Advertisement

Bayesian Multilevel Analysis and MCMC

  • David Draper

Keywords

Posterior Distribution Markov Chain Monte Carlo Monte Carlo Multilevel Model Gibbs Sampling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Aitkin. A general maximum likelihood analysis of variance components in generalized linear models. Biometrics, 55:117–128, 1999.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    J. M. Bernardo and A. F. M. Smith Bayesian Theory. Wiley, New York, 1994.MATHGoogle Scholar
  3. 3.
    J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B, 36:192–236, 1974. (with discussion).MATHMathSciNetGoogle Scholar
  4. 4.
    N. G. Best, M. K. Cowles, and S. K. Vines CODA: Convergence diagnosis and output analysis software for Gibbs sampling output, version 0.40, 1997. (Available at www.mrc-bsu.cam.ac.uk.Google Scholar
  5. 5.
    P. J. Bickel and K. A. Doksum Mathematical Statistics: Basic Ideas and Selected Topics, 2nd edition, volume 1. Prentice Hall, Upper Saddle River, NJ, 2001.Google Scholar
  6. 6.
    G. E. P. Box, G. M. Jenkins, and G. C. Reinsel Time Series Analysis: Forecasting and Control, 3rd edition. Prentice-Hall, Englewood Cliffs, NJ, 1994.MATHGoogle Scholar
  7. 7.
    N. E. Breslow and D. G. Clayton Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88:9–25, 1993.MATHCrossRefGoogle Scholar
  8. 8.
    S. P. Brooks and D. Draper. Comparing the efficiency of MCMC samplers. Manuscript, 2007.Google Scholar
  9. 9.
    S. P. Brooks and G. O. Roberts Convergence assessment techniques for Markov chain Monte Carlo. Statistics and Computing, 8:319–335, 1998.CrossRefGoogle Scholar
  10. 10.
    W. J. Browne Personal communication, 2000.Google Scholar
  11. 11.
    W. J. Browne and D. Draper. Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models. Computational Statistics, 15:391–420, 2000.MATHCrossRefGoogle Scholar
  12. 12.
    W. J. Browne and D. Draper. A comparison of Bayesian and likelihood methods for fitting multilevel models. Bayesian Analysis, 1:473–550, 2006. (with discussion.Google Scholar
  13. 13.
    W. J. Browne, D. Draper, H. Goldstein, and J. Rasbash. Bayesian and likelihood methods for fitting multilevel models with complex level-1 variation. Computational Statistics & Data Analysis, 39:203–225, 2002.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    W. J. Browne, J. Rasbash, and E. W. S. Ng MCMC Estimation in MLwiN (version 2.0). Centre for Multilevel Modelling, University of Bristol, Bristol, UK, 2005.Google Scholar
  15. 15.
    A. S. Bryk and S. W. Raudenbush Hierarchical Linear Models: Applications and Data Analysis Methods. Sage, Newbury Park, CA, 1992.Google Scholar
  16. 16.
    E. Butkov. Mathematical Physics. Addison-Wesley, Reading, MA, 1968.Google Scholar
  17. 17.
    B. Carlin. Discussion of “Hierarchical models for combining information and for meta-analysis”, by C. N. Morris and S. L. Normand. In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics 4, pages 336–338. Clarendon Press, Oxford, UK, 1992.Google Scholar
  18. 18.
    C. Chatfield. The Analysis of Time Series, 6th edition. Chapman & Hall, London, 2003.Google Scholar
  19. 19.
    M. K. Cowles and B. P. Carlin Markov chain Monte Carlo convergence diagnostics: A comparative review. Journal of the American Statistical Association, 91:883–904, 1996.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    H. E. Daniels Saddlepoint approximations in statistics. Annals of Mathematical Statistics, 25:631–650, 1954.CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    A. P. Dawid Calibration-based empirical probability. Annals of Statistics, 13:1251–1274, 1985.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    B. De Finetti. Funzione caratteristica di un fenomeno aleatorio. Memorie della Accademia Nazionale dei Lincei, 4:86–133, 1930. (Reprinted in B. de Finetti, Scritti (1926–1930), Padova, Cedam, 1981..Google Scholar
  23. 23.
    B. De Finetti. Theory of Probability, volumes 1–2. Wiley, New York, 1974/1975.Google Scholar
  24. 24.
    P. Diaconis and D. Ylvisaker. Quantifying prior opinion. In J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, editors, Bayesian Statistics 2, pages 133–156. North-Holland, Amsterdam, 1985. (with discussion.Google Scholar
  25. 25.
    D. Draper. Assessment and propagation of model uncertainty. Journal of the Royal Statistical Society, Series B, 57:45–97, 1995a. (with discussion.Google Scholar
  26. 26.
    D. Draper. Inference and hierarchical modeling in the social sciences. Journal of Educational and Behavioral Statistics, 20:115–147, 233–239, 1995b. (with discussion.Google Scholar
  27. 27.
    D. Draper. Bayesian Modeling, Inference and Prediction. Springer, New York, forthcoming.Google Scholar
  28. 28.
    D. Draper, J. Hodges, C. Mallows, and D. Pregibon. Exchangeability and data analysis. Journal of the Royal Statistical Society, Series A, 156:9–37, 1993. (with discussion.MATHMathSciNetGoogle Scholar
  29. 29.
    W. DuMouchel. Bayesian meta-analysis. In D. Berry, editor, Statistical Methodology in the Pharmaceutical Sciences, pages 509–529. Marcel Dekker, New York, 1990.Google Scholar
  30. 30.
    W. DuMouchel and C. Waternaux. Discussion of “Hierarchical models for combining information and for meta-analysis”, by C. N. Morris and S. L. Normand. In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics 4, pages 338–341. Clarendon Press, Oxford, UK, 1992.Google Scholar
  31. 31.
    W. L. Edwards, H. Lindman, and L. J. Savage Bayesian statistical inference for psychological research. Psychological Review, 70:193–242, 1963.CrossRefGoogle Scholar
  32. 32.
    W. Feller. An Introduction to Probability Theory and its Applications, volumes 1–2. Wiley, New York, 1968/1971.Google Scholar
  33. 33.
    R. A. Fisher On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London, Series A, 222:309–368, 1921.CrossRefGoogle Scholar
  34. 34.
    R. A. Fisher Studies in crop variation: II. The manurial response of different potato varieties. Journal of Agricultural Science, 13:311–320, 1923.Google Scholar
  35. 35.
    D. Gamerman. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman & Hall, London, 1997.MATHGoogle Scholar
  36. 36.
    C. F. Gauss Theoria Motus Corporum Celestium. Perthes et Besser, Hamburg, 1809.Google Scholar
  37. 37.
    A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin Bayesian Data Analysis, 2nd edition. Chapman & Hall/CRC, Boca Raton, FL, 2004.MATHGoogle Scholar
  38. 38.
    A. Gelman and D. B. Rubin Inference from iterative simulation using multiple sequences. Statistical Science, 7:457–511, 1992. (with discussion.CrossRefGoogle Scholar
  39. 39.
    S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–741, 1984.MATHGoogle Scholar
  40. 40.
    W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte Carlo in Practice. Chapman & Hall, London, 1996.MATHGoogle Scholar
  41. 41.
    W. R. Gilks and P. Wild. Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41:337–348, 1992.MATHCrossRefGoogle Scholar
  42. 42.
    H. Goldstein. Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika, 73:43–56, 1986.MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    H. Goldstein. Multilevel Statistical Models, 3rd edition. Edward Arnold, London, 2003.MATHGoogle Scholar
  44. 44.
    H. Goldstein, J. Rasbash, M. Yang, G. Woodhouse, H. Pan, D. Nutall, and S. Thomas. A multilevel analysis of school examination results. Oxford Review of Education, 19:425–433, 1993.CrossRefGoogle Scholar
  45. 45.
    H. Goldstein and D. J. Spiegelhalter League tables and their limitations: Statistical issues in comparisons of institutional performance. Journal of the Royal Statistical Society, Series A, 159:385–444, 1996. (with discussion.Google Scholar
  46. 46.
    W. K. Hastings Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97–109, 1970.MATHCrossRefGoogle Scholar
  47. 47.
    Insightful Corporation. S-PLUS data analysis software, 2006. (Available at www.insightful.com.Google Scholar
  48. 48.
    P.-S. Laplace. Mémoire sur la probabilité des causes par les évenements. Mémoires de l'Academie Royale de Science de Paris, 6:621–656, 1774.Google Scholar
  49. 49.
    P.-S. Laplace. Mémoire sur les approximations des formules qui sont fonctions de trés grands nombres (suite). Mémoires de l'Academie Royale de Science de Paris, 18:423–467, 1786.Google Scholar
  50. 50.
    Y. Lee and J. A. Nelder Hierarchical generalised linear models: A synthesis of generalised linear models, random-effect models and structured dispersions. Biometrika, 88:987–1006, 2001.MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    A. M. Legendre Nouvelles méthodes pour la détermination des orbites des cométes. Courcier, Paris, 1805.Google Scholar
  52. 52.
    N. T. Longford A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects. Biometrika, 74:817–827, 1987.MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    N. T. Longford On estimating standard errors in multilevel analysis. The Statistician, 49:389–398, 2000.Google Scholar
  54. 54.
    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1092, 1953.CrossRefGoogle Scholar
  55. 55.
    N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the American Statistical Association, 44:335–341, 1949.MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    P. Mortimore, P. Sammons, L. Stoll, D. Lewis, and R. Ecob. School Matters, the Junior Years. Open Books, Wells, UK, 1988.Google Scholar
  57. 57.
    J. C. Pinheiro and D. M. Bates Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics, 4:12–35, 1995.CrossRefGoogle Scholar
  58. 58.
    R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2006. URL http://www.r-project.orgGoogle Scholar
  59. 59.
    A. E. Raftery and S. M. Lewis How many iterations in the Gibbs sampler? In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics 4, pages 763–773. Oxford University Press, Oxford, UK, 1992.Google Scholar
  60. 60.
    J. Rasbash, F. Steele, W. J. Browne, and B. Prosser. A User's Guide to MLwiN. Version 2.0. Centre for Multilevel Modelling, University of Bristol, Bristol, UK, 2005.Google Scholar
  61. 61.
    S. W. Raudenbush, M.-L. Yang, and M. Yosef. Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation. Journal of Computational and Graphical Statistics, 9:141–157, 2000.CrossRefMathSciNetGoogle Scholar
  62. 62.
    G. O. Roberts Markov chain concepts related to sampling algorithms. In W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors, Markov Chain Monte Carlo in Practice, pages 45–58. Chapman & Hall, London, 1996.Google Scholar
  63. 63.
    G. Rodríguez and N. Goldman. An assessment of estimation procedures for multilevel models with binary response. Journal of the Royal Statistical Society, Series A, 158:73–89, 1995.Google Scholar
  64. 64.
    SAS Institute. Statistical Analysis System, 2006. (Software available at www.sas.com.Google Scholar
  65. 65.
    H. Scheffé. The Analysis of Variance. Wiley, New York, 1959.MATHGoogle Scholar
  66. 66.
    Scientific Software International. HLM6: Hierarchical linear and nonlinear modeling, 2006. (Software available from www.ssicentral.com/hlm/index.htm.Google Scholar
  67. 67.
    B. W. Silverman Density Estimation for Statistics and Data Analysis. Chapman & Hall, London, 1986.MATHGoogle Scholar
  68. 68.
    D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. Van der Linde. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B, 64:583–639, 2002. (with discussion.MATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    D. J. Spiegelhalter, A. Thomas, N. G. Best, and W. R. Gilks BUGS: Bayesian Inference Using Gibbs Sampling, Version 0.60. Medical Research Council Biostatistics Unit, Cambridge, UK, 1997.Google Scholar
  70. 70.
    D. J. Spiegelhalter, A. Thomas, N. G. Best, and W. R. Gilks BUGS: Bayesian Inference Using Gibbs Sampling, Version 1.4.1. Medical Research Council Biostatistics Unit, Cambridge, UK, 2004.Google Scholar
  71. 71.
    Stata Corporation. Stata statistical software, 2006. (Software available at www.stata.com.Google Scholar
  72. 72.
    L. Tierney. Introduction to general state-space Markov chain theory. In W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors, Markov Chain Monte Carlo in Practice, pages 59–74. Chapman & Hall, London, 1996.Google Scholar
  73. 73.
    J. Von Neumann. Various techniques used in connection with random digits. In A. S. Householder, G. E. Forsythe, and H. H. Germond, editors, Monte Carlo Method, pages 36–38. National Bureau of Standards, Washington, DC, 1951.Google Scholar
  74. 74.
    Waterloo Maple. Maple computer algebra system, 2006. (Software available at www.maplesoft.com.)Google Scholar
  75. 75.
    S. L. Zeger and R. M. Karim Generalized linear models with random effects: a Gibbs sampling approach. Journal of the American Statistical Association, 86:79–86, 1991.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • David Draper
    • 1
  1. 1.Department of Applied Mathematics and Statistics Baskin School of EngineeringUniversity of California Santa CruzSanta CruzUSA

Personalised recommendations