Design and Prototyping of an Industrial Fault Clustering System Combining Image Processing and Artificial Neural Network Based Approaches

  • Matthieu Voiry
  • Véronique Amarger
  • Kurosh Madani
  • François Houbre
Conference paper


Fault diagnosis of optical devices in industrial environment is a challenging but crucial task, since it ensures products’ nominal specification and manufacturing control. Defects detection and issued information processing are among chief phases for succeeding in such diagnosis. A new scratches and digs defects detection and characterization method exploiting Nomarski microscopy issued imaging has been developed. It allows automatic check of optical devices during industrial process. Issued images contain several items which have to be detected and then classified in order to discriminate between “false” defects and “abiding” ones. In this paper, a processing method is proposed for a first step of pattern recognition from Nomarski images. A first phase permits to extract items images and a second phase allows us to cluster them using an unsupervised neural network technique, Self-Organizing Map.


Fault Diagnosis Defect Image Correctable Defect Nominal Specification Automatic Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Bouchareine: Métrologie des Surfaces. Techniques de l’Ingénieur, vol. R1390, 1999.Google Scholar
  2. 2.
    S. Chatterjee: Design Considerations and Fabrication Techniques of Nomarski Reflection Microscope. Optical Engineering, vol. 42, no. 8, pp. 2202-2212, 2003.CrossRefGoogle Scholar
  3. 3.
    P. E. J. Flewitt and R. K. Wild: Light Microscopy. in Physical Methods for materials characterisation, 1994.Google Scholar
  4. 4.
    T. Kohonen: Self Organizing Maps, 3rd edition, Berlin: Springer, 2001.MATHGoogle Scholar
  5. 5.
    P. Bourgeat, F. Meriaudeau, K. W. Tobin, and P. Gorria: Patterned Wafer Segmentation. Proceedings of SPIE, vol. 5132, no. Quality Control by Artificial Vision VI, pp. 36-44, 2004.Google Scholar
  6. 6.
    R. C. Gonzalez and R. E. Woods: Digital Image Processing, 2nd edition Addison- Wesley, 2002.Google Scholar
  7. 7.
    A. Choksuriwong, H. Laurent, and B. Emile: Comparison of invariant descriptors for object recognition. IEEE International Conference on Image Processing (ICIP), pp. 377-380, 2005.Google Scholar
  8. 8.
    S. Derrode, ‘Représentation de Formes Planes á Niveaux de Gris par Différentes Approximations de Fourier-Mellin Analytique en vue d’Indexation de Bases d’Images.;’ Thèse de Doctorat - Université de Rennes I, 1999.Google Scholar
  9. 9.
    F. Ghorbel: A Complete Invariant Description for Gray Level Images by the Harmonic Analysis Approach. Pattern Recognition, vol. 15, pp. 1043-1051, 1994.CrossRefGoogle Scholar
  10. 10.
    G. Ravichandran and M. Trivedi: Circular-Mellin features for texture segmentation. IEEE Trans. Image Processing, vol. 4, pp. 1629-1640, 1995.Google Scholar
  11. 11.
    T. Kohonen, E. Oja, O. Simula, A. Visa, and J. Kangas: Engineering Applications of the Self-Organizing Maps. Proceedings of the IEEE, vol. 84, no. 10, pp. 1358- 1384, Oct.1996.Google Scholar
  12. 12.
    J. Heikkonen and J. Lampinen: Building Industrial Applications with Neural Networks., Proc. European Symposium on Intelligent Techniques, ESIT’99, 1999.Google Scholar
  13. 13.
    O. Silvén, M. Niskanen, and H. Kauppinen: Wood Inspection with Non- Supervised Clustering. Machine Vision and Applications, vol. 13, no. 5, pp. 275-285, 2000.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Matthieu Voiry
    • 1
    • 2
  • Véronique Amarger
    • 1
  • Kurosh Madani
    • 1
  • François Houbre
    • 2
  1. 1.Images, Signals, and Intelligent System Laboratory, (LISSI / EA 3956), Paris-XII-Val de Marne University, Senart Institute of TechnologyFrance
  2. 2.SAGEM REOSCSaint Pierre du Perray91280, France

Personalised recommendations