Multilevel Structural Equation Modeling

  • Stephen H. C. du Toit
  • Mathilda du Toit


Covariance Matrix Structural Equation Structural Equation Modeling Factor Analysis Model Unrestricted Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Agresti. Categorical Data Analysis. Wiley, New York, 1990.MATHGoogle Scholar
  2. 2.
    M. Aitkin and N. Longford. Statistical modelling issues in school effectiveness studies. Journal of the Royal Statistical Society, Series A, 149:1–43, 1986. (with discussion)CrossRefGoogle Scholar
  3. 3.
    H. Akaike. Factor analysis and AIC. Psychometrika, 52:317–332, 1987.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    T. W. Anderson. An Introduction to Multivariate Statistical Analysis, 2nd edition. Wiley, New York, 1984.Google Scholar
  5. 5.
    R. E. Bargmann. Matrices and determinants. In R. C. Weast and S. M. Selby, editors, C.R.C. Handbook of Tables in Mathematics, 4th edition, pages 507–534. Chemical Rubber, Cleveland, OH, 1975.Google Scholar
  6. 6.
    R. D. Bock. Within-subject experimentation in psychiatric research. In R. D. Gibbons and M. W. Dysken, editors, Statistical and Methodological Advances in Psychiatric Research, pages 59–90. Spectrum, New York, 1983.Google Scholar
  7. 7.
    H. Bozdogan. Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52:345–370, 1987.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. W. Browne. Generalized least squares estimators in the analysis of covariance structures. South African Statistical Journal, 8:1–24, 1974. (Reprinted in D. J. Aigner and A. S. Goldberger, editors, Latent Variables in Socio-Economic Models, pages 205–226, North-Holland, Amsterdam, 1977.)MathSciNetGoogle Scholar
  9. 9.
    M. W. Browne and R. Cudeck. Alternative ways of assessing model fit. In K. A. Bollen and J. S. Long, editors, Testing Structural Equation Models, pages 136–162. Sage, Thousand Oaks, CA, 1993.Google Scholar
  10. 10.
    M. W. Browne and S. H. C. Du Toit. Automated fitting of nonstandard models for mean vectors and covariance matrices. Multivariate Behavioral Research, 27:269–300, 1992.CrossRefGoogle Scholar
  11. 11.
    A. S. Bryk and S. W. Raudenbush. Hierarchical Linear Models: Applications and Data Analysis Methods. Sage, Newbury Park, CA, 1992.Google Scholar
  12. 12.
    J. de Leeuw and I. G. G. Kreft. Random coefficient models for multilevel analysis. Journal of Educational Statistics, 11:57–85, 1986.CrossRefGoogle Scholar
  13. 13.
    A. P. Dempster, D. B. Rubin, and R. K. Tsutakawa. Estimation in covariance components models. Journal of the American Statistical Association, 76: 341–353, 1981.Google Scholar
  14. 14.
    M. Du Toit. The Analysis of Hierarchical and Unbalanced Complex Survey Data using Multilevel Models. PhD thesis, University of Pretoria, Pretoria, South Africa, 1995.Google Scholar
  15. 15.
    M. Du Toit and S. H. C. Du Toit. Interactive LISREL: User’s Guide. Scientific Software International, Chicago, 2002.Google Scholar
  16. 16.
    R. D. Gibbons and R. D. Bock. Trend in correlated proportions. Psychometrika, 52:113–124, 1987.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, London, 1981.MATHGoogle Scholar
  18. 18.
    H. Goldstein. Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika, 73:43–56, 1986.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    H. Goldstein and R. P. McDonald. A general model for the analysis of multilevel data. Psychometrika, 53:455–467, 1988.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    D. Holt, A. J. Scott, and P. D. Ewings. Chi-squared tests with survey data. Journal of the Royal Statistical Society, Series A, 143:303–320, 1980.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    J. J. Hox. Factor analysis of multilevel data: Gauging the Muthèn model. In J. H. L. Oud and R. A. W. van Blokland-Vogelesang, editors, Advances in Longitudinal and Multivariate Analysis in the Behavioral Sciences, pages 141–156. ITS, Nijmegen, The Netherlands, 1993.Google Scholar
  22. 22.
    R. I. Jennrich and P. F. Sampson. Application of stepwise regression to nonlinear estimation. Technometrics, 10:63–72, 1968.CrossRefMathSciNetGoogle Scholar
  23. 23.
    K. G. Jöreskog. Structural equation models in the social sciences: Specification, estimation and testing. In P. R. Krishnaiah, editor, Applications of Statistics, pages 265–287. North-Holland, Amsterdam, 1977.Google Scholar
  24. 24.
    K. G. Jöreskog and D. Sörbom. Advances in Factor Analysis and Structural Equation Models. Abt Books, Cambridge, MA, 1979.MATHGoogle Scholar
  25. 25.
    K. G. Jöreskog and D. Sörbom. LISREL 8: Structural Equation Modeling with the SIMPLIS Command Language. Scientific Software International, Chicago, 1993.Google Scholar
  26. 26.
    K. G. Jöreskog and D. Sörbom. LISREL 8 User's Reference Guide. Scientific Software International, Chicago, 1996.Google Scholar
  27. 27.
    C. G. Khatri. A note on a MANOVA model applied to problems in growth curves. Annals of the Institute of Statistical Mathematics, 181:75–86, 1966.MathSciNetCrossRefGoogle Scholar
  28. 28.
    S.-Y. Lee. Multilevel analysis of structural equation models. Biometrika, 77:763–772, 1990.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    S.-Y. Lee and W.-Y. Poon. Analysis of two-level structural equation models via EM type algorithms. Statistica Sinica, 8:749–766, 1998.MATHMathSciNetGoogle Scholar
  30. 30.
    J. Liang and P. M. Bentler. An EM algorithm for fitting two-level structural equation models. Psychometrika, 69:101–122, 2004.CrossRefMathSciNetGoogle Scholar
  31. 31.
    N. T. Longford. A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects. Biometrika, 74:817–827, 1987.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    W. M. Mason, G. Y. Wong, and B. Entwisle. Contextual analysis through the multilevel linear model. Sociological Methodology, 14:72–103, 1983.CrossRefGoogle Scholar
  33. 33.
    J. J. McArdle and R. P. McDonald. Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37:234–251, 1984.MATHGoogle Scholar
  34. 34.
    R. P. McDonald. A general model for two-level data with responses missing at random. Psychometrika, 58:575–585, 1993.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    R. P. McDonald. The Bilevel Reticular Action Model for path analysis with latent variables. Sociological Methods & Research, 22:399–413, 1994.CrossRefGoogle Scholar
  36. 36.
    R. P. McDonald and H. Goldstein. Balanced versus unbalanced designs for linear structural relations in two-level data. British Journal of Mathematical and Statistical Psychology, 42:215–232, 1989.MATHMathSciNetGoogle Scholar
  37. 37.
    P. Mortimore, P. Sammons, L. Stoll, D. Lewis, and R. Ecob. School Matters, the Junior Years. Open Books, Wells, UK, 1988.Google Scholar
  38. 38.
    B. O. Muthén. Mean and covariance structure analysis of hierarchical data. UCLA Statistics Preprint 62, UCLA, Department of Statistics, Los Angeles, 1990.Google Scholar
  39. 39.
    B. O. Muthén. Multilevel factor analysis of class and student achievement com-ponents. Journal of Educational Measurement, 28:338–354, 1991.CrossRefGoogle Scholar
  40. 40.
    B. O. Muthén. Multilevel covariance structure analysis. Sociological Methods & Research, 22:376–398, 1994.CrossRefGoogle Scholar
  41. 41.
    S. W. Raudenbush. Maximum likelihood estimation for unbalanced multilevel covariance structure models via the EM algorithm. British Journal of Mathematical and Statistical Psychology, 48:359–370, 1995.MATHGoogle Scholar
  42. 42.
    S. W. Raudenbush and A. S. Bryk. A hierarchical model for studying school effects. Sociology of Education, 59:1–17, 1986.CrossRefGoogle Scholar
  43. 43.
    J. H. Steiger. Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25:173–180, 1990.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Stephen H. C. du Toit
    • 1
  • Mathilda du Toit
    • 1
  1. 1.Scientific Software InternationalLincolnwoodUSA

Personalised recommendations