Advertisement

Cryptanalysis of Chaotic Product Cipher

  • Adrian Skrobek
  • Paweł Sukiennik
Conference paper

Abstract

The central contribution of this paper is a cryptanalysis of chaotic product cipher attempt. We use the method of an approximation of the blurred chaotic orbit as a cryptanalyticall tool. Also, problems concerned with design of chaotic product ciphers are presented in this article. A proposition of algorithm improvement is also made. This improvement makes the algorithm more secure.

Keywords

Chaotic System Block Cipher Stream Cipher Plain Text Chaotic Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. [1]
    G. Álvarez, F. Montoya, M. Romera, and G. Pastor. Cryptanalysis of a discrete chaotic cryptosystem using external key. Physics Letters A, 319, December 2003.Google Scholar
  2. [2]
    G. Álvarez, F. Montoya, M. Romera, and G. Pastor. Cryptanalysis of an ergodic chaotic cipher. Physics Letters A, 311, May 2003.Google Scholar
  3. [3]
    S. Vanstone A. Menezes, P. van Oorschot. Handbook of applied Cryptography. CRC Press, Inc., 1997.Google Scholar
  4. [4]
    G. Alvarez and S. Li. Cryptographic requirements for chaotic secure communications. ArXiv Nonlinear Sciences e-prints, November 2003.Google Scholar
  5. [5]
    M. S. Baptista. Cryptography with chaos. Physics Letters A, 240, March 1998.Google Scholar
  6. [6]
    Eli Biham. Cryptanalysis of the chaotic-map cryptosystem suggested at EUROCRYPT ‘91. Lect. Notes in Comp. Sci., 547, 1991.Google Scholar
  7. [7]
    P. Cvitanovi¢, R. Artuso, R. Mainieri, G. Tanner, and G. Vattay. Classical and Quantum Chaos, volume Version 7.0.1. Niels Bohr Institute, August 2000.Google Scholar
  8. [8]
    Shujun Li Department. When chaos meets computers.Google Scholar
  9. [9]
    Z.-H. Guan F. Huang. A modified method of a class of recently presented cryptosystems. Chaos, Solitons and Fractals, 2005.Google Scholar
  10. [10]
    D. Saupe H.-O. Peitgen, H. Jurgens. Fractals for the Classroom. Springer-Verlag New York, Inc., 1992.Google Scholar
  11. [11]
    Steve Hollasch. IEEE standard 754 floating point numbers. IEEE, 2004.15Google Scholar
  12. [12]
    Goce Jakimoski and Ljupco Kocarev. Analysis of some recently proposed chaos-based encryption algorithms. Phys. Let. A, 291, 2001.Google Scholar
  13. [13]
    Z. Kotulski, J. Szczepański. Discrete chaotic cryptography (DCC). NEEDS, 1997.Google Scholar
  14. [14]
    Shujun Li, Xuanqin Mou, and Yuanlong Cai. Improving security of a chaotic encryption approach. Physics Letters A, 290, 2001.Google Scholar
  15. [15]
    B. Schneier, N. Ferguson. Practical Cryptography. John Wiley & Sons, Inc., 2003.Google Scholar
  16. [16]
    National Institute of Standards and Technology. FIPS PUB 46-3, Data Encryption Standard (DES). pub-NIST, October 1999.Google Scholar
  17. [17]
    A. Sarkar. Encryption with chaos. National Conference on Nonlinear Systems & Dynamics, India, 2003.Google Scholar
  18. [18]
    Roland Schmitz. Use of chaotic dynamical systems in cryptography. Journal of the Franklin Institute, 2001.Google Scholar
  19. [19]
    Claude E. Shannon. Communication theory of secrecy systems. Bell Systems Technical Journal, 28(4):656_715, 1949.Google Scholar
  20. [20]
    S. Li, X. Mou, Y. Cai Pseudo-random bit generator based on couple chaotic systems and its application in stream ciphers cryptography. Indocrypt 2001. Springer-Verlag, 2001.Google Scholar
  21. [21]
    J. Pejaś, S. Berczyński, Y. A. Kravtsov and A. Skrobek. Cryptographic properties of some cryptosystem with modulation of the chaotic sequence parameters. ACS, 2004.Google Scholar
  22. [22]
    I. Sasase S. Mori T. Habatsu, Y. Nishio. A secret key cryptosystem by iterating a chaotic map. Springer-Verlag, 1998.Google Scholar
  23. [23]
    Frank Yellin Tim Lindholm. The java virtual machine specification, 1999.Google Scholar
  24. [24]
    A. Renvall T.W. Cusick, C. Ding. Stream Ciphers and Number Theory. Elsevier, 1998.Google Scholar
  25. [25]
    A. Kerckhoffs. La cryptographie militaire. Journal des Sciences Militaires, 1883.Google Scholar
  26. [26]
    K. Wong W. Wong, L. Lee. A modified chaotic cryptographic method. Computer Physics Communications, 2001.Google Scholar
  27. [27]
    J. Szczepański, Z. Kotulski. On constructive approach to chaotic pseudorandom number generators. RCMIS, 2000.Google Scholar
  28. [28]
    Jiri Fridrich and James F. Geer. Reconstruction of blurred orbits under finite resolution. Applied Mathematics and Computation, 71(2–3):227–245, September 1995.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Adrian Skrobek
    • 1
  • Paweł Sukiennik
    • 1
  1. 1.Szczecin University of Technology71-210 Szczecin

Personalised recommendations