Robust Standard Error Hierarchical Linear Model Generalize Little Square Laplace Approximation Pair Member 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Barnett, R. T. Brennan, S. W. Raudenbush, and N. L. Marshall. Gender and the relationship between marital role-quality and psychological distress: A study of dual-earner couples. Journal of Personality and Social Psychology, 64:794–806, 1993.CrossRefGoogle Scholar
  2. 2.
    U. Böckenholt. Hierarchical modeling of paired comparison data. Psychological Methods, 6:49–66, 2001.CrossRefGoogle Scholar
  3. 3.
    G. Bond, L. Miller, R. Krumweid, and R. Ward. Assertive case management in three CMHs: A controlled study. Hospital and Community Psychiatry, 9:411–418, 1988.Google Scholar
  4. 4.
    A. S. Bryk, V. Lee, and P. Holland. Catholic Schools and the Common Good. Harvard University Press, Cambridge, MA, 1993.Google Scholar
  5. 5.
    A. S. Bryk and S. W. Raudenbush. Hierarchical Linear Models: Applications and Data Analysis Methods. Sage, Newbury Park, CA, 1992.Google Scholar
  6. 6.
    B. Burns and A. Santos. Assertive community treatment: An update of randomized trials. Psychiatric Services, 47:669–675, 1995.Google Scholar
  7. 7.
    W. G. Cochran. Analysis of covariance: Its nature and uses. Biometrics, 13:261–281, 1957.CrossRefMathSciNetGoogle Scholar
  8. 8.
    J. Coleman, T. Hoffer, and S. Kilgore. High School Achievement: Public, Catholic, and Other Private Schools Compared. Basic, New York, 1982.Google Scholar
  9. 9.
    A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39:1–38, 1977. (with discussion).MATHMathSciNetGoogle Scholar
  10. 10.
    A. P. Dempster, D. B. Rubin, and R. K. Tsutakawa. Estimation in covariance components models. Journal of the American Statistical Association, 76: 341–353, 1981.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. Donner, K. S. Brown, and P. Brasher. A methodological review of non-therapeutic intervention trials employing cluster randomization, 1979–1989. International Journal of Epidemiology, 19:795–800, 1990.CrossRefGoogle Scholar
  12. 12.
    S. C. Duncan, T. E. Duncan, and A. Alpert. Alcohol use among African American and white siblings: A multilevel latent growth modeling approach. Journal of Gender, Culture, and Health, 3:209–225, 1998.CrossRefGoogle Scholar
  13. 13.
    J. Finn and C. Achilles. Answers and questions about class size: A statewide experiment. American Educational Research Journal, 27:557–577, 1990.CrossRefGoogle Scholar
  14. 14.
    C. Garner and S. W. Raudenbush. Neighborhood effects on educational attainment: A multilevel analysis of the influence of pupil ability, family, school, and neighborhood. Sociology of Education, 64:251–262, 1991.CrossRefGoogle Scholar
  15. 15.
    P. J. Heagerty and S. L. Zeger. Marginalized multilevel models and likelihood inference. Statistical Science, 15:1–26, 2000. (with discussion).MathSciNetGoogle Scholar
  16. 16.
    D. Hedeker and R. D. Gibbons. A random-effects ordinal regression model for multilevel analysis. Biometrics, 50:933–944, 1994.MATHCrossRefGoogle Scholar
  17. 17.
    R. Ingersoll and S. Bobbitt. Teacher Supply, Teacher Qualifications, and Teacher Turnover: 1990–91. US National Center for Educational Statistics, Washington, DC, 1995.Google Scholar
  18. 18.
    B. A. Jones. Collaboration: The case for indigenous community-based organization support of drop-out prevention programming and implementation. Journal of Negro Education, 61:496–508, 1992.CrossRefGoogle Scholar
  19. 19.
    R. E. Kass and D. Steffey. Approximate Bayesian inference in conditionally independent hierarchical models (parametric Empirical Bayes models). Journal of the American Statistical Association, 84:717–726, 1989.CrossRefMathSciNetGoogle Scholar
  20. 20.
    M. Kuo, B. Mohler, S. W. Raudenbush, and F. J. Earls. Assessing exposure to violence using multiple informants: Application of hierarchical linear model. The Journal of Child Psychology and Psychiatry, 41:1049–1056, 2000.CrossRefGoogle Scholar
  21. 21.
    K.-Y. Liang and S. L. Zeger. Longitudinal data analysis using generalized linear models. Biometrika, 73:13–22, 1986.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    N. T. Longford. A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects. Biometrika, 74:817–827, 1987.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    C. N. Morris. Parametric empirical Bayes inference: Theory and applications. Journal of the American Statistical Association, 78:47–65, 1983. (with discussion).MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    J. C. Pinheiro and D. M. Bates. Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics, 4:12–35, 1995.CrossRefGoogle Scholar
  25. 25.
    R. Plomin, R. N. Emde, J. M. Braungart, J. Campos, R. Corley, D. W. Fulker, J. Kagan, J. S. Reznick, J. Robinson, C. Zahn-Waxler, and J. DeFries. Genetic change and continuity from fourteen to twenty months: The MacArthur longitudinal twin study. Child Development, 64:1354–1376, 1993.CrossRefGoogle Scholar
  26. 26.
    S. W. Raudenbush. Statistical analysis and optimal design for cluster randomized trials. Psychological Methods, 2:173–185, 1997.CrossRefGoogle Scholar
  27. 27.
    S. W. Raudenbush, R. T. Brennan, and R. C. Barnett. A multivariate hierarchical model for studying psychological change within married couples. Journal of Family Psychology, 9:161–174, 1995.CrossRefGoogle Scholar
  28. 28.
    S. W. Raudenbush and A. S. Bryk. Empirical Bayes meta-analysis. Journal of Educational Statistics, 10:75–98, 1985.CrossRefGoogle Scholar
  29. 29.
    S. W. Raudenbush and A. S. Bryk. Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd edition. Sage, Thousand Oaks, CA, 2002.Google Scholar
  30. 30.
    S. W. Raudenbush and X. Liu. Statistical power and optimal design for multisite randomized trials. Psychological Methods, 5:199–213, 2000.CrossRefGoogle Scholar
  31. 31.
    S. W. Raudenbush, M.-L. Yang, and M. Yosef. Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation. Journal of Computational and Graphical Statistics, 9:141–157, 2000.CrossRefMathSciNetGoogle Scholar
  32. 32.
    D. B. Rubin. Estimation in parallel randomized experiments. Journal of Educational Statistics, 6:337–401, 1981.Google Scholar
  33. 33.
    M. H. Seltzer. Sensitivity analysis for fixed effects in the hierarchical model: A Gibbs sampling approach. Journal of Educational Statistics, 18:207–235, 1993.CrossRefGoogle Scholar
  34. 34.
    M. H. Seltzer, W. H. Wong, and A. S. Bryk. Bayesian analysis in applications of hierarchical models: Issues and methods. Journal of Educational and Behavioral Statistics, 21:131–167, 1996.CrossRefGoogle Scholar
  35. 35.
    Z. Shun. Another look at the salamander mating data: A modified Laplace approximation approach. Journal of American Statistical Association, 92:341–349, 1997.MATHCrossRefGoogle Scholar
  36. 36.
    R. Slavin. Cooperative Learning. Longman, New York, 1983.Google Scholar
  37. 37.
    J. B. Smith, V. E. Lee, and F. M. Newmann. Instruction and Achievement in Chicago Elementary Schools. Consortium on Chicago School Research, Chicago, 2001.Google Scholar
  38. 38.
    T. A. B. Snijders and R. J. Bosker. Standard errors and sample sizes for two-level research. Journal of Educational Statistics, 18:237–259, 1993.CrossRefGoogle Scholar
  39. 39.
    M. Yosef. A Comparison of Alternative Approximations to ML Estimation for Hierarchical Generalized Linear Models: The Logistic-Normal Model Case. PhD thesis, Michigan State University, College of Education, East Lansing, 2001.Google Scholar
  40. 40.
    S. L. Zeger, K.-Y. Liang, and P. S. Albert. Models for longitudinal data: A generalized estimating equation approach. Biometrics, 44:1049–1060, 1988.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Stephen W. Raudenbush
    • 1
  1. 1.Department of SociologyUniversity of ChicagoRoom SSR 416USA

Personalised recommendations