Advertisement

Keywords

Conditional Distribution Miss Data Multiple Imputation American Statistical Association Imputation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. E. Breslow and D. G. Clayton. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88:9–25, 1993.MATHCrossRefGoogle Scholar
  2. R. J. Carroll, D. Ruppert, and L. A. Stefanski. Measurement Error in Nonlinear Models. Chapman & Hall, London, 1995.MATHGoogle Scholar
  3. D. G. Clayton and J. Rasbash. Estimation in large crossed random-effect models by data augmentation. Journal of the Royal Statistical Society, Series A, 162:425–448, 1999. (with discussion).Google Scholar
  4. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39:1–38, 1977. (with discussion).MATHMathSciNetGoogle Scholar
  5. A. P. Dempster, D. B. Rubin, and R. K. Tsutakawa. Estimation in covariance components models. Journal of the American Statistical Association, 76:341–353, 1981.MATHCrossRefMathSciNetGoogle Scholar
  6. EM and related algorithms (special issue). Statistica Sinica, 5(1):1–107, 1995.Google Scholar
  7. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Chapman & Hall, London, 1995.Google Scholar
  8. H. Goldstein. Multilevel Statistical Models, 3rd edition. Edward Arnold, London, 2003.MATHGoogle Scholar
  9. M. J. R. Healy and M. Westmacott. Missing values in experiments analyzed on automatic computers. Applied Statistics, 5:203–206, 1956.CrossRefGoogle Scholar
  10. M. J. Lindstrom and D. M. Bates. Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data. Journal of the American Statistical Association, 83:1014–1022, 1988.MATHCrossRefMathSciNetGoogle Scholar
  11. R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data. Wiley, New York, 1987.MATHGoogle Scholar
  12. N. T. Longford. A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects. Biometrika, 74:817–827, 1987.MATHCrossRefMathSciNetGoogle Scholar
  13. N. T. Longford. Random Coefficient Models. Oxford University Press, Oxford, UK, 1993.MATHGoogle Scholar
  14. N. T. Longford. Logistic regression with random coefficients. Computational Statistics & Data Analysis, 17:1–15, 1994.MATHCrossRefGoogle Scholar
  15. N. T. Longford. Reliability of essay rating and score adjustment. Journal of Educational and Behavioral Statistics, 19:171–201, 1994.CrossRefGoogle Scholar
  16. N. T. Longford. Missing Data and Small-Area Estimation. Modern Analytical Equipment for the Survey Statistician. Springer, New York, 2005.Google Scholar
  17. T. A. Louis. Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B, 44:226–233, 1982.MATHMathSciNetGoogle Scholar
  18. I. Meilijson. A fast improvement to the EM algorithm on its own terms. Journal of the Royal Statistical Society, Series B, 51:127–138, 1989.MATHMathSciNetGoogle Scholar
  19. X.-L. Meng and D. B. Rubin. Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm. Journal of the American Statistical Association, 86:899–909, 1991.CrossRefGoogle Scholar
  20. X.-L. Meng and D. B. Rubin. Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika, 80:267–278, 1993.MATHCrossRefMathSciNetGoogle Scholar
  21. X.-L. Meng and D. lowercaseVan Dyk. The EM algorithm — an old folk-song sung to a fast new tune. Journal of the Royal Statistical Society, Series B, 59:511–567, 1997. (with discussion).MATHCrossRefGoogle Scholar
  22. T. Orchard and M. A. Woodbury. A missing information principle: Theory and applications. In L. M. Le Cam, J. Neyman, and E. L. Scott, editors, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 697–715. University of California Press, Berkeley, 1972.Google Scholar
  23. D. B. Rubin. Inference and missing data. Biometrika, 63:581–592, 1976. (with discussion).MATHCrossRefMathSciNetGoogle Scholar
  24. D. B. Rubin. Noniterative least squares estimates, standard errors and F-tests for analyses of variance with missing data. Journal of the Royal Statistical Society, Series B, 38:270–274, 1976.MATHGoogle Scholar
  25. D. B. Rubin. Multiple Imputation for Nonresponse in Surveys. Wiley, New York, 1987.Google Scholar
  26. D. B. Rubin. Multiple imputation after 18+ years. Journal of the American Statistical Association, 91:473–489, 1996.MATHCrossRefGoogle Scholar
  27. J. L. Schafer. Analysis of Incomplete Multivariate Data. Chapman & Hall, London, 1997.MATHGoogle Scholar
  28. S. lowercaseVan Buuren, H. C. Boshuisen, and D. L. Knook. Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine, 18:681–694, 1999.CrossRefGoogle Scholar
  29. C. F. J. Wu. On the convergence properties of the EM algorithm. Annals of Statistics, 11:95–103, 1983.MATHCrossRefMathSciNetGoogle Scholar
  30. F. Yates. The analysis of replicated experiments when the field results are incomplete. Empirical Journal of Experimental Agriculture, 1:129–142, 1933.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nicholas T. Longford
    • 1
  1. 1.SNTL and Universitat Pompeu Fabra99 Swallows CroftUnited Kingdom

Personalised recommendations