Optimal Designs for Multilevel Studies

  • Mirjam Moerbeek
  • Gerard J. P. Van Breukelen
  • Martijn P.F. Berger


Optimal Design Variance Component Optimality Criterion Multilevel Model Fisher Information Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Afshartous. Determination of sample size for multilevel model design. Unpublished manuscript, 1995.Google Scholar
  2. 2.
    A. C. Atkinson and A. N. Donev. Optimum Experimental Designs. Clarendon Press, Oxford, UK, 1996.Google Scholar
  3. 3.
    M. P. F. Berger and F. E. S. Tan. Robust designs for linear mixed effects models. Applied Statistics, 53:569–581, 2004.MATHMathSciNetGoogle Scholar
  4. 4.
    R. J. Bosker, T. A. B. Snijders, and H. Guldemond. PINT Estimating Standard Errors of Regression Coefficients in Hierarchical Linear Models for Power Calculations. User’s Manual Version 1.6. University of Twente, Enschede, The Netherlands, 1999.Google Scholar
  5. 5.
    W. G. Cochran. Planning and Analysis of Observational Studies. Wiley, New York, 1983.Google Scholar
  6. 6.
    J. Cohen. A power primer. Psychological Bulletin, 112:155–159, 1992.CrossRefGoogle Scholar
  7. 7.
    M. P. Cohen. Determining sample sizes for surveys with data analyzed by hierarchical linear models. Journal of Official Statistics, 14:267–275, 1998.Google Scholar
  8. 8.
    A. Donner. A review of inference procedures for the intraclass correlation coefficientin the one-way random effects model. International Statistical Review, 54:67–82, 1986.MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Donner. Some aspects of the design and analysis of cluster randomization trials. Applied Statistics, 47:95–113, 1998.Google Scholar
  10. 10.
    A. Donner and N. Klar. Design and Analysis of Cluster Randomization Trials in Health Research. Edward Arnold, London, 2000.Google Scholar
  11. 11.
    H. A. Feldman and S. M. McKinlay. Cohort versus cross-sectional design in larage field trials: Precision, sample size, and a unifying model. Statistics in Medicine, 13:61–78, 1994.CrossRefGoogle Scholar
  12. 12.
    Z. Feng and J. E. Grizzle. Correlated binomial variates: Properties of estimator of intraclass correlation and its effect on sample size calculation. Statistics in Medicine, 11:1607–1614, 1992.CrossRefGoogle Scholar
  13. 13.
    S. Galbraith and I. C. Marschner. Guidelines for the design of clinical trials with longitudinal outcomes. Controlled Clinical Trials, 23:257–273, 2002.CrossRefGoogle Scholar
  14. 14.
    H. Goldstein. Nonlinear multilevel models, with an application to discrete response data. Biometrika, 78:45–51, 1991.CrossRefMathSciNetGoogle Scholar
  15. 15.
    H. Goldstein and J. Rasbash. Improved approximations for multilevel models with binary responses. Journal of the Royal Statistical Society, Series A, 159:505–513, 1996.MATHMathSciNetGoogle Scholar
  16. 16.
    D. Hedeker and R. D. Gibbons. A random-effects ordinal regression model for multilevel analysis. Biometrics, 50:933–944, 1994.MATHCrossRefGoogle Scholar
  17. 17.
    D. Hedeker, R. D. Gibbons, and C. Waternaux. Sample size estimation for longitudinal designs with attrition: Comparing time-related contrasts between two groups. Journal of Educational and Behavioral Statistics, 24:70–93, 1999.Google Scholar
  18. 18.
    F. Y. Hsieh. Sample size formulae for intervention studies with the cluster as unit of randomization. Statistics in Medicine, 8:1195–1201, 1988.CrossRefGoogle Scholar
  19. 19.
    M. Kendall and A. Stuart. The Advanced Theory of Statistics, 4th edition, volume 2. Griffin, London, 1979.MATHGoogle Scholar
  20. 20.
    S. M. Kerry and J. M. Bland. Unequal cluster sizes for trials in English and Welsh general practice: Implications for sample size calculations. Statistics in Medicine, 20:377–390, 2001.CrossRefGoogle Scholar
  21. 21.
    N. M. Laird and F. Wang. Estimating rates of change in randomized clinical trials. Controlled Clinical Trials, 11:405–419, 1990.CrossRefGoogle Scholar
  22. 22.
    S. Lake, E. Kammann, K. Klar, and R. A. Betensky. Sample size re-estimation in cluster randomization trials. Statistics in Medicine, 21:1337–1350, 2002.CrossRefGoogle Scholar
  23. 23.
    E. W. Lee and N. Dubin. Estimation and sample size consideration for clustered binary responses. Statistics in Medicine, 13:1241–1252, 1994.CrossRefGoogle Scholar
  24. 24.
    S. R. Lipsitz and M. Parzen. Sample size calculations for non-randomized studies. The Statistician, 44:81–90, 1995.CrossRefGoogle Scholar
  25. 25.
    G. Liu and K.-Y. Liang. Sample size calculation for studies with correlated observations. Biometrics, 53:937–947, 1997.MATHCrossRefGoogle Scholar
  26. 26.
    X. Liu. Statistical power and optimum sample allocation ratio for treatment and control having unequal costs per unit of randomization. Journal of Educational and Behavioral Statistics, 28:231–248, 2003.CrossRefGoogle Scholar
  27. 27.
    N. T. Longford. Random Coefficient Models. Oxford University Press, Oxford, UK, 1993.MATHGoogle Scholar
  28. 28.
    A. K. Manatunga, M. G. Hudgens, and S. Chen. Sample size estimation in cluster randomized studies with varying cluster size. Biometrical Journal, 43:75–86, 2001.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    S. M. McKinlay. Cost-efficient designs of cluster unit trials. Preventive Medicine, 23:606–611, 1994.CrossRefGoogle Scholar
  30. 30.
    M. Moerbeek. Design and Analysis of Multilevel Intervention Studies. PhD thesis, Maastricht University, Maastricht, 2000.Google Scholar
  31. 31.
    M. Moerbeek. The use of internal pilot studies to derive powerful and cost-efficient designs for studies with nested data. In 2004 Proceedings of the American Statistical Association. American Statistical Association, Alexandria, VA, 2004.Google Scholar
  32. 32.
    M. Moerbeek. Randomization of clusters versus randomization of persons within clusters: Which is preferable? The American Statistician, 59:72–78, 2005.CrossRefMathSciNetGoogle Scholar
  33. 33.
    M. Moerbeek. Powerful and cost-efficient designs for longitudinal intervention studies with two treatment groups. Journal of Educational and Behavioral Statistics, forthcoming.Google Scholar
  34. 34.
    M. Moerbeek, G. J. P. Van Breukelen, and M. P. F. Berger. Design issues for experiments in multilevel populations. Journal of Educational and Behavioral Statistics, 25:271–284, 2000.Google Scholar
  35. 35.
    M. Moerbeek, G. J. P. Van Breukelen, and M. P. F. Berger. Optimal experimental designs for multilevel logistic models. The Statistician, 50:1–14, 2001a.Google Scholar
  36. 36.
    M. Moerbeek, G. J. P. Van Breukelen, and M. P. F. Berger. Optimal experimental designs for multilevel models with covariates. Communications in Statistics, Theory and Methods, 30:2683–2697, 2001b.MATHCrossRefGoogle Scholar
  37. 37.
    M. Moerbeek, G. J. P. Van Breukelen, and M. P. F. Berger. A comparison between traditional methods and multilevel regression for the analysis of multi-center intervention studies. Journal of Clinical Epidemiology, 56:341–350, 2003a.CrossRefGoogle Scholar
  38. 38.
    M. Moerbeek, G. J. P. Van Breukelen, and M. P. F. Berger. A comparison of estimation methods for multilevel logistic models. Computational Statistics, 18:19–37, 2003b.Google Scholar
  39. 39.
    M. Moerbeek, G. J. P. Van Breukelen, and M. P. F. Berger. Optimal sample sizes in experimental designs with individuals nested within clusters. Understanding Statistics, 2:151–175, 2003c.CrossRefGoogle Scholar
  40. 40.
    M. Moerbeek and W. K. Wong. Multiple-objective optimal designs for the hierarchical linear model. Journal of Official Statistics, 18:291–303, 2002.Google Scholar
  41. 41.
    M. Mok. Sample size requirements for 2-level designs in educational research. Multilevel Modelling Newsletter, 7:11–16, 1996.Google Scholar
  42. 42.
    D. M. Murray. Design and Analysis of Group-Randomized Trials. Oxford University Press, New York, 1998.Google Scholar
  43. 43.
    D. M. Murray, S. P. Varnell, and J. L. Blitstein. Design and analysis of group-randomized trials: A review of recent methodological developments. Public Health Matters, 94:423–432, 2004.Google Scholar
  44. 44.
    B. O. Muthén and P. J. Curran. General longitudinal modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation. Psychological Methods, 2:371–402, 1997.CrossRefGoogle Scholar
  45. 45.
    L. K. Muthén and B. O. Muthén. How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 9:599–620, 2002.CrossRefMathSciNetGoogle Scholar
  46. 46.
    L. K. Muthén and B. O. Muthén. Mplus User's Guide. Muthén and Muthén, Los Angeles, 2004.Google Scholar
  47. 47.
    J. M. Neuhaus and J. D. Kalbfleisch. Between- and within-cluster covariate effects in the analysis of clustered data. Biometrics, 54:638–645, 1998.MATHCrossRefGoogle Scholar
  48. 48.
    J. Rasbash, F. Steele, W. J. Browne, and B. Prosser. A User's Guide to MLwiN. Version 2.0. Centre for Multilevel Modelling, University of Bristol, Bristol, UK, 2005.Google Scholar
  49. 49.
    S. W. Raudenbush. Statistical analysis and optimal design for cluster randomized trials. Psychological Methods, 2:173–185, 1997.CrossRefGoogle Scholar
  50. 50.
    S. W. Raudenbush and X. Liu. Statistical power and optimal design for multisite randomized trials. Psychological Methods, 5:199–213, 2000.CrossRefGoogle Scholar
  51. 51.
    S. W. Raudenbush and X. Liu. Effects of study duration, frequency of observation, and sample size on power in studies of group differences in polynomial change. Psychological Methods, 6:387–401, 2001.CrossRefGoogle Scholar
  52. 52.
    S. W. Raudenbush, J. Spybrook, X. Liu, and R. Congdon. Optimal Design for Longitudinal and Multilevel Research: Documentation for the Optimal Design Software. University of Michigan, Ann Arbor, 2004.Google Scholar
  53. 53.
    G. Rodríguez and N. Goldman. An assessment of estimation procedures for multilevel models with binary responses. Journal of the Royal Statistical Society, Series A, 158:73–89, 1995.Google Scholar
  54. 54.
    G. Rodríguez and N. Goldman. Improved estimation procedures for multilevel models with binary response: A case-study. Journal of the Royal Statistical Society, Series A, 164:339–355, 2001.MATHGoogle Scholar
  55. 55.
    W. J. Shih. Sample size and power calculations for periodontal and other studies with clustered samples using the method of generalized estimation equations. Biometrical Journal, 39:899–908, 1997.MATHCrossRefGoogle Scholar
  56. 56.
    S. D. Silvey. Optimal Design. Chapman & Hall, London, 1980.MATHGoogle Scholar
  57. 57.
    T. A. B. Snijders and R. J. Bosker. Standard errors and sample sizes for two-level research. Journal of Educational Statistics, 18:237–259, 1993.CrossRefGoogle Scholar
  58. 58.
    T. A. B. Snijders and R. J. Bosker. Modeled variance in two-level models. Sociological Methods & Research, 22:342–363, 1994.CrossRefGoogle Scholar
  59. 59.
    D. J. Spiegelhalter. Bayesian methods for cluster randomized trials with continuous responses. Statistics in Medicine, 20:435–452, 2001.CrossRefGoogle Scholar
  60. 60.
    D. J. Spiegelhalter, A. Thomas, N. G. Best, and D. Lunn. WinBUGS User Manual, Version 1.4. MRC Biostatistics Unit, University of Cambridge, Cambridge, UK, 2003.Google Scholar
  61. 61.
    R. M. Turner, A. T. Prevost, and S. G. Thompson. Allowing for imprecision of the intracluster correlation coefficient in the design of cluster randomized trials. Statistics in Medicine, 23:1195–1214, 2004.CrossRefGoogle Scholar
  62. 62.
    G. J. P. Van Breukelen. ANCOVA versus change from baseline: more power in randomized studies, more bias in nonrandomized studies. Journal of Clinical Epidemiology, 59:920–925, 2006.CrossRefGoogle Scholar
  63. 63.
    G. J. P. Van Breukelen, M. J. J. M. Candel, and M. P. F. Berger. Relative efficiency of unequal versus equal cluster sizes in cluster randomized and multicentre trials. Statistics in Medicine, 26:2589–2603, 2007.CrossRefMathSciNetGoogle Scholar
  64. 64.
    B. Winkens, H. J. A. Schouten, G. J. P. Van Breukelen, and M. P. F. Berger. Optimal time-points in clinical trials with linearly divergent treatment effects. Statistics in Medicine, 24:3743–3756, 2005.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mirjam Moerbeek
    • 1
  • Gerard J. P. Van Breukelen
    • 2
  • Martijn P.F. Berger
    • 2
  1. 1.Department of Methodology and StatisticsUtrecht University3508TC UtrechtThe Netherlands
  2. 2.Department of Methodology and StatisticsMaastricht University6200MD MaastrichtThe Netherlands

Personalised recommendations