Diagnostic Checks for Multilevel Models

  • Tom A.B. Snijders
  • Johannes Berkhof


Ordinary Little Square Model Check Multilevel Model Hierarchical Linear Model Royal Statistical Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aptech Systems. Gauss. Aptech Systems, Maple Valley, WA, 1994.Google Scholar
  2. 2.
    A. C. Atkinson. Plots, Transformations, and Regression. Clarendon Press, Oxford, UK, 1985.MATHGoogle Scholar
  3. 3.
    B. H. Baltagi. Econometric Analysis of Panel Data. Wiley, New York, 1995.MATHGoogle Scholar
  4. 4.
    M. S. Bartlett and D. G. Kendall. The statistical analysis of variance-hetero-geneity and the logarithmic transformation. Supplement to the Journal of the Royal Statistical Society, 8:128–138, 1946.CrossRefMathSciNetGoogle Scholar
  5. 5.
    C. S. Berkey and R. L. Kent Jr. Longitudinal principal components and non-linear regression models of early childhood growth. Annals of Human Biology, 10:523–536, 1983.CrossRefGoogle Scholar
  6. 6.
    J. Berkhof and T. A. B. Snijders. Variance component testing in multilevel models. Journal of Educational and Behavioral Statistics, 26:133–152, 2002.CrossRefGoogle Scholar
  7. 7.
    B. A. Brumback and J. A. Rice. Smoothing spline models for the analysis of nested and crossed samples of curves. Journal of the American Statistical Association, 93: 961–994, 1998. (with discussion).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. S. Bryk and S. W. Raudenbush. Application of hierarchical linear models to assessing change. Psychological Bulletin, 101:147–158, 1987.CrossRefGoogle Scholar
  9. 9.
    E. Cantoni and T. Hastie. Degrees-of-freedom tests for smoothing splines. Biometrika, 89:251–263, 2002.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    C.-T. Chiang, J. A. Rice, and C. O. Wu. Smoothing spline estimation for varying coefficient models with repeatedly measured dependent variables. Journal of the American Statistical Association, 96:605–619, 2001.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    R. D. Cook and S. Weisberg. Residuals and Influence in Regression. Chapman & Hall, London, 1982.MATHGoogle Scholar
  12. 12.
    C. De Boor. A Practical Guide to Splines. Springer, New York, 1978.Google Scholar
  13. 13.
    L. E. Eberly and L. M. Thackeray. On Lange and Ryan's plotting technique for diagnosing non-normality of random effects. Statistics & Probability Letters, 75:77–85, 2005.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    P. H. C. Eilers and B. D. Marx. Flexible smoothing with splines and penalties. Statistical Science, 11:89–121, 1996. (with discussion).Google Scholar
  15. 15.
    J. Fan and J. T. Zhang. Two-step estimation of functional linear models with applications to longitudinal data. Journal of the Royal Statistical Society, Series B, 62:303–322, 2000.CrossRefMathSciNetGoogle Scholar
  16. 16.
    A. Fielding. Role of the Hausman test and whether higher level effects should be treated as random or fixed. Multilevel Modelling Newsletter, 16(2): 3–9, 2004.Google Scholar
  17. 17.
    H. Goldstein. Efficient statistical modelling of longitudinal data. Annals of Human Biology, 13:129–141, 1986.CrossRefGoogle Scholar
  18. 18.
    H. Goldstein. Multilevel Statistical Models, 3rd edition. Edward Arnold, London, 2003.MATHGoogle Scholar
  19. 19.
    H. Goldstein, J. Rasbash, I. Plewis, D. Draper, W. Browne, M. Yang, G. Woodhouse, and M. Healy. A User's Guide to MLwiN. Multilevel Models Project, Institute of Education, University of London, London, 1998.Google Scholar
  20. 20.
    P. J. Green. Penalized likelihood for general semi-parametric regression models. International Statistical Review, 55:245–259, 1987.MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    P. J. Green and B. W. Silverman. Nonparametric Regression and Generalized Linear Models. Chapman & Hall, London, 1994.MATHGoogle Scholar
  22. 22.
    W. Guo. Functional mixed effects model. Biometrics, 58:121–128, 2002.CrossRefMathSciNetGoogle Scholar
  23. 23.
    J. Haslett and D. Dillane. Application of ‘delete = replace’ to deletion diagnostics for variance component estimation in the linear mixed model. Journal of the Royal Statistical Society, Series B, 66:131–143, 2004.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    T. Hastie and R. Tibshirani. Generalized Additive Models. Chapman & Hall, London, 1990.MATHGoogle Scholar
  25. 25.
    T. Hastie and R. Tibshirani. Varying-coefficient models. Journal of the Royal Statistical Society, Series B, 55:757–796, 1993. (with discussion).Google Scholar
  26. 26.
    J. A. Hausman. Specification tests in econometrics. Econometrica, 46:1251–1271, 1978.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    J. A. Hilden-Minton. Multilevel Diagnostics for Mixed and Hierarchical Linear Models. PhD thesis, Department of Mathematics, University of California, Los Angeles, 1995.Google Scholar
  28. 28.
    J. S. Hodges. Some algebra and geometry for hierarchical linear models, applied to diagnostics. Journal of the Royal Statistical Society, Series B, 60:497–536, 1998.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    D. R. Hoover, J. A. Rice, C. O. Wu, and L.-P. Yang. Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika, 85:809–822, 1998.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    C. Hsiao. Random coefficient models. In L. Mátyás and P. Sevestre, editors, The Econometrics of Panel Data, 2nd edition, pages 77–99. Kluwer, Dordrecht, The Netherlands, 1996.Google Scholar
  31. 31.
    G. James, T. Hastie, and C. A. Sugar. Principal component models for sparse functional data. Biometrika, 87:587–602, 2000.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    J.-S. Kim and E. W. Frees. Omitted variables in multilevel models. Psychometrika, 71:659–690, 2006.CrossRefMathSciNetGoogle Scholar
  33. 33.
    R. Kohn, C. F. Ansley, and D. Tharm. The performance of cross-validation and maximum likelihood estimators of spline smoothing parameters. Journal of the American Statistical Association, 86:1042–1050, 1991.CrossRefMathSciNetGoogle Scholar
  34. 34.
    N. Lange and L. Ryan. Assessing normality in random effects models. Annals of Statistics, 17:624–642, 1989.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    I. H. Langford and T. Lewis. Outliers in multilevel data. Journal of the Royal Statistical Society, Series A, 161:121–160, 1998.Google Scholar
  36. 36.
    E. Lesaffre and G. Verbeke. Local influence in linear mixed models. Biometrics, 54:570–582, 1998.MATHCrossRefGoogle Scholar
  37. 37.
    T. Lewis and I. H. Langford. Outliers, robustness and the detection of discrepant data. In A. H. Leyland and H. Goldstein, editors, Multilevel Modelling of Health Statistics, pages 75–91. Wiley, New York, 2001.Google Scholar
  38. 38.
    X. Lin and D. Zhang. Inference in generalized additive mixed models by using smoothing splines. Journal of the Royal Statistical Society, Series B, 61:381–400, 1999.MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    R. C. Littell, G. A. Milliken, W. W. Stroup, and R. D. Wolfinger. SAS System for Mixed Models. SAS Institute, Cary, NC, 1996.Google Scholar
  40. 40.
    N. T. Longford. A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects. Biometrika, 74:817–827, 1987.MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    N. T. Longford. Random Coefficient Models. Oxford University Press, Oxford, UK, 1993.MATHGoogle Scholar
  42. 42.
    N. T. Longford. Simulation-based diagnostics in random-coefficient models. Journal of the Royal Statistical Society, Series A, 164:259–273, 2001.MATHMathSciNetGoogle Scholar
  43. 43.
    X. L. Meng and D. B. Rubin. Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika, 80:267–278, 1993.MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    C. R. Rao. Linear Statistical Inference and its Applications, 2nd edition. Wiley, New York, 1973.MATHGoogle Scholar
  45. 45.
    S. W. Raudenbush and A. S. Bryk. Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd edition. Sage, Thousand Oaks, CA, 2002.Google Scholar
  46. 46.
    J. A. Rice and B. W. Silverman. Estimating the mean and covariance structure nonparametrically when the data are curves. Journal of the Royal Statistical Society, Series B, 53:233–243, 1991.MATHMathSciNetGoogle Scholar
  47. 47.
    J. A. Rice and C. O. Wu. Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics, 57:253–259, 2001.CrossRefMathSciNetGoogle Scholar
  48. 48.
    M. H. Seltzer, W. H. Wong, and A. S. Bryk. Bayesian analysis in applications of hierarchical models: Issues and methods. Journal of Educational and Behavioral Statistics, 21:131–167, 1996.CrossRefGoogle Scholar
  49. 49.
    A. Skrondal and S. Rabe-Hesketh. Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Chapman & Hall/CRC, Boca Raton, FL, 2004.MATHGoogle Scholar
  50. 50.
    T. A. B. Snijders. Analysis of longitudinal data using the hierarchical linear model. Quality & Quantity, 30:405–426, 1996.CrossRefGoogle Scholar
  51. 51.
    T. A. B. Snijders and R. J. Bosker. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. Sage, London, 1999.MATHGoogle Scholar
  52. 52.
    T. P. Speed. Comment on “That BLUP is a good thing: the estimation of random effects” (by G. K. Robinson). Statistical Science, 6:44, 1991.CrossRefGoogle Scholar
  53. 53.
    R. Van der Leeden, E. Meijer, and F. M. T. A. Busing. Resampling multilevel models. In J. de Leeuw and E. Meijer, editors, Handbook of Multilevel Analysis, Chapter. Springer, New York, 2008. (this volume).Google Scholar
  54. 54.
    G. Verbeke and E. Lesaffre. A linear mixed-effects model with heterogeneity in the random-effects population. Journal of the American Statistical Association, 91:217–221, 1996.MATHCrossRefGoogle Scholar
  55. 55.
    G. Verbeke and G. Molenberghs. Linear Mixed Models for Longitudinal Data. Springer, New York, 2000.MATHGoogle Scholar
  56. 56.
    G. Wahba. Bayesian “confidence” intervals for the cross-validated smoothing spline. Journal of the Royal Statistical Society, Series B, 45:133–150, 1983.MATHMathSciNetGoogle Scholar
  57. 57.
    G. Wahba. A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Annals of Statistics, 4:1378–1402, 1985.CrossRefMathSciNetGoogle Scholar
  58. 58.
    Y. Wang. Mixed effects smoothing spline analysis of variance. Journal of the Royal Statistical Society, Series B, 60:159–174, 1998.MATHCrossRefGoogle Scholar
  59. 59.
    C. Waternaux, N. M. Laird, and J. H. Ware. Methods for analysis of longitudinal data: Blood lead concentrations and cognitive development. Journal of the American Statistical Association, 84:33–41, 1989.CrossRefGoogle Scholar
  60. 60.
    S. Weisberg. Applied Linear Regression, 3rd edition. Wiley, New York, 2005.MATHGoogle Scholar
  61. 61.
    S. Wold. Spline functions in data analysis. Technometrics, 16:1–11, 1974.MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    F. Yao, H.-G. Müller, and J.-L. Wang. Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100:577–590, 2005.MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    T. Zewotir and J. S. Galpin. Influence diagnostics for linear mixed models. Journal of Data Science, 3:153–177, 2005.Google Scholar
  64. 64.
    D. Zhang, X. Lin, J. Raz, and M. Sowers. Semiparametric stochastic mixed models for longitudinal data. Journal of the American Statistical Association, 93:710–719, 1998.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Tom A.B. Snijders
    • 1
    • 2
  • Johannes Berkhof
    • 3
  1. 1.University of OxfordNew RoadUnited Kingdom
  2. 2.University of GroningenGroningen
  3. 3.VU University Medical Center1007MB AmsterdamThe Netherlands

Personalised recommendations