models. Annals of Economic and Social Measurement, 3:653–665, 1974.Google Scholar
  13. 13.
    C. R. Bhat. Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model. Transportation Research, Part B, 35:677–693, 2001.Google Scholar
  14. 14.
    R. D. Bock. Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37:29–51, 1972.MATHMathSciNetGoogle Scholar
  15. 15.
    R. D. Bock. Multivariate Statistical Methods in Behavioral Research. McGraw-Hill, New York, 1975.MATHGoogle Scholar
  16. 16.
    R. D. Bock and M. Aitkin. Marginal maximum likelihood estimation of item parameters: An application of the EM algorithm. Psychometrika, 46:443–459, 1981.MathSciNetGoogle Scholar
  17. 17.
    R. D. Bock and M. Lieberman. Fitting a response model for n dichotomously scored items. Psychometrika, 35:179–197, 1970.Google Scholar
  18. 18.
    R. D. Bock and S. Shilling. High-dimensional full-information item factor analysis. In M. Berkane, editor, Latent Variable Modeling and Applications to Causality, pages 163–176. Springer, New York, 1997.Google Scholar
  19. 19.
    N. E. Breslow and X. Lin. Bias correction in generalised linear mixed models with a single component of dispersion. Biometrika, 82:81–91, 1995.MATHMathSciNetGoogle Scholar
  20. 20.
    G. Camilli and L. A. Shepard. Methods for Identifying Biased Test Items. Sage, Thousand Oaks, CA, 1994.Google Scholar
  21. 21.
    M. R. Conaway. Analysis of repeated categorical measurements with conditional likelihood methods. Journal of the American Statistical Association, 84:53–61, 1989.MathSciNetGoogle Scholar
  22. 22.
    C. Corcoran, B. Coull, and A. Patel. Egret for Windows User Manual. Cytel Software Corporation, Cambridge, MA, 1999.Google Scholar
  23. 23.
    L. A. Cupples, R. B. D'Agostino, K. Anderson, and W. B. Kannel. Comparison of baseline and repeated measure covariate techniques in the Framingham Heart Study. Statistics in Medicine, 7:205–218, 1985.Google Scholar
  24. 24.
    R. B. D'Agostino, M.-L. Lee, A. J. Belanger, L. A. Cupples, K. Anderson, and W. B. Kannel. Relation of pooled logistic regression to time dependent Cox regression analysis: The Framingham Heart Study. Statistics in Medicine, 9:1501–1515, 1990.Google Scholar
  25. 25.
    M. J. Daniels and C. Gatsonis. Hierarchical polytomous regression models with applications to health services research. Statistics in Medicine, 16:2311–2325, 1997.Google Scholar
  26. 26.
    K. A. Doksum and M. Gasko. On a correspondence between models in binary regression analysis and in survival analysis. International Statistical Review, 58:243–252, 1990.MATHGoogle Scholar
  27. 27.
    D. M. Drukker. Maximum simulated likelihood: Introduction to a special issue. The Stata Journal, 6:153–155, 2006.Google Scholar
  28. 28.
    J. Engel. On the analysis of grouped extreme-value data with GLIM. Applied Statistics, 42:633–640, 1993.MATHGoogle Scholar
  29. 29.
    F. Ezzet and J. Whitehead. A random effects model for ordinal responses from a crossover trial. Statistics in Medicine, 10:901–907, 1991.Google Scholar
  30. 30.
    A. Fielding, M. Yang, and H. Goldstein. Multilevel ordinal models for examination grades. Statistical Modelling, 3:127–153, 2003.MATHMathSciNetGoogle Scholar
  31. 31.
    G. M. Fitzmaurice, N. M. Laird, and A. G. Rotnitzky. Regression models for discrete longitudinal responses. Statistical Science, 8:284–309, 1993.MATHMathSciNetGoogle Scholar
  32. 32.
    S. A. Freels, R. B. Warnecke, T. P. Johnson, and B. R. Flay. Evaluation of the effects of a smoking cessation intervention using the multilevel thresholds of change model. Evaluation Review, 26:40–58, 2002.Google Scholar
  33. 33.
    S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–741, 1984.MATHGoogle Scholar
  34. 34.
    R. D. Gibbons and R. D. Bock. Trend in correlated proportions. Psychometrika, 52:113–124, 1987.MATHMathSciNetGoogle Scholar
  35. 35.
    R. D. Gibbons and D. Hedeker. Random-effects probit and logistic regression models for three-level data. Biometrics, 53:1527–1537, 1997.MATHGoogle Scholar
  36. 36.
    G. Glasgow. Mixed logit models for multiparty elections. Political Analysis, 9:116–136, 2001.Google Scholar
  37. 37.
    H. Goldstein. Nonlinear multilevel models, with an application to discrete response data. Biometrika, 78:45–51, 1991.MathSciNetGoogle Scholar
  38. 38.
    H. Goldstein. Multilevel Statistical Models, 3rd edition. Edward Arnold, London, 2003.MATHGoogle Scholar
  39. 39.
    H. Goldstein and J. Rasbash. Improved approximations for multilevel models with binary responses. Journal of the Royal Statistical Society, Series A, 159:505–513, 1996.MATHMathSciNetGoogle Scholar
  40. 40.
    W. H. Greene. LIMDEP Version 8.0 User's Manual, 4th edition. Econometric Software, Plainview, NY, 2002.Google Scholar
  41. 41.
    P. Haan and A. Uhlendorff. Estimation of multinomial logit models with unobserved heterogeneity using maximum simulated likelihood. The Stata Journal, 6:229–245, 2006.Google Scholar
  42. 42.
    A. Han and J. A. Hausman. Flexible parametric estimation of duration and competing risk models. Journal of Applied Econometrics, 5:1–28, 1990.Google Scholar
  43. 43.
    J. Hartzel, A. Agresti, and B. Caffo. Multinomial logit random effects models. Statistical Modelling, 1:81–102, 2001.MATHGoogle Scholar
  44. 44.
    D. A. Harville and R. W. Mee. A mixed-model procedure for analyzing ordered categorical data. Biometrics, 40:393–408, 1984.MATHMathSciNetGoogle Scholar
  45. 45.
    P. J. Heagerty and S. L. Zeger. Marginalized multilevel models and likelihood inference. Statisical Science, 15:1–26, 2000. (with discussion)swallowdot.Google Scholar
  46. 46.
    D. Hedeker. MIXNO: A computer program for mixed-effects nominal logistic regression. Journal of Statistical Software, 4(5):1–92, 1999.MathSciNetGoogle Scholar
  47. 47.
    D. Hedeker. A mixed-effects multinomial logistic regression model. Statistics in Medicine, 21:1433–1446, 2003.Google Scholar
  48. 48.
    D. Hedeker and R. D. Gibbons. A random-effects ordinal regression model for multilevel analysis. Biometrics, 50:933–944, 1994.MATHGoogle Scholar
  49. 49.
    D. Hedeker and R. D. Gibbons. MIXOR: A computer program for mixed-effects ordinal regression analysis. Computer Methods and Programs in Biomedicine, 49:157–176, 1996.Google Scholar
  50. 50.
    D. Hedeker and R. D. Gibbons. Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychological Methods, 2:64–78, 1997.Google Scholar
  51. 51.
    D. Hedeker and R. D. Gibbons. Longitudinal Data Analysis. Wiley, New York, 2006.MATHGoogle Scholar
  52. 52.
    D. Hedeker and R. J. Mermelstein. A multilevel thresholds of change model for analysis of stages of change data. Multivariate Behavioral Research, 33:427–455, 1998.Google Scholar
  53. 53.
    D. Hedeker and R. J. Mermelstein. Analysis of longitudinal substance use outcomes using random-effects regression models. Addiction, 95(Supplement 3):S381–S394, 2000.Google Scholar
  54. 54.
    D. Hedeker, O. Siddiqui, and F. B. Hu. Random-effects regression analysis of correlated grouped-time survival data. Statistical Methods in Medical Research, 9:161–179, 2000.MATHGoogle Scholar
  55. 55.
    R. L. Hough, S. Harmon, H. Tarke, S. Yamashiro, R. Quinlivan, P. Landau-Cox, M. S. Hurlburt, P. A. Wood, R. Milone, V. Renker, A. Crowell, and E. Morris. Supported independent housing: Implementation issues and solutions in the San Diego McKinney homeless demonstration research project. In W. R. Breakey and J. W. Thompson, editors, Mentally Ill and Homeless: Special Programs for Special Needs, pages 95–117. Harwood, New York, 1997.Google Scholar
  56. 56.
    M. S. Hurlburt, P. A. Wood, and R. L. Hough. Providing independent housing for the homeless mentally ill: A novel approach to evaluating long-term longitudinal housing patterns. Journal of Community Psychology, 24:291–310, 1996.Google Scholar
  57. 57.
    H. Ishwaran. Univariate and multirater ordinal cumulative link regression with covariate specific cutpoints. Canadian Journal of Statistics, 28:715–730, 2000.MATHMathSciNetGoogle Scholar
  58. 58.
    J. Jansen. On the statistical analysis of ordinal data when extravariation is present. Applied Statistics, 39:75–84, 1990.MATHMathSciNetGoogle Scholar
  59. 59.
    E. Läärä and J. N. S. Matthews. The equivalence of two models for ordinal data. Biometrika, 72:206–207, 1985.Google Scholar
  60. 60.
    N. M. Laird. Missing data in longitudinal studies. Statistics in Medicine, 7:305–315, 1988.Google Scholar
  61. 61.
    E. Lesaffre and B. Spiessens. On the effect of the number of quadrature points in a logistic random-effects model: An example. Applied Statistics, 50:325–335, 2001.MATHMathSciNetGoogle Scholar
  62. 62.
    J. K. Lindsey and P. Lambert. On the appropriateness of marginal models for repeated measurements in clinical trials. Statistics in Medicine, 17:447–469, 1998.Google Scholar
  63. 63.
    L. C. Liu and D. Hedeker. A mixed-effects regression model for longitudinal multivariate ordinal data. Biometrics, 62:261–268, 2006.MATHMathSciNetGoogle Scholar
  64. 64.
    Q. Liu and D. A. Pierce. A note on Gauss-Hermite quadrature. Biometrika, 81:624–629, 1994.MATHMathSciNetGoogle Scholar
  65. 65.
    J. S. Long. Regression Models for Categorical and Limited Dependent Variables. Sage, Thousand Oaks, CA, 1997.MATHGoogle Scholar
  66. 66.
    F. M. Lord. Applications of Item Response Theory to Practical Testing Problems. Erlbaum, Hillside, NJ, 1980.Google Scholar
  67. 67.
    R. D. Luce. Individual Choice Behavior. Wiley, New York, 1959.MATHGoogle Scholar
  68. 68.
    G. S. Maddala. Limited-Dependent and Qualitative Variables in Econometrics. Cambridge University Press, Cambridge, UK, 1983.MATHGoogle Scholar
  69. 69.
    J. R. Magnus. Linear Structures. Charles Griffin, London, 1988.MATHGoogle Scholar
  70. 70.
    E. C. Marshall and D. Spiegelhalter. Institutional performance. In A. H. Leyland and H. Goldstein, editors, Multilevel Modelling of Health Statistics, pages 127–142. Wiley, New York, 2001.Google Scholar
  71. 71.
    P. McCullagh. Regression models for ordinal data. Journal of the Royal Statistical Society, Series B, 42:109–142, 1980. (with discussion)swallowdot.MATHMathSciNetGoogle Scholar
  72. 72.
    P. McCullagh and J. A. Nelder. Generalized Linear Models, 2nd edition. Chapman & Hall, London, 1989.Google Scholar
  73. 73.
    D. McFadden. Conditional logit analysis of qualitative choice behavior. In P. Zarembka, editor, Frontiers in Econometrics. Academic Press, New York, 1973.Google Scholar
  74. 74.
    D. McFadden. Qualitative response models. In W. Hildenbrand, editor, Advances in Econometrics, pages 1–37. Cambridge University Press, Cambridge, UK, 1980.Google Scholar
  75. 75.
    J. M. Neuhaus, J. D. Kalbfleisch, and W. W. Hauck. A comparison of cluster-specific and population-averaged approaches for analyzing correlated binary data. International Statistical Review, 59:25–35, 1991.Google Scholar
  76. 76.
    J. F. Pendergast, S. J. Gange, M. A. Newton, M. J. Lindstrom, M. Palta, and M. R. Fisher. A survey of methods for analyzing clustered binary response data. International Statistical Review, 64:89–118, 1996.MATHGoogle Scholar
  77. 77.
    B. Peterson and F. E. Harrell. Partial proportional odds models for ordinal response variables. Applied Statistics, 39:205–217, 1990.MATHGoogle Scholar
  78. 78.
    J. C. Pinheiro and D. M. Bates. Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics, 4:12–35, 1995.Google Scholar
  79. 79.
    R. L. Prentice and L. A. Gloeckler. Regression analysis of grouped survival data with application to breast cancer data. Biometrics, 34:57–67, 1978.MATHGoogle Scholar
  80. 80.
    S. Rabe-Hesketh, A. Skrondal, and A. Pickles. Reliable estimation of generalized linear mixed models using adaptive quadrature. The Stata Journal, 2:1–21, 2002.Google Scholar
  81. 81.
    S. Rabe-Hesketh, A. Skrondal, and A. Pickles. GLLAMM manual. Working Paper 160, U.C. Berkeley Division of Biostatistics, Berkeley, CA, 2004. (Downloadable from urlhttp://www.bepress.com/ucbbiostat/paper160/)swallowdot.Google Scholar
  82. 82.
    S. Rabe-Hesketh, A. Skrondal, and A. Pickles. Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. Journal of Econometrics, 128:301–323, 2005.MathSciNetGoogle Scholar
  83. 83.
    R. Raman and D. Hedeker. A mixed-effects regression model for three-level ordinal response data. Statistics in Medicine, 24:3331–3345, 2005.MathSciNetGoogle Scholar
  84. 84.
    J. Rasbash, F. Steele, W. J. Browne, and B. Prosser. A User's Guide to MLwiN. Version 2.0. Centre for Multilevel Modelling, University of Bristol, Bristol, UK, 2005.Google Scholar
  85. 85.
    S. W. Raudenbush and A. S. Bryk. Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd edition. Sage, Thousand Oaks, CA, 2002.Google Scholar
  86. 86.
    S. W. Raudenbush, A. S. Bryk, Y. F. Cheong, and R. Congdon. HLM 6: Hierarchical Linear and Nonlinear Modeling. Scientific Software International, Chicago, 2004.Google Scholar
  87. 87.
    S. W. Raudenbush, M.-L. Yang, and M. Yosef. Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation. Journal of Computational and Graphical Statistics, 9:141–157, 2000.MathSciNetGoogle Scholar
  88. 88.
    D. Revelt and K. Train. Mixed logit with repeated choices: Household’s choices of appliance efficiency level. Review of Economics and Statistics, 80:647–657, 1998.Google Scholar
  89. 89.
    F. Rijmen, F. Tuerlinckx, P. De Boeck, and P. Kuppens. A nonlinear mixed model framework for item response theory. Psychological Methods, 8:185–205, 2003.Google Scholar
  90. 90.
    G. Rodríguez and N. Goldman. An assessment of estimation procedures for multilevel models with binary responses. Journal of the Royal Statistical Society, Series A, 158:73–89, 1995.Google Scholar
  91. 91.
    D. B. Rubin. Inference and missing data. Biometrika, 63:581–592, 1976. (with discussion)swallowdot.Google Scholar
  92. 92.
    F. Samejima. Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph No. 17, 1969.Google Scholar
  93. 93.
    SAS/Stat. SAS/Stat User's Guide, version 9.1. SAS Institute, Cary, NC, 2004.Google Scholar
  94. 94.
    T. H. Scheike and T. K. Jensen. A discrete survival model with random effects: An application to time to pregnancy. Biometrics, 53:318–329, 1997.MATHGoogle Scholar
  95. 95.
    J. D. Singer and J. B. Willett. It's about time: Using discrete-time survival analysis to study duration and the timing of events. Journal of Educational and Behavioral Statistics, 18:155–195, 1993.Google Scholar
  96. 96.
    J. D. Singer and J. B. Willett. Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. Oxford University Press, Oxford, UK, 2003.Google Scholar
  97. 97.
    A. Skrondal and S. Rabe-Hesketh. Multilevel logistic regression for polytomous data and rankings. Psychometrika, 68:267–287, 2003.MathSciNetGoogle Scholar
  98. 98.
    A. Skrondal and S. Rabe-Hesketh. Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Chapman & Hall/CRC, Boca Raton, FL, 2004.MATHGoogle Scholar
  99. 99.
    T. A. B. Snijders and R. J. Bosker. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. Sage, Thousand Oaks, CA, 1999.MATHGoogle Scholar
  100. 100.
    D. J. Spiegelhalter, A. Thomas, N. G. Best, and W. R. Gilks. BUGS: Bayesian Inference Using Gibbs Sampling, Version 0.50. Technical Report, MRC Biostatistics Unit, Cambridge, UK, 1995.Google Scholar
  101. 101.
    StataCorp. Stata Statistical Software: Release 9. Stata Corporation, College Station, TX, 2005.Google Scholar
  102. 102.
    S. Stern. Simulation-based estimation. Journal of Economic Literature, 35:2006–2039, 1997.Google Scholar
  103. 103.
    R. Stiratelli, N. M. Laird, and J. H. Ware. Random-effects models for serial observations with binary response. Biometrics, 40:961–971, 1984.Google Scholar
  104. 104.
    A. H. Stroud and D. Secrest. Gaussian Quadrature Formulas. Prentice Hall, Englewood Cliffs, NJ, 1966.MATHGoogle Scholar
  105. 105.
    M. A. Tanner. Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, 3rd edition. Springer, New York, 1996.MATHGoogle Scholar
  106. 106.
    T. R. Ten Have. A mixed effects model for multivariate ordinal response data including correlated discrete failure times with ordinal responses. Biometrics, 52:473–491, 1996.MATHMathSciNetGoogle Scholar
  107. 107.
    T. R. Ten Have, A. R. Kunselman, and L. A. Tran. A comparison of mixed effects logistic regression models for binary response data with two nested levels of clustering. Statistics in Medicine, 18:947–960, 1999.Google Scholar
  108. 108.
    T. R. Ten Have and D. H. Uttal. Subject-specific and population-averaged continuation ratio logit models for multiple discrete time survival profiles. Applied Statistics, 43:371–384, 1994.MATHGoogle Scholar
  109. 109.
    J. Terza. Ordinal probit: A generalization. Communications in Statistics: Theory and Methods, 14:1–11, 1985.Google Scholar
  110. 110.
    D. Thissen and L. Steinberg. A taxonomy of item response models. Psychometrika, 51:567–577, 1986.MATHGoogle Scholar
  111. 111.
    L. L. Thurstone. Psychophysical analysis. American Journal of Psychology, 38:368–389, 1927.Google Scholar
  112. 112.
    K. E. Train. Discrete Choice Methods with Simulation. Cambridge University Press, Cambridge, UK, 2003.MATHGoogle Scholar
  113. 113.
    G. Tutz and W. Hennevogl. Random effects in ordinal regression models. Computational Statistics & Data Analysis, 22:537–557, 1996.MATHGoogle Scholar
  114. 114.
    M. A. Wakefield, F. J. Chaloupka, N. J. Kaufman, C. T. Orleans, D. C. Barker, and E. E. Ruel. Effect of restrictions on smoking at home, at school, and in public places on teenage smoking: Cross sectional study. British Medical Journal, 321:333–337, 2001.Google Scholar
  115. 115.
    G. Y. Wong and W. M. Mason. The hierarchical logistic regression model for multilevel analysis. Journal of the American Statistical Association, 80:513–524, 1985.Google Scholar
  116. 116.
    B. D. Wright. Solving measurement problems with the Rasch model. Journal of Educational Measurement, 14:97–116, 1977.Google Scholar
  117. 117.
    H. Xie, G. McHugo, A. Sengupta, D. Hedeker, and R. Drake. An application of the thresholds of change model to the analysis of mental health data. Mental Health Services Research, 3:107–114, 2001.Google Scholar
  118. 118.
    S. L. Zeger, K.-Y. Liang, and P. S. Albert. Models for longitudinal data: A generalized estimating equation approach. Biometrics, 44:1049–1060, 1988.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Donald Hedeker
    • 1
  1. 1.University of Illinois at ChicagoUSA

Personalised recommendations