Advertisement

Remediation Technologies for Organochlorine-Contaminated Sites in Developing Countries

  • Alberto Bezama
  • Rodrigo Navia
  • Gonzalo Mendoza
  • Ricardo Barra
Chapter
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 193)

Abstract

Despite its importance in human life, until recently the relationship between soils and human health has been undervalued, especially in least developed countries. Currently, a holistic approach has been incorporated to identify best practices in soil science, defining it as “the task of all people concerned with the soil to direct their interest, not just towards the physical, chemical, and biological aspects, but also to those environmental, economic, social, legal, and technical aspects that affect soil use” (Abrahams 2002; Fent 2003). Considering this definition, the European Union (EU) as well as most developed countries have recognized organochlorine-contaminated sites as potential threats to the human health, threats that take different forms, such as their influence on water (e.g., drinking water resources), soil, and air as well as their interrelationships, which can directly affect human health (EC 2002; EP 2002; Bezama et al. 2004). Moreover, economic expansion and industrial growth are linked with growing lack of “greenfields” (a term that defines all areas without previous history of development): the supply of new building sites is limited and must contend with other competing uses, such as housing, recreation, nature, traffic, or agriculture (De Sousa 2001; Tedd et al. 2001). Thus, cleaning and reusing contaminated sites can be a meaningful alternative to address this issue, because most contaminated sites are located in metropolitan centres and are, therefore, prime candidates for urban development (Lorber et al. 2004).

Keywords

Polycyclic Aromatic Hydrocarbon Vadose Zone Organochlorine Compound Reductive Dechlorination Hazard Mater 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams PW (2002) Soils: their implications to human health. Sci Total Environ 291:1–32.CrossRefGoogle Scholar
  2. Aksu Z, Yener J (2001) A comparative adsorption/biosorption study of monochlorinated phenols onto various sorbents. Waste Manag 21:695–702.CrossRefGoogle Scholar
  3. Andersen JN (ed) (2000) Management of contaminated sites and land in Central and Eastern Europe. Danish Cooperation for Environment in Eastern Europe — Ministry of Environment and Energy, Copenhagen, Denmark.Google Scholar
  4. Barra R, Cisternas M, Suarez C, Piñones O, Popp P (2004) PCBs and HCHs in a saltmarsh sediment record from south central Chile: use of tsunami signatures and 137Cs fallout as temporal markers. Chemosphere 55:965–972.CrossRefGoogle Scholar
  5. Barra R, Colombo JC, Eguren G, Gamboa N, Jardim WF, Mendoza G (2005) Persistent organic pollutants (POP) in Eastern and Western South American countries. Rev Environ Contam Toxicol 185:1–33.CrossRefGoogle Scholar
  6. Bezama A (2006) A knowledge-based tool for contaminated sites management. Dissertation. Institute for Sustainable Waste Management and Technology, University of Leoben, Austria.Google Scholar
  7. Bezama A, Navia R, Novak J, Staber W, Lorber KE (2004) Novel approaches for the management and redevelopment of contaminated sites. Österr Wasserwirtsch 56(11–12):139–144.Google Scholar
  8. Bezama A, Agüero R, Barrera S, Márquez F, Lorber KE (2007a) Land register and evaluation of suspected contaminated sites in an industrial Chilean Region. Waste Manag. DOI: 10.1016/j.wasman.2007.02.029 (in press).Google Scholar
  9. Bezama A, Szarka N, Wolfbauer J, Lorber KE (2007b) Development and use of a balanced scorecard system for supporting decision-making in contaminated sites remediation. Water Air Soil Pollu, 181(1–4):3–16.CrossRefGoogle Scholar
  10. Bezama A, Szarka N, Navia R, Lorber KE (2007c) Lessons learned for a more efficient technology transfer to South American countries in the fields of solid waste and contaminated sites management. Waste Manag Res 25:148–161.CrossRefGoogle Scholar
  11. Bidelman TF, Olney CE (1974) Chlorinated hydrocarbons in the Sargasso Sea atmosphere and surface water. Science 183:516–518.CrossRefGoogle Scholar
  12. Borghini F, Grimalt J, Sanchez-Hernandez J, Barra R, Torres C, Focardi S (2005) Organochlorine compounds in soils and sediments of the mountain Andes Lakes. Environ Poll 136:253–266.CrossRefGoogle Scholar
  13. Breivik K, Sweetman A, Pacyna J, Jones K (2002) Towards a global historical emission inventory for selected PCB congeners a mass balance approach: 1. Global production and consumption. Sci Total Environ 290(1–3):181–198.CrossRefGoogle Scholar
  14. BLFUW (Bundesministerium für Land-und Fortwirtschaft, Umwelt und Wasserwirtschaft) (2001) “Kompostverordnung.” Vienna, Austria.Google Scholar
  15. Cheng IF, Fernando Q, Korte N (1997) Electrochemical dechlorination of 4-chlorophenol to phenol. Environ Sci Technol 31(4):1074–1078.CrossRefGoogle Scholar
  16. Chu W, Chan KH (2003) The mechanism of the surfactant-aided soil washing system for hydrophobic and partial hydrophobic organics. Total Environ 307(1–3):83–92.CrossRefGoogle Scholar
  17. Chu W, Kwan CY (2003) Remediation of contaminated soil by a solvent/surfactant system. Chemosphere 53:9–15.CrossRefGoogle Scholar
  18. CONAMA (Chilean National Environmental Commission) (2005a) Plan Nacional de Implementación para la Gestión de los Contaminantes Orgánicos Persistentes (COPs) en Chile; Fase I: 2006–2010 (National Implementation Plan for the Management of Persistent Organic Pollutants (POP) in Chile; Phase I: 2006–2010). Gobierno de Chile, Comisión Nacional de Medio Ambiente, Santiago.Google Scholar
  19. CONAMA (Chilean National Environmental Commision) (2005b) Inventario Nacional de Bifenilos Policlorados en Chile.Google Scholar
  20. Conte P, Agretto A, Spaccini R, Piccolo A (2005) Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environ Pollut 135(3):515–522.CrossRefGoogle Scholar
  21. CSM (Contaminated Sites Management Group) (1997) Site Remediation Technologies: A Reference Manual. Federal Interdepartamental Contaminated Sites Management Working Group of Canada (ed). Environment Canada, Hazardous Waste Branch, Quebec, Canada.Google Scholar
  22. de Mora S, Villeneuve J, Sheikholeslami MR, Cattini C, Tolosa I (2004) Organochlorinated compounds in Caspian Sea sediments. Mar Pollut Bull 48: 30–43.CrossRefGoogle Scholar
  23. DEPA (Danish Environmental Protection Agency) (2002) Guidelines on Remediation of Contaminated Sites. Environmental Guidelines No. 7, 2002c. Danish Ministry of the Environment, Copenhagen.Google Scholar
  24. De Palma R (2002) Background paper. UNIDO Programme on Transfer of Environmentally Sound Technologies in CEE and “NIS.” In: Ministry of Environment of the Slovak Republic and UNIDO (eds) International Forum on Strategies and Priorities for Environmental Industries, June 12–14, Bratislava (Slovakia).Google Scholar
  25. De Sousa C (2001) Contaminated sites: the Canadian situation in an international context. J Environ Manag 62:131–154.CrossRefGoogle Scholar
  26. Deshpande S, Shiau BJ, Wade D, Sabatini DA, Harwell JH (1999) Surfactant selection for enhancing ex situ soil washing. Water Res 33(2):351–360.CrossRefGoogle Scholar
  27. Dupont RR (1993) Fundamentals of bioventing applied to fuel contaminated sites. Environ Prog 12:45–53.CrossRefGoogle Scholar
  28. EC (Commission of the European Communities) (2002) Towards a Thematic Strategy for Soil Protection. COM (2002) 179 (final).Google Scholar
  29. EC (Commission of the European Communities) (2006) Reglamento (CE) No. 199/2006 de la Comisión de las comunidades Europeas. Contenido máximo de determinados contaminantes en los productos alimenticios por lo que se refiere a dioxinas y PCB similares a dioxinas. Diario Oficial de la Unión Europea (ES), 04.2.2006, L32/34-38.Google Scholar
  30. EEA (European Environmental Agency) (1999) Environment in the European Union at the turn of the century. Environmental assessment report no. 2. EEA, Copenhagen, Denmark.Google Scholar
  31. EEA (European Environmental Agency) (2003) Europe’s Environment: The Third Assessment. EEA, Copenhagen, Denmark.Google Scholar
  32. Eiermann D, Bolliger R (1996) Industiestandort Gaswerk: Neueste Erkenntnisse aus einer biologischen Langzeit-Bodensanierung. Terra Tech 3:37–39.Google Scholar
  33. EP (European Parliament and European Council) (2002) Laying down the Sixth Community Environment Action Programme. Decision No. 1600/2002/EC, 22 July 2002.Google Scholar
  34. EPA (United States Environmental Protection Agency) (1998) National Emission Standards for Hazardous Air Pollutants for Source Category: Pulp and Paper Production; Effluent Limitations Guidelines, Pretreatment Standards, and New Source Performance Standards: Pulp, Paper, and Paperboard Category. 40 CFR Parts 63, 261, and 430 [FRL-5924-8] RIN 2040-AB53. Federal Register Notices for Final Air and Water Rules, Vol. 63, No. 72, pp. 18504–18751.Google Scholar
  35. EPA (United States Environmental Protection Agency) (2000) Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field Applications. Report EPA 542-R-00-008. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Technology Innovation Office, Washington, DC.Google Scholar
  36. Eurostat, European Environment Agency, United Nations Economic Commission for Europe, Organisation for Economic Co-operation and Development & World Health Organisation (1995) Europe’s Environment: Statistical Compendium for the Dobris Assessment. Statistical Office of the European Communities, Luxembourg.Google Scholar
  37. Fam S (1996) Vapor extraction and bioventing. In: In Situ Treatment Technology. CRC Press, Baton Rouge, p. 329.Google Scholar
  38. FEA (Austrian Federal Ministry of Agriculture and Forestry, Environment and Water Management) (2001) Federal Waste Management Plan 2001. Federal Ministry of Agriculture and Forestry, Environment and Water Management, Division III/3, Vienna, Austria.Google Scholar
  39. FEA (Austrian Federal Ministry of Agriculture and Forestry, Environment and Water Management) (2002) State of the Environment, vol 6. Umweltbundesamt, Vienna.Google Scholar
  40. Fent K (2003) Ecotoxicological problems associated with contaminated sites. Toxicol Lett 140–141:353–365.CrossRefGoogle Scholar
  41. Fundación Chile (2004): Manual de procedimiento de identificación y priorización de Sitios Contaminados (Manual on the procedure for identifying and prioritizing contaminated sites). Area de Medio Ambiente y Metrología Química. Programa de Remediación Ambiental, Santiago.Google Scholar
  42. GeoSyntec Consultants (2005) Bioaugmentation for Remediation of Chlorinated Solvents: Technology Development, Status, and Research Needs. White paper for the Environmental Security Technology Certification Program (ESTCP), U.S. Department of Defense. Arlington, VA.Google Scholar
  43. Gillham RW, O’Hannesin SF (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32(6):958–967.CrossRefGoogle Scholar
  44. Gogoi BK, Dutta NN, Goswami P, Krishna Mohan P (2003) A case study of bioremediation of petroleum hydrocarbon-contaminated soil at a crude oil spill site. Adv Environ Res 7:767–782.CrossRefGoogle Scholar
  45. Guerin TF (1999) Bioremediation of phenols and polycyclic aromatic hydrocarbons in creosote contaminated soil using ex-situ land treatment. J Hazard Mater B65:305–315.CrossRefGoogle Scholar
  46. Gupta VK, Ali I (2001) Removal of DDD and DDE from wastewater using bagasse fly ash, a sugar industry waste. Water Res 35(1):33–40.CrossRefGoogle Scholar
  47. Gupta VK, Srivastava SK, Tyagi R (2000) Design parameters for the treatment of phenolic wastes by carbon columns (obtained from fertilizer waste material). Water Res 34(5):1543–1550.CrossRefGoogle Scholar
  48. Gupta VK, Jain CK, Ali I, Sharma M, Saini VK (2003) Removal of cadmium and nickel from wastewater using bagasse fly ash, a sugar industry waste. Water Res 37:4038–4044.CrossRefGoogle Scholar
  49. Guzzella L, Roscioli C, Vigano L, Saha M, Sarkar SK, Bhattacharya A (2005) Evaluation of the concentration of HCH, DDT, HCB, PCB and PAH in the sediments along the lower stretch of Hugli estuary, West Bengal, northeast India. Environ Int 31:523–534.CrossRefGoogle Scholar
  50. Haapea P, Tuhkanen T (2006) Integrated treatment of PAH contaminated soil by soil washing, ozonation and biological treatment. J Hazard Mater, 136(2): 244–250.CrossRefGoogle Scholar
  51. Hamby DM (1996) Sites remediation techniques supporting environmental restoration activities: a review. Sci Total Environ 191:203–224.CrossRefGoogle Scholar
  52. INFOR (Instituto Forestal de Chile) (2006) Estadísticas Forestales Chilenas 2005. Boletín Estadístico N° 111. Unidad de Estudios Económicos y del Ambiente del Instituto Forestal, Sede Metropolitana INFOR, Santiago, Chile.Google Scholar
  53. Jacobsen H, Kristoffersen M (2002) Case studies on waste management minimisation practices in Europe. Topic report 2/2002. European Environmental Agency, Copenhagen, Denmark.Google Scholar
  54. Jendrzejewski N, Eggenkamp HGM, Coleman ML (2001) Characterisation of chlorinated hydrocarbons from chlorine and carbon isotopic compositions: scope of application to environmental problems. Appl Geochem 16:1021–1031.CrossRefGoogle Scholar
  55. Kao CM, Chen SC, Liu SC, Wang L (2001) Application of microbial enumeration technique to evaluate the occurrence of natural bioremediation. Water Res 35(8):1951–1960.CrossRefGoogle Scholar
  56. Kerndorff H (1996) Chemische und humantoxikologische Grundlagen. In: Chemie und Biologie der Altlasten, Fachgruppe Wasserchemie in der GDCh (eds). VCH, Weinheim, Germany.Google Scholar
  57. Khodadoust A, Suidan M, Acheson C, Brenner R (1999) Remediation of soils contaminated with wood preserving wastes: crosscurrent and countercurrent solvent washing. J Hazard Mater 64(2):167–179.CrossRefGoogle Scholar
  58. Ko DCK, Porter JF, McKay G (2000) Optimised correlations for the fixed-bed adsorption of metal ions on bone char. Chem Eng Sci 55:5819–5829.CrossRefGoogle Scholar
  59. Kulikov SM, Plekhanov VP, Tsyganok AI, Schlimm C, Heitz E (1996) Electrochemical reductive dechlorination of chlororganic compounds on carbon cloth and metal-modified carbon cloth cathodes. Electrochim Acta 41(4):527–531.CrossRefGoogle Scholar
  60. Lante DW (1991) Techniken der Deponiesicherung und Deponiesanierung. Entsorgungspraxis 1–2:14–18.Google Scholar
  61. Lin G, Sauer NE, Cutright TJ (1996) Environmental regulations: a brief overview of their applications to bioremediation. Int Biodeterior Biodegrad 38(1): 1–8.CrossRefGoogle Scholar
  62. Lin Z, Puls RW (2003) Potential indicators for the assessment of arsenic natural attenuation in the subsurface. Adv Environ Res 7:825–834.CrossRefGoogle Scholar
  63. Lorber KE, Bezama A, Novak J, Navia R (2004) A novel approach for the redevelopment of old landfill sites. In: Proceedings of the ISWA World Environment Congress and Exhibition, Oct. 17–21, Rome, Italy.Google Scholar
  64. List W (2001) Abfallrecht Kodex. 10. Auflage, Orac Verlag, Vienna, Austria.Google Scholar
  65. Magdy YH, Daifullah AAM (1998) Adsorption of basic dye from aqueous solutions onto sugar-industry-mud in two modes of operation. Waste Manag 18:219–226.CrossRefGoogle Scholar
  66. Mann MJ (1999) Full-scale and pilot-scale soil washing. J Hazard Mater 66: 119–136.CrossRefGoogle Scholar
  67. Mandalakis M, Stepahanou E (2002) Polychlorinated biphenyls associated with fine particles (PM2.5) in the urban environment of Chile: concentrations levels, and sampling volatilization losses. Environ Toxicol Chem 21(11):2270–2275.Google Scholar
  68. McCulloch A, Midgley PM (1996) The production and global distribution of emissions of trichloroethene, tetrachloroethene and dichloromethane over the period 1988–1992. Atmos Environ 30:601–608.CrossRefGoogle Scholar
  69. McKague AB, Taylor DR (2001) Isomer specific syntheses of chlorinated catechols and guaiacols relevant to pulp bleaching. Chemosphere 45:261–267.CrossRefGoogle Scholar
  70. Mendoza G, Gutierrez L, Pozo-Gallardo K, Fuentes-Rios D, Montory M, Urrutia R, Barra R (2006) Polychlorinated biphenyls (PCBs) in mussels along the chilean coast. Environ Sci Pollut Res 13(1):67–74.CrossRefGoogle Scholar
  71. Mesania F, Jennings A (2000) Modelling soil pile bioremediation. Environ Model Softw 15:411–424.CrossRefGoogle Scholar
  72. Meunier N, Blais JF, Tyagi RD (2002) Selection of a natural sorbent to remove toxic metals from acidic leachate produced during soil decontamination. Hydrometallurgy 67:19–30.CrossRefGoogle Scholar
  73. Michael LC, Pellizzari ED, Norwood DL (1991) Application of the master analytical scheme to the determination of volatile organics in wastewater influents and effluents. Environ Sci Technol 25:150–155.CrossRefGoogle Scholar
  74. Mollah AH, Robinson CW (1996) Pentachlorophenol adsorption and desorption characteristics of granular activated carbon: I. Isotherms. Water Res 30(12): 2901–2906.CrossRefGoogle Scholar
  75. Morales J, Hutcheson R, Cheng IF (2002) Dechlorination of chlorinated phenols bay catalyzed and uncatalyzed Fe(0) and Mg(0) particles. J Hazard Mater B90: 97–108.CrossRefGoogle Scholar
  76. Navia R (2004) Environmental use of volcanic soil as natural adsorption material. Ph.D. thesis. Institute for Sustainable Waste Management and Technology, University of Leoben, Austria.Google Scholar
  77. Navia R, Diez MC, Lorber KE (2002) Remediation of sites contaminated with chlorophenols. Abfallwirtschaftstagung DepoTech, Nov. 20–22, Leoben, Austria.Google Scholar
  78. Norris G, Al-Dhahir Z, Birnstingl J, Plant SJ, Cui S, Mayell P (1999) A case study of the management and remediation of soil contaminated with polychlorinated biphenyls. Eng Geol 53:177–185.CrossRefGoogle Scholar
  79. OeN (Österreichisches Normungsinstitut) (2000) Altlasten — Gefährdungsabschätzung für das Schutzgut Boden. ÖNORM S 2088-2, Vienna, Austria.Google Scholar
  80. Ohlenbusch G, Kumke MU, Frimmel FH (2000) Sorption of phenols to dissolved organic matter investigated by solid phase microextraction. Sci Total Environ 253:63–74.CrossRefGoogle Scholar
  81. Okx JP, Stein A (2000) An expert support model for in situ soil remediation. Water Air Soil Pollut 118:357–375.CrossRefGoogle Scholar
  82. Radovic LR, Moreno-Castilla C, Rivera-Utrilla J (2000) Carbon materials as adsorbents in aqueous solutions. In: Radovic LR (ed) Chemistry and Physics of Carbon, vol 27. Dekker, New York-Basel, p. 227.Google Scholar
  83. Reinert G, Lotz W, Fiedler J, Bauer T, Heidingsfelder S, Neesse T, Keller U, Breiter R (1999) Trennschnitt 5 µm für die Bodenwäsche-biologische Reinigung der feinstfraktion. Terra Tech 3:49–51.Google Scholar
  84. Ritter L, Solomon KR, Forget J (2005) Persistent Organic Pollutants. International Programme on Chemical Safety (IPCS) Within the Framework of the Inter-Organization Programme for the Sound Management of Chemicals (IOMC).Google Scholar
  85. Rossmann H (ed) (1993) Das Österreichische Wasserrechtsgesetz. Verlag der Österreichischen Staatsdruckerei, Dritte Auflage, Vienna, Austria.Google Scholar
  86. Rozada F, Calvo LF, García AI, Martín-Villacorta J, Otero M (2003) Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems. Bioresour Technol 87:221–230CrossRefGoogle Scholar
  87. Schmitz HJ, Andel P (1997) Bodenbehandlungsanlagen: Die Jagd nach dem Boden wird härter. Terra Tech 5:17–31.Google Scholar
  88. Seguel P (2002) Catastro de residuos industriales de la VIII Región (Register of industrial waste in the VIII Region). Bachelor of Engineering thesis. Universidad del Desarrollo, Concepción, Chile.Google Scholar
  89. Semer R, Reddy KR (1996) Evaluation of soil washing process to remove mixed contaminants from a sandy loam. J Hazard Mater, 45(1):45–57.CrossRefGoogle Scholar
  90. Shiu WY, Ma KC, Varhanickova D, Mackay D (1994) Chlorophenols and alkylphenols: a review and correlation of environmentally relevant properties and fate in an evaluative environment. Chemosphere 29(6):1155–1224.CrossRefGoogle Scholar
  91. Sharma DC, Forster CF (1994) A preliminary examination into the adsorption of hexavalent chromium using low-cost adsorbents. Bioresour Technol 47: 257–264.CrossRefGoogle Scholar
  92. Sheets RG, Bergquist BA (1999) Laboratory treatability testing of soils contaminated with lead and PCBs using particle-size separation and soil washing. J Hazard Mater 66:137–150.CrossRefGoogle Scholar
  93. Stehmeier LG, Francis M, Jack TR, Diegor E, Winsor L, Abrajano TA (1999) Field and in vitro evidence for in-situ bioremediation using compound-specific 13C/12C ratio monitoring. Org Geochem 30:821–833.CrossRefGoogle Scholar
  94. Stiber NA, Small MJ, Fischbecl PS (1998) The relationship between historic industrial site use and environmental contamination. J Air Waste Manag Assoc 48:809–818.Google Scholar
  95. Stoops G, Cheverry C (1992) New Challenges for Soil Research in Developing Countries: A Holistic Approach. Proceedings of the Workshops, funded by the European Community, Life Sciences and Technologies for Developing Countries (STD 3 Programme), Rennes, France.Google Scholar
  96. Streat M, Patrick JW, Camporro-Perez MJ (1995) Sorption of phenol and parachlorophenol from water using conventional and novel activated carbons. Water Res 29(2):467–472.CrossRefGoogle Scholar
  97. Sturchio NC, Clausen JL, Heraty LJ, Huang L, Holt BD, Abrajano TA (1998) Chlorine isotope investigation of natural attenuation of trichloroethebe in an aerobic aquifer. Environ Sci Technol 32:3037–3042.CrossRefGoogle Scholar
  98. Tanabe S, Iwata H, Tatsukawa R (1994) Global contamination by persistent organochlorines and their ecotoxicological impact on marine mammals. Sci Total Environ 154:163–177.CrossRefGoogle Scholar
  99. Tedd P, Charles JA, Driscoll R (2001) Sustainable brownfield re-development—risk management. Eng Geol 60:333–339.CrossRefGoogle Scholar
  100. Tokunaga S, Hakuta T (2002) Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere 46:31–38.CrossRefGoogle Scholar
  101. UNEP (2002) PCB Transformers and Capacitors, from Management to Reclassification and Disposal. Geneva, Switzerland.Google Scholar
  102. Urum K, Pekdemir T, Ross D, Grigson S (2005) Crude oil contaminated soil washing in air sparging assisted stirred tank reactor using biosurfactants Chemosphere 60(3):334–343.CrossRefGoogle Scholar
  103. USEPA (1998) Permeable reactive barrier technologies for contaminant remediation. EPA/600/R-98/125. EPA, Washington, DC.Google Scholar
  104. Valo R, Häggblom MM, Salkinoja-Salonen M (1990) Bioremediation of chlorophenol containing simulated groundwater by immobilized bacteria. Water Res 24: 253–258.CrossRefGoogle Scholar
  105. Van Deuren J, Lloyd T, Chetry S, Liou R, Peck J (2002) Remediation Technologies Screening Matrix and Reference Guide, 4th Ed. U.S. Federal Remediation Technology Roundtable (FRTR). http://www.frtr.gov.Google Scholar
  106. Videla S, Diez MC (1997) Experiences of wastewater treatment in Chilean forest industry. Water Sci Technol 35(2–3):221–226.Google Scholar
  107. Vogel TM (1996) Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol 7:311–316.CrossRefGoogle Scholar
  108. Volkwein S, Hurtig H, Klöpfer W (1999) Life cycle assessment of contaminated sites remediation. Int J Life Cycle Anal 4(5):263–274.CrossRefGoogle Scholar
  109. Voudrias EA (2001) Pump-and-treat remediation of groundwater contaminated by hazardous waste: can it really be achieved? Global Nest Int J 3(1):1–10.Google Scholar
  110. Walker GM, Weatherley LR (1999) Kinetics of acid dye adsorption on GAC. Water Res 33(8):1895–1899.CrossRefGoogle Scholar
  111. Warith M, Fernández L, Gaudet N (1999) Design of in-situ microbial filter for the remediation of naphthalene. Waste Manag 19:9–25.CrossRefGoogle Scholar
  112. Whyte LG, Goalen B, Hawari J, Labbe D, Greer CW, Nahir M (2001) Bioremediation treatability assessment of hydrocarbon-contaminated soils from Eureka, Nunavut. Cold Regions Sci Technol 32:121–132.CrossRefGoogle Scholar
  113. Yak HK, Wenklawiak BW, Cheng IF, Doyle JG, Wai CM (1999) Reductive dechlorination of polychlorinated biphenyls by zerovalent iron in subcritical water. Environ Sci Technol 33(8):1307–1310.CrossRefGoogle Scholar
  114. Yaron B, Calvet R, Prost R (1996) Soil Pollution. Processes and Dynamics. Springer-Verlag, Berlin/Heidelberg.Google Scholar
  115. Youcai Z, Luochun W, Renhua H, Dimin X, Guowei G (2002) A comparison of refuse attenuation in laboratory and field scale lysimeters. Waste Manag 22:29–35.CrossRefGoogle Scholar
  116. Zink G, Lorber KE (1995) Mass spectral identification of metabolites formed by microbial degradation of polycyclic aromatic hydrocarbons (PAH). Chemosphere 31(9):4077–4084.CrossRefGoogle Scholar
  117. Zorzi M, Hammer S (1998) In Situ-Filter-Reaktionswand zur Sanierung von KW und LHKW-kontaminierten Grundwässern. In: Hengerer D, Lorber KE, Nelles M, Wolber G (eds) Restabfallbehandlung, Deponietechnik, Entsorgungsbau und Altlastenproblematik, Balkema, Rotterdam, pp. 151–155.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Alberto Bezama
    • 1
  • Rodrigo Navia
    • 2
  • Gonzalo Mendoza
    • 1
  • Ricardo Barra
    • 1
  1. 1.Environmental Sciences Center EULA-ChileUniversity of ConcepciónConcepciónChile
  2. 2.Department of Chemical EngineeringUniversity of La FronteraTemucoChile

Personalised recommendations