Skip to main content

Meteorites, Asteroids and the Age and Origin of the Solar System

  • Chapter
Solar System Astrophysics

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1054 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, L. 1980. “Extraterrestrial Cause for the Cretaceous–Tertiary Extinction,” Science, 208, 1095–1108.

    Article  ADS  Google Scholar 

  • Binzel, R. P., Bus, S. J., and Burbine, P. H. 1998. “Relating S-Asteroids and Ordinary Chondrite Meteorites: The New Big Picture,” BAAS, 30, 1041.

    ADS  Google Scholar 

  • Bertotti, B., Farinella, P., and Vokrouhlicky, D. 2003. Physics of the Solar System. (Dordrecht: Kluwer).

    Google Scholar 

  • Bogard, D. D. and Garrison, D. H. 1998. “Relative Abundances of Ar, Kr, and Xe in the Martian Atmosphere as Measured by Martian Meteorites,” Geochimica et Cosmochimica Acta, 62, 1829–1835.

    Article  ADS  Google Scholar 

  • Bogard, D. D. and Garrison, D. H. 1999. “Argon 39–Argon 40 ‘ages’ and Trapped Argon in Martian Shergottites, Chassigny, and Allen Hills 84001,” Meteoritics and Planetary Science, 34, 451–473.

    Article  ADS  Google Scholar 

  • Borg, L. E., Edmunds, J. E., and Asmerom, Y. 2005. “Constraints on the U–Pb Isotopic Systematics of Mars Inferred from a Combined U–Pb, Rb–Sr, and Sm–Nd Isotopic Study of the Martian Meteorite Zagami,” Geochimica et Cosmochimica Acta, 69, 5819–5830.

    Article  ADS  Google Scholar 

  • Boss, A. P. 1995. “Collapse and Fragmentation of Molecular Cloud. II. Collapse Induced by Stellar Shock Waves,” Astrophysical Journal, 439, 224–236.

    Article  ADS  Google Scholar 

  • Boss, A. P. 2004. “From Molecular Clouds to Circumstellar Disks” in Comets II, eds M. C. Festou, H. U. Keller, and H. A. Weaver (Tucson, AZ: University of Arizona Press), pp. 67–80.

    Google Scholar 

  • Brown, M. E., van Dam, M. A., Bouchez, A. H., Le Mignant, D., Campbell, R. D., Chin, J. C. Y., Conrad, A., Hartman, S. K., Johansson, E. M, Lafon, R. E., Rabinowitz, D. L., Stomski, Jr., P. J., Summer, D. M., Trujillo, C. A., and Wizinowich, P. L. 2006. “Satellites of the Largest Kuiper Belt Objects,” Astrophysical Journal, 639, L43–L46.

    Google Scholar 

  • Cameron, A. G. W. and Truran, J. W. 1977. “The Supernova Trigger for Formation of the Solar System,” Icarus, 30, 447–461.

    Article  ADS  Google Scholar 

  • Chapman, C. R. 1990. “Asteroids,” in The New Solar System, eds. J. K. Beatty and A. Chaikin. (Cambridge, MA: Sky Publishing Corp.; Cambridge, UK: Press Syndicate of University of Cambridge), 3rd ed., pp. 231–240.

    Google Scholar 

  • Clayton, R. N. 1993, “Oxygen Isotopes in Meteorites,” Annual Review of Earth and Planetary Sciences, 21, 115–149.

    Article  ADS  MathSciNet  Google Scholar 

  • Clayton, R. N. and Mayeda, T. K. 1984, “The Oxygen Isotope Recod in Murchison and Other Carbonaceous Chondrites,” Earth & Planetary Science Letters, 67, 151–161.

    Article  ADS  Google Scholar 

  • Clayton, R. N. and Mayeda T. K. 1996, “Oxygen Isotope Studies of Achondrites,” Geochimica et Cosmochimica Acta, 60, No. 11, 1999–2017.

    Article  ADS  Google Scholar 

  • Clayton, R. N., Mayeda T. K., Goswami, J. N., and Olsen, E. J. 1991, “Oxygen Isotope Studies of Ordinary Chondrites,” Geochimica et Cosmochimica Acta, 55, 2317–s2337.

    Article  ADS  Google Scholar 

  • Dones, L., Weissman, P. R., Levison, H. F., and Duncan, M. J. 2004. “Oort Cloud Formation and Dynamics” in Comets II, eds M. C. Festou, H. U. Keller, and H. A. Weaver (Tucson, AZ: University of Arizona Press), pp. 153–174.

    Google Scholar 

  • Dunham, D. W., Bixby Dunham, J., et al. (44 other co-authors) 1990. “The Size and Shape of (2) Pallas from the 1983 Occultation of 1 Vulpeculae,” Astronomical Journal, 99, 1636–1662.

    Google Scholar 

  • Eugster, O., Weigel, A., and Polnau, E. 1997. “Ejection Times of Martian Meteorites,” Geochimica et Cosmochimica Acta, 61, 2749–2757.

    Article  ADS  Google Scholar 

  • Fessenkov, V. G. 1955. “Sikhoté-Aline Meteorite” in Meteors, ed. T. R. Kaiser (New York: Pergamon Press), pp. 179–183.

    Google Scholar 

  • Gounelle, M. and Meibom, A. 2008. “The Origin of Short-Lived Radionuclides and the Astrophysical Environment of Solar System Formation,” Astrophysical Journal, 680, 781–792.

    Article  ADS  Google Scholar 

  • Grady, M. M. 2000. Catalogue of Meteorites, 5th Ed. (London: The Natural History Museum).

    Google Scholar 

  • Henney, W. J., and O’Dell, C. R. 1999. “A Keck High-Resolution Spectroscopic Study of the Orion Nebula Proplyds,” Astronomical Journal, 118, 2350–2368.

    Article  ADS  Google Scholar 

  • Hewins, R. H. 1997. “Chondrules,” Annual Review of Earth and Planetary Sciences, 25, 61–83.

    Article  ADS  Google Scholar 

  • Hirayama, K. 1918a. “Groups of Asteroids Probably of Common Origin,” Proc. Phys. Math. Soc. Japan, Ser. 2, No. 9, 354–361.

    Google Scholar 

  • Hirayama, K. 1918b. “Groups of Asteroids Probably of Common Origin,” Astronomical Journal, 31, 185–188.

    Article  ADS  Google Scholar 

  • Hodge, P. 1994. Meteorite Craters and Impact Structures of the Earth. (Cambridge: The University Press).

    Google Scholar 

  • Hutchison, R. 2004. Meteorites (Cambridge, UK: University Press).

    Google Scholar 

  • Jewitt, D. and Luu, J. 2000. “Physical Nature of the Kuiper Belt” in Protostars and Planets. IV, eds V. Mannings, A. P. Boss, and S. S. Russell (Tucson, AZ: University of Arizona Press), pp. 1201–1229.

    Google Scholar 

  • Joy, K. H., Crawford, I. A., Russell, S. S., Swinyard, B., Kellett, B., and Grande, M. 2006. “Lunar Regolith Breccias MET 01210, PCA 02007 and DAG400: Their Importance in Understanding the Lunar Surface and Implications for the Scientific Analysis of D-CIXS Data.” Lunar and Planetary Sciences, 37, No. 1274, Suppl. p. 5221.

    Google Scholar 

  • Karlsson, H. R., Clayton, R. N., Gibson, Jr., E. K., and Mayeda, T. K. 1992. “Water in SNC Meteorites: Evidence for a Martian Hydrosphere,” Science, 255, 1409–1411.

    Article  ADS  Google Scholar 

  • Karttunen, H., Kroger, P., Oja, H., Poutanen, M., and Donner, K. J., eds. 2003. Fundamental Astronomy (Berlin: Springer-Verlag).

    Google Scholar 

  • Kelley, D. H. and Milone, E.F. 2005. Exploring Ancient Skies: An Encyclopedic Survey of Ancient Astronomy (New York: Springer-Verlag).

    Google Scholar 

  • Kirsten, T. 1978. “Time and the Solar System,” in Origin of the Solar System, ed. S. F. Dermott, (New York: John Wiley), pp. 267–346.

    Google Scholar 

  • Liu, Y., Nyquist, L., Wiesmann, H., Shih, C., Schwandt, C., and Takeda, H. 2003. “Internal Rb-Sr Age and Initial 87Sr/86Sr of a Silicate Inclusion from the Campo Del Cielo Iron Meteorite,” Lunar and Planetary Science XXXIV (2003).

    Google Scholar 

  • Marti, K., Kim, J. S., Thakur, A. N., McCoy, T. J., and Keil, K. 1995. “Signatures of the Martian Atmosphere in Glass of the Zagami Meteorite,” Science, 267, 1981–1984.

    Article  ADS  Google Scholar 

  • Matsumura, S., Pudritz, R. E., and Thommes, E. W. 2007. “Saving Planetary Systems: Dead Zones and Planetary Migration,” Astrophysical Journal, 660, 1609–1623.

    Google Scholar 

  • Meaburn, J. 1988. “An Extended High-speed Flow from a Compact, Ionized Knot in the Orion Nebula (M42),” Monthly Notices, Royal Astronomical Society, 233, 791–800.

    ADS  Google Scholar 

  • Morbidelli, A. and Brown, M. E. 2004. “The Kuiper Belt and the Primordial Evolution of the Solar System” in Comets II, eds M. C. Festou, H. U. Keller, and H. A. Weaver (Tucson, AZ: University of Arizona Press), pp. 175–191.

    Google Scholar 

  • O’Dell, C. R. and Wen, Z. 1994. “Postrefurbishment Mission Hubble Space Telescope Images of the Orion Nebula: Proplyds, Herbig-Haro Objects, and Measurement of a Circumstellar Disk,” Astrophysical Journal, 436, 194–202.

    Article  ADS  Google Scholar 

  • Pinson, W. H., Jr., Schnetzler, C. C., Beiser, E., Fairbairn, H. W., and Hurley, P. M. 1965. “Rb-Sr Age of Stony Meteorites,” Geochimica et Cosmochimica Acta, 29, 455–466.

    Article  ADS  Google Scholar 

  • Righter, K. 2007. The Lunar Meteorite Compendium. http://www-curator. jsc.nasa.gov/antmet/lmc/index.cfm

    Google Scholar 

  • Sears, D.W.G. and Dodd, R. T. 1988. Meteorites and the Early Solar System (Tucson, AZ: University of Arizona Press).

    Google Scholar 

  • Shimoda, G., Nakamura, N., Kimura, M., Kani, T., Nohda, S., and Yamamoto, K. 2005. “Evidence from the Rb-Sr System for 4.4 Ga Alteration of Chondrules in the Allende (CV3) Parent Body,” Meteoritics and Planetary Science, 40, Nr 7, 1059–1072.

    Article  ADS  Google Scholar 

  • Smith, B. A. and Terrile, R. J. 1984. “A Circumstellar Disk around β Pictoris,” Science, 226, 1421–1424.

    Article  ADS  Google Scholar 

  • Tatsumoto, M., Unruh, D. M., and Desborough, G. A. 1976. “U-Th-Pb and Rb-Sr Systematics of Allende and U-Th-Pb Systematics of Orgueil,” Geochimica et Cosmochimica Acta, 40, 617–634.

    Article  ADS  Google Scholar 

  • Taylor, S. R. 1992. Solar System Evolution: A New Perspective (Cambridge: University Press).

    Google Scholar 

  • Urey, H. C. and Craig, H. 1953. “The Composition of Stone Meteorites and the Origin of the Meteorites,” Geochimica et Cosmchimica Acta, 4, 36–82.

    Article  ADS  Google Scholar 

  • Van Schmus, W. R. and Wood, J. A. 1967. “A Chemical-Petrologic classification for the Chondritic meteorites.” Geochimica et Cosmochimica Acta, 31, 747–765.

    Article  ADS  Google Scholar 

  • Wasson, J. T. 1985. Meteorites: Their Record of Early Solar System History (New York: Freeman).

    Google Scholar 

  • Wetherill, G. W., and Chapman, C. R. 1988. “Asteroids and Meteorites,” in Meteorites and the Early Solar System, eds. Kerridge, J. F., and Matthews, M. S. (Tucson: The University of Arizona Press), pp. 35–67.

    Google Scholar 

  • Wlotzka, F. 1993. “A Weathering Scale for the Ordinary Chondrites,” Meteoritics, 28, 460.

    ADS  Google Scholar 

  • Wood, J. A. 1968. Meteorites and the Origin of Planets (New York: McGraw-Hill).

    Google Scholar 

  • Wood, J. A. 1990. “Meteorites” in The New Solar System, eds J. K. Beatty and A. Chaikin, (Cambridge, MA: Sky Publishing Corp.; Cambridge, UK: Press Syndicate of University of Cambridge) 3rd Ed., pp. 241–250.

    Google Scholar 

  • Zeigler, R. A., Korotev, R. L., Jolliff, B. L., and Haskin, L. A. 2005. “Petrography of Lunar Meteorite MET 01210,” Lunar and Planetary Science, XXXVI, Abstract No. 2385.

    Google Scholar 

  • Zeilik, M. and Gregory, S. A. 1998. Introductory Astronomy and Astrophysics (Fort Worth, TX: Saunders College Publishing).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Milone, E.F., Wilson, W.J. (2008). Meteorites, Asteroids and the Age and Origin of the Solar System. In: Solar System Astrophysics. Astronomy and Astrophysics Library. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73157-5_15

Download citation

Publish with us

Policies and ethics