Advertisement

Resampling Multilevel Models

  • Rien van der Leeden
  • Erik Meijer
  • Frank M.T.A. Busing

Keywords

Multilevel Model Bootstrap Sample Multilevel Analysis Consistent Estimator Parametric Bootstrap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. K. Andersson and S. Karlsson. Bootstrapping error component models. Computational Statistics, 16:221–231, 2001.MATHCrossRefMathSciNetGoogle Scholar
  2. J. G. Bagaka's. Two Level Nested Hierarchical Linear Model with Random Intercepts via the Bootstrap. PhD thesis, Michigan State University, East Lansing, MI, 1992. (Available from University Microfilms International, publication number AAT 9302972, http://www.umi.com)Google Scholar
  3. L. Bellmann, J. Breitung, and J. Wagner. Bias correction and bootstrapping of error component models for panel data: Theory and applications. Empirical Economics, 14:329–342, 1989.CrossRefGoogle Scholar
  4. J. Booth. Bootstrap methods for generalized linear mixed models with applications to small area estimation. In G. U. H. Seeber, B. J. Francis, R. Hatzinger, and G. Steckel-Berger, editors, Statistical Modelling: Proceedings of the 10th International Workshop on Statistical Modelling, Innsbruck, Austria, 10–14 July, 1995, pages 43–51. Springer, New York, 1995.Google Scholar
  5. N. E. Breslow and X. Lin. Bias correction in generalised linear mixed models with a single component of dispersion. Biometrika, 82:81–91, 1995.MATHCrossRefMathSciNetGoogle Scholar
  6. T. S. Breusch. Useful invariance results for generalized regression models. Journal of Econometrics, 13:327–340, 1980.MATHCrossRefMathSciNetGoogle Scholar
  7. F. M. T. A. Busing. Distribution characteristics of variance estimates in two-level models: A Monte Carlo study. Technical Report PRM 93-04, Leiden University, Department of Psychology, Leiden, 1993.Google Scholar
  8. F. M. T. A. Busing, E. Meijer, and R. Van der Leeden. MLA: Software for multilevel analysis of data with two levels. User's guide for version 1.0b. Technical Report PRM 94-01, Leiden University, Department of Psychology, Leiden, 1994.Google Scholar
  9. F. M. T. A. Busing, E. Meijer, and R. Van der Leeden. The MLA program for two-level analysis with resampling options. In T. A. B. Snijders, B. Engel, J. C. Van Houwelingen, A. Keen, G. J. Stemerdink, and M. Verbeek, editors, SSS'95: Toeval zit Overal, pages 37–58. iec ProGAMMA, Groningen, 1995.Google Scholar
  10. F. M. T. A. Busing, E. Meijer, and R. Van der Leeden. Delete-m jackknife for unequal m. Statistics and Computing, 9:3–8, 1999.CrossRefGoogle Scholar
  11. F. M. T. A. Busing, E. Meijer, and R. Van der Leeden. MLA: Software for MultiLevel Analysis of Data with Two Levels. User's Guide for Version 4.1. Leiden University, Department of Psychology, Leiden, 2005.Google Scholar
  12. F. M. T. A. Busing, R. Van der Leeden, and E. Meijer. MLA: Software for two-level analysis with resampling options. Multilevel Modelling Newsletter, 7(3):11–13, 1995.Google Scholar
  13. J. Carpenter, H. Goldstein, and J. Rasbash. A non-parametric bootstrap for multilevel models. Multilevel Modelling Newsletter, 11(1):2–5, 1999.Google Scholar
  14. A. C. Davison and D. V. Hinkley. Bootstrap Methods and their Application. Cambridge University Press, Cambridge, UK, 1997.MATHGoogle Scholar
  15. J. de Leeuw and E. Meijer. Introduction to multilevel analysis. In J. de Leeuw and E. Meijer, editors, Handbook of Multilevel Analysis, Chapter 1. Springer, New York, 2008. (this volume).Google Scholar
  16. D. Draper. Bayesian multilevel analysis and MCMC. In J. de Leeuw and E. Meijer, editors, Handbook of Multilevel Analysis, Chapter 1. Springer, New York, 2008. (this volume).Google Scholar
  17. S. H. C. lowercaseDu Toit and M. lowercaseDu Toit. Multilevel structural equation modeling. In J. de Leeuw and E. Meijer, editors, Handbook of Multilevel Analysis, Chapter 1. Springer, New York, 2008. (this volume).Google Scholar
  18. B. Efron. The Jackknife, the Bootstrap and Other Resampling Plans. SIAM, Philadelphia, 1982.Google Scholar
  19. B. Efron. Better bootstrap confidence intervals. Journal of the American Statistical Association, 82:171–200, 1987. (with discussion).MATHCrossRefMathSciNetGoogle Scholar
  20. B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, New York, 1993.MATHGoogle Scholar
  21. C. C. Frangos and W. R. Schucany. Jackknife estimation of the bootstrap acceleration constant. Computational Statistics & Data Analysis, 9:271–282, 1990.MATHCrossRefGoogle Scholar
  22. D. A. Freedman. Bootstrapping regression models. The Annals of Statistics, 9:1218–1228, 1981.MATHCrossRefMathSciNetGoogle Scholar
  23. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte Carlo in Practice. Chapman & Hall, London, 1996.Google Scholar
  24. H. Goldstein. Consistent estimators for multilevel generalised linear models using an iterated bootstrap. Multilevel Modelling Newsletter, (1):3–6, 1996.Google Scholar
  25. H. Goldstein. Bootstrapping for multilevel models. Working paper, Multilevel Models Project, London, 1998.Google Scholar
  26. H. Goldstein. Multilevel Statistical Models, 3rd edition. Edward Arnold, London, 2003.MATHGoogle Scholar
  27. C. Gouri'eroux and A. Monfort. Simulation-Based Econometric Methods. Oxford University Press, Oxford, UK, 1996.Google Scholar
  28. P. Hall. The Bootstrap and Edgeworth Expansion. Springer, New York, 1992.Google Scholar
  29. D. Hedeker. Multilevel models for ordinal and nominal variables. In J. de Leeuw and E. Meijer, editors, Handbook of Multilevel Analysis, Chapter 1. Springer, New York, 2008. (this volume).Google Scholar
  30. D. V. Hinkley. Bootstrap methods. Journal of the Royal Statistical Society, Series B, 50:321–337, 1988.MATHMathSciNetGoogle Scholar
  31. I. G. G. Kreft, J. de Leeuw, and R. Van der Leeden. Review of five multilevel analysis programs: BMDP-5V, GENMOD, HLM, ML3, VARCL. The American Statistician, 48:324–335, 1994.CrossRefGoogle Scholar
  32. A. Y. C. Kuk. Asymptotically unbiased estimation in generalized linear models with random effects. Journal of the Royal Statistical Society, Series B, 57:395–407, 1995.MATHMathSciNetGoogle Scholar
  33. N. M. Laird and T. A. Louis. Empirical Bayes confidence intervals based on bootstrap samples. Journal of the American Statistical Association, 82:739–757, 1987. (with discussion)MATHCrossRefMathSciNetGoogle Scholar
  34. N. M. Laird and T. A. Louis. Empirical Bayes confidence intervals for a series of related experiments. Biometrics, 45:481–495, 1989.MATHCrossRefMathSciNetGoogle Scholar
  35. W. Langer. Mehrebenenanalyse: eine Einführung für Forschung und Praxis. VS Verlag für Sozialwissenschaften, Wiesbaden, Germany, 2004.Google Scholar
  36. D. J. LeBlond. Methodology for Predicting Batch Manufacturing Risk. Master's thesis, Colorado State University, Fort Collins, 2005.Google Scholar
  37. S.-Y. Lee. Multilevel analysis of structural equation models. Biometrika, 77:763–772, 1990.MATHCrossRefMathSciNetGoogle Scholar
  38. N. T. Longford. VARCL. Software for Variance Component Analysis of Data with Nested Random Effects (Maximum Likelihood). Educational Testing Service, Princeton, NJ, 1990.Google Scholar
  39. N. T. Longford. Missing data. In J. de Leeuw and E. Meijer, editors, Handbook of Multilevel Analysis, Chapter 1. Springer, New York, 2008. (this volume).Google Scholar
  40. J. R. Magnus. Maximum likelihood estimation of the GLSmodel with unknown parameters in the disturbance covariance matrix. Journal of Econometrics, 7:281–312, 1978.MATHCrossRefMathSciNetGoogle Scholar
  41. B. D. McCullough and H. D. Vinod. Implementing the double bootstrap. Computational Economics, 12:79–95, 1998.MATHCrossRefGoogle Scholar
  42. E. Meijer, F. M. T. A. Busing, and R. Van der Leeden. Estimating bootstrap confidence intervals for two-level models. In J. J. Hox and E. D. de Leeuw, editors, Assumptions, Robustness, and Estimation Methods in Multivariate Modeling, pages 35–47. TT Publicaties, Amsterdam, 1998.Google Scholar
  43. E. Meijer, R. Van der Leeden, and F. M. T. A. Busing. Implementing the bootstrap for multilevel models. Multilevel Modelling Newsletter, 7(2):7–11, 1995.Google Scholar
  44. A. M. Mood, F. A. Graybill, and D. C. Boes. Introduction to the Theory of Statistics, 3rd edition. McGraw-Hill, Singapore, 1974.MATHGoogle Scholar
  45. L. H. Moulton and S. L. Zeger. Analyzing repeated measures on generalized linear models via the bootstrap. Biometrics, 45:381–394, 1989.MATHCrossRefMathSciNetGoogle Scholar
  46. B. O. Muth'en. Multilevel covariance structure analysis. Sociological Methods & Research, 22:376–398, 1994.CrossRefGoogle Scholar
  47. H. Putter. Consistency of Resampling Methods. PhD thesis, Leiden University, Leiden, 1994.Google Scholar
  48. M. H. Quenouille. Approximate tests of correlation in time series. Journal of the Royal Statistical Society, Series B, 11:68–84, 1949.MATHMathSciNetGoogle Scholar
  49. M. H. Quenouille. Notes on bias in estimation. Biometrika, 43:353–360, 1956.MATHMathSciNetGoogle Scholar
  50. J. Rasbash and W. Browne. Non-hierarchical multilevel models. In J. de Leeuw and E. Meijer, editors, Handbook of Multilevel Analysis, Chapter 1. Springer, New York, 2008. (this volume).Google Scholar
  51. J. Rasbash, F. Steele, W. J. Browne, and B. Prosser. A User's Guide to MLwiN. Version 2.0. Centre for Multilevel Modelling, University of Bristol, Bristol, UK, 2005.Google Scholar
  52. S. W. Raudenbush. Many small groups. In J. de Leeuw and E. Meijer, editors, Handbook of Multilevel Analysis, Chapter 1. Springer, New York, 2008. (this volume).Google Scholar
  53. S. W. Raudenbush, A. S. Bryk, Y. F. Cheong, and R. Congdon. HLM 6: Hierarchical Linear and Nonlinear Modeling. Scientific Software International, Chicago, 2004.Google Scholar
  54. G. Rodr'guez. Multilevel generalized linear models. In J. de Leeuw and E. Meijer, editors, Handbook of Multilevel Analysis, Chapter 1. Springer, New York, 2008. (this volume).Google Scholar
  55. W. R. Schucany, H. L. Gray, and D. B. Owen. On bias reduction in estimation. Journal of the American Statistical Association, 66:524–533, 1971.MATHCrossRefGoogle Scholar
  56. S. R. Searle, G. Casella, and C. E. McCulloch. Variance Components. Wiley, New York, 1992.MATHGoogle Scholar
  57. J. Shao and D. Tu. The Jackknife and Bootstrap. Springer, New York, 1995.MATHGoogle Scholar
  58. A. Skrondal and S. Rabe-Hesketh. Multilevel and related models for longitudinal data. In J. de Leeuw and E. Meijer, editors, Handbook of Multilevel Analysis, Chapter 7. Springer, New York, 2008. (this volume)Google Scholar
  59. T. A. B. Snijders. Analysis of longitudinal data using the hierarchical linear model. Quality & Quantity, 30:405–426, 1996.CrossRefGoogle Scholar
  60. T. A. B. Snijders and J. Berkhof. Diagnostic checks for multilevel models. In J. de Leeuw and E. Meijer, editors, Handbook of Multilevel Analysis, Chapter 1. Springer, New York, 2008. (this volume).Google Scholar
  61. S. Stern. Simulation-based estimation. Journal of Economic Literature, 35:2006–2039, 1997.Google Scholar
  62. J. M. F. Ten Berge, W. P. Krijnen, T. Wansbeek, and A. Shapiro. Some new results on correlation-preserving factor scores prediction methods. Linear Algebra and its Applications, 289:311–318, 1999.MATHCrossRefMathSciNetGoogle Scholar
  63. K. E. Train. Discrete Choice Methods with Simulation. Cambridge University Press, Cambridge, UK, 2003.MATHGoogle Scholar
  64. D. Tu and L. Zhang. Jackknife approximations for some nonparametric confidence intervals of functional parameters based on normalizing transformations. Computational Statistics, 7:3–15, 1992.MATHGoogle Scholar
  65. J. W. Tukey. Bias and confidence in not-quite large samples. The Annals of Mathematical Statistics, 29:614, 1958.CrossRefGoogle Scholar
  66. R. Van der Leeden. Multilevel analysis of repeated measures data. Quality & Quantity, 32:15–29, 1998.CrossRefGoogle Scholar
  67. R. Van der Leeden and F. M. T. A. Busing. First iteration versus final IGLS/RIGLS estimates in two-level models: A Monte Carlo study with ML3. Technical Report PRM 02-94, Leiden University, Department of Psychology, Leiden, 1994.Google Scholar
  68. R. Van der Leeden, F. M. T. A. Busing, and E. Meijer. Bootstrap methods for two-level models. Technical Report PRM 97-04, Leiden University, Department of Psychology, Leiden, 1997.Google Scholar
  69. G. Verbeke and E. Lesaffre. Large sample properties of the maximum likelihood estimators in linear mixed models with misspecified random-effects distributions. Technical Report 1996.1, Catholic University of Leuven, Biostatistical Centre for Clinical Trials, Leuven, 1996.Google Scholar
  70. G. Verbeke and E. Lesaffre. The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data. Computational Statistics & Data Analysis, 23:541–556, 1997.MATHCrossRefMathSciNetGoogle Scholar
  71. H. White. Maximum likelihood estimation of misspecified models. Econometrica, 50:1–25, 1982.MATHCrossRefMathSciNetGoogle Scholar
  72. K. M. Wolter. Introduction to Variance Estimation. Springer, New York, 1985.MATHGoogle Scholar
  73. C. F. J. Wu. Jackknife, bootstrap and other resampling methods in regression analysis. The Annals of Statistics, 14:1261–1350, 1986. (with discussion).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Rien van der Leeden
    • 1
  • Erik Meijer
    • 2
  • Frank M.T.A. Busing
    • 1
  1. 1.Department of PsychologyLeiden UniversityLos AngelesThe Netherlands
  2. 2.University of Groningen, Faculty of Economics, and RAND Corporation1776 Main StUSA

Personalised recommendations